Skip to main content

Enumeration of Correlation Immune Boolean Functions

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1587))

Included in the following conference series:

Abstract

We introduce new ideas to tackle the enumeration problem for correlation immune functions and provide the best known lower and upper bounds. The lower bound is obtained from sufficient conditions, which are essentially construction procedures for correlation immune functions. We obtain improved necessary conditions and use these to derive better upper bounds. Further, bounds are obtained for the set of functions which satisfy the four conditions of correlation immunity, balancedness, nondegeneracy and nonaffinity. Our work clearly highlights the difficulty of exactly enumerating the set of correlation immune functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation immune functions. In Advances in Cryptology-CRYPTO’91, pages 86–100. Springer-Verlag, 1992.

    Google Scholar 

  2. B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem or t-resilient functions. In 26th IEEE Symposium on Foundations of Computer Science, pages 396–407, 1985.

    Google Scholar 

  3. Eric Filiol and Caroline Fontaine. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In Advances in Cryptology-EUROCRYPT’98. Springer-Verlag, 1998.

    Google Scholar 

  4. K. Gopalakrisnan, D. G. Hoffman, and D. R. Stinson. A note on a conjecture concerning symmetric resilient functions. Information Processing Letters, 47(3):139–143, 1993.

    Article  MathSciNet  Google Scholar 

  5. Xiao Guo-Zhen and James Massey. A spectral characterization of correlation immune combining functions. IEEE Transactions on Information Theory, 34(3):569–571, May 1988.

    Article  MATH  Google Scholar 

  6. Richard W. Hamming. Coding And Information Theory. Prentice Hall Inc., 1980.

    Google Scholar 

  7. William Millan, Andrew Clark, and Ed Dawson. Heuristic design of cryptographically strong balanced Boolean functions. In Advances in Cryptology-EUROCRYPT’98. Springer-Verlag, 1998.

    Google Scholar 

  8. C. J. Mitchell. Enumerating Boolean functions of cryptographic significance. Journal of Cryptology, 2(3):155–170, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  9. Park Sung Mo, Lee Sangjin, Sung Soo Hak, and Kim Kwangjo. Improving bounds for the number of correlation immune Boolean functions. Information Processing Letters, 61(4):209–212, 1997.

    Article  MathSciNet  Google Scholar 

  10. J. Seberry, X. M. Zhang, and Y. Zheng. Nonlinearly balanced Boolean functions and their propagation characteristics. In Advances in Cryptology-CRYPTO’93, pages 49–60. Springer-Verlag, 1994.

    Google Scholar 

  11. J. Seberry, X. M. Zhang, and Y. Zheng. On constructions and nonlinearity of correlation immune Boolean functions. In Advances in Cryptology-EUROCRYPT’93, pages 181–199. Springer-Verlag, 1994.

    Google Scholar 

  12. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory, IT-30(5):776–780, September 1984.

    Article  MathSciNet  Google Scholar 

  13. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Transactions on Computer, C-34(1):81–85, January 1985.

    Article  Google Scholar 

  14. Y. X. Yang and B. Guo. Further enumerating Boolean functions of cryptographic significance. Journal of Cryptology, 8(3):115–122, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. Wei Juan Shan.-. Journal of Applied Mathematics (in Chinese),-, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maitra, S., Sarkar, P. (1999). Enumeration of Correlation Immune Boolean Functions. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds) Information Security and Privacy. ACISP 1999. Lecture Notes in Computer Science, vol 1587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48970-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-48970-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65756-9

  • Online ISBN: 978-3-540-48970-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics