Abstract
A divertible protocol is a protocol between three parties in which one party is able to divert another party’s proof of some facts to prove some other facts to the other party. This paper presents a divertible protocol to prove multi-variant polynomial relations. Its direct application to blind group signature is also shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Camenisch, “Efficient and Generalized Group Signatures”, Advances in Cryptology-EUROCRYPT’97 Proceedings, Springer-Verlag 1997, pp. 465–479.
J. Camenisch and M. Stadler, Efficient Group Signatures for Large Groups, Advances of Cryptology: Proceedings of Crypto’97, Springer-Verlag, 1997, pp. 465–479.
D. Chaum, “Blind Signatures for Untraceable Payments”, Advances in Cryptology: Proceedings of Crypto 82, Plenum Press, 1983, pp. 199–203.
D. Chaum, E. van Heijst, “Group Signatures”, Advances in Cryptology-EUROCRYPT’91 Proceedings. Springer-Verlag, 1991, pp. 257–265.
D. Chaum and T. Pedersen. “Wallet databases with observers”, Advances in Cryptology-CRYPTO’92, Springer-Verlag, 1993, pp. 89–105.
L. Chen and T.P. Petersen, “New Group Signature Schemes”, Advances in Cryptology-EUROCRYPT’94 Proceedings, Springer-Verlag 1995, pp. 171–181.
R. Cramer and I. Damgard, “Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge be for Free?”, Advances of Cryptology-Proceedings of Crypto’98, to appear.
Y. Desmedt, C. Goutier and S. Bengio, “Special Uses and Abuses of the Fiat-Shamir Passport Protocol”, Advances in Cryptology-CRYPTO’87 Proceedings, Springer-Verlag, 1988, pp. 21–39.
A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions to Identification and Signature Problems”, Advances in Cryptology-CRYPTO’86 Proceedings, Springer-Verlag, 1987, pp. 186–194.
E. Fujisaki and T. Okamoto, Statistical Zero-Knowledge Protocols to Prove Modular Polynomial Relations, Advances of Cryptology-Proceedings of Crypto’97, Springer-Verlag 1997, pp. 16–30.
T. Okamoto, “Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes”, Advances in Cryptology-CRYPTO’92 Proceedings, Springer-Verlag, 1993, pp.54–65.
T. Okamoto and K. Ohta, “Disposable Zero-Knowledge Authentication and Their Applications to Untraceable Electronic Cash”, Advances in Cryptology-CRYPTO’89 Proceedings, Springer-Verlag, 1990, pp. 134–149.
T.P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”, Advances in Cryptology-CRYPTO’91 Proceedings, Springer-Verlag, 1992, pp. 129–140.
G.J. Simmons, “The Prisoner’s Problem and the Subliminal Channel”, Advances in Cryptology: Proceedings of Crypto 83, Pleum Press, 1984, pp. 51–67.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, K.Q., Mu, Y., Varadharajan, V. (1999). Divertible Zero-Knowledge Proof of Polynomial Relations and Blind Group Signature. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds) Information Security and Privacy. ACISP 1999. Lecture Notes in Computer Science, vol 1587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48970-3_10
Download citation
DOI: https://doi.org/10.1007/3-540-48970-3_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65756-9
Online ISBN: 978-3-540-48970-2
eBook Packages: Springer Book Archive