Skip to main content

A Method for Estimating Illumination Distribution of a Real Scene Based on Soft Shadows

  • Conference paper
  • First Online:
Book cover Advanced Multimedia Content Processing (AMCP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1554))

Included in the following conference series:

Abstract

This paper describes a new method for estimating an illumination distribution of a real scene. Shadows in a real scene are usually observed as soft shadows that do not have sharp edges. In the proposed method, illumination distribution of the real scene is estimated based on radiance distribution inside the soft shadows cast by an object in the scene. By observing shadows and not illumination itself, the proposed method is able to avoid several technical problems which the previously proposed methods suffered from: how to capture a wide field of view of the entire scene and how to capture a high dynamic range of the illumination. The estimated illumination distribution is then used for rendering virtual objects superimposed onto images of the real scene. We successfully tested the proposed method by using real images to demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators and Virtual Environments, vol. 6, no. 4. (1997) 355–385

    Google Scholar 

  2. Azuma, R.T., Bishop, G.: Improving static and dynamic registration in an optical see-through HMD. Proceedings of SIGGRAPH 94. (1994) 197–204

    Google Scholar 

  3. Bajura, M., Fuchs, H., and Ohbuchi, R.: Merging virtual objects with the real world: seeing ultrasound imagery within the patient. Proceedings of SIGGRAPH 92. (1992) 203–210

    Google Scholar 

  4. Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg, D.P.: A progressive Refinement Approach to Fast Radiosity Image Generation Proceedings of SIGGRAPH 88. (1998) 75–84

    Google Scholar 

  5. Debevec, P.E.: Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography. Proceedings of SIGGRAPH 98. (1998) 189–198

    Google Scholar 

  6. Drettakis, G., Robert, L., Bougnoux, S.: Interactive Common Illumination for Computer Augmented Reality. Proceedings of 8th Eurographics Workshop on Rendering. (1997) 45–57

    Google Scholar 

  7. Fournier, A., Gunawan, A., Romanzin, C.: Common Illumination between Real and Computer Generated Scenes. Proceedings of Graphics Interface 93. (1993) 254–262

    Google Scholar 

  8. Horn, B.K.P.: Robot Vision. The MIT Press, Cambridge, MA, (1986)

    Google Scholar 

  9. Kanade, T., Yoshida, A., Oda, K., Kano, H., Tanaka, M.: A Video-Rate Stereo Machine and Its New Applications. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 96. (1996) 196–202

    Google Scholar 

  10. Nayar, S.K., Ikeuchi, K., Kanade, T.: Surface reflection: physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no.7. (1991) 611–634

    Article  Google Scholar 

  11. Sato, I., Sato, Y., Ikeuchi K.: Acquiring a radiance distribution to superimpose virtual objects into a real scene. To appear in IAPR Workshop Machine Vision and Application. (1998)

    Google Scholar 

  12. State, A., Hirota, G., Chen, D.T., Garrett, W.F., Livingston, M.A., Superior augmented-reality registration by integrating landmark tracking and magnetic tracking. Proceedings of SIGGRAPH 96. (1996) 429–438

    Google Scholar 

  13. Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surface. Journal of Optical Society of America, vol.57. (1967) 1105–1114

    Article  Google Scholar 

  14. Tsai, R.: A Versatile Camera Calibration Technique for High Accuracy Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation, vol. 3, no. 4. (1987) 323–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sato, I., Sato, Y., Ikeuchi, K. (1999). A Method for Estimating Illumination Distribution of a Real Scene Based on Soft Shadows. In: Nishio, S., Kishino, F. (eds) Advanced Multimedia Content Processing. AMCP 1998. Lecture Notes in Computer Science, vol 1554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48962-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48962-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65762-0

  • Online ISBN: 978-3-540-48962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics