Skip to main content

Fail-Stop Threshold Signature Schemes Based on Elliptic Curves

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1587))

Abstract

Fail-stop signatures provide security for a sender against a forger with unlimited computational power. In this paper we present a fail-stop signature scheme based on discrete logarithm problem for elliptic curves and then show that the signing process can be distributed among a group of senders to obtain a threshold signature scheme. The threshold signature scheme has a cheater detection property and allows the combiner to detect a sender who is submitting false shares. We will show that our fail-stop signature scheme works in the two commonly used models of signature schemes, with or without a trusted authority.

This work is in part supported by Australian Research Council Grant Number A49703076

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niko Bari’c and Birgit Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. Eurocrypt’ 97, Lecture Notes in Computer Science 1233, pages 480–494, 1997.

    Google Scholar 

  2. G. Blakley. Safeguarding Cryptographic Keys. Proceedings of AFIPS 1979 National Computer Conference, 48:313–317, 1979.

    Google Scholar 

  3. Gerrit Bleumer, Birgit Pfitzmann, and Michael Waidner. A Remark on a Signature Scheme where Forgery can be Proved. Eurocrypt’ 90, Lecture Notes in Computer Science 437, pages 441–445, 1991.

    Google Scholar 

  4. C. Boyd. Digital Multisignatures. Cryptography and Coding, ed. H. Beker and F. Piper, Clarendon Press, Oxford, pages 241–246, 1989.

    Google Scholar 

  5. David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. Interner Bericht, Fakultät für Informatik, Universität Karlsruhe, 1/91, 1990.

    Google Scholar 

  6. Ivan B. Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the Existence of Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures. Journal of Cryptology, 10/3:163–194, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE IT, 22:644–654, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  8. Tetsuya Izu, Jun Kogure, Masayuku Noro, and Kazuhiro Yokoyama. Efficient Implementation of Schoof’s Algorithm. Asiacrypt’ 98, Lecture Notes in Computer Science 1519, pages 66–79, 1998.

    Google Scholar 

  9. Neal Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  10. Neal Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  11. Leslie Lamport. Constructing Digital Signatures from a One-Way Function. PSRI International CSL-98, 1979.

    Google Scholar 

  12. Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.

    Google Scholar 

  13. Torben Pryds Pedersen and Birgit Pfitzmann. Fail-Stop Signatures. SIAM Journal on Computing, 26/2:291–330, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. Birgit Pfitzmann. Fail-stop Signatures: Principles and Applications. Proc. Compsec’ 91, 8th world conference on computer security, audit and control, pages 125–134, 1991.

    Google Scholar 

  15. Birgit Pfitzmann. Sorting Out Signature Schemes, and some Theory of Secure Reactive Systems. Hildesheimer Informatik-Berichte, Institute für Informatik, 1993.

    Google Scholar 

  16. Birgit Pfitzmann. Fail-Stop Signatures Without Trees. Hildesheimer Informatik-Berichte, Institut für Informatik, 16/94, 1994.

    Google Scholar 

  17. Birgit Pfitzmann. Sorting Out Signature Schemes. CWI Quarterly, 8/2:147–172, 1995.

    MATH  Google Scholar 

  18. Birgit Pfitzmann. Digital Signature Schemes — General Framework and Fail-Stop Signatures. Lecture Notes in Computer Science 1100, Springer-Verlag, 1996.

    MATH  Google Scholar 

  19. Birgit Pfitzmann and Michael Waidner. Formal Aspects of Fail-stop Signatures. Interner Bericht, Fakultät für Informatik, 22/90, 1990.

    Google Scholar 

  20. Birgit Pfitzmann and Michael Waidner. Fail-stop Signatures and their Application. SECURICOM 91, 9th Worldwide Congress on Computer and Communications Security and Protection, pages 145–160, 1991.

    Google Scholar 

  21. Josef Pieprzyk, Jennifer Seberry, Chris Charnes and Rei Safavi-Naini. Crypto and Applications II. The CRC Handbook of Algorithms and Theory of Computation, ed. Mikhail J Atallah, to appear.

    Google Scholar 

  22. René Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Théeorie des Nombres, Bordeaux, 7:219–254, 1995.

    MATH  MathSciNet  Google Scholar 

  23. A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–613, November 1979.

    Article  MATH  MathSciNet  Google Scholar 

  24. Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press, Boca Raton, New York, 1995.

    MATH  Google Scholar 

  25. Eugène van Heijst, Torben Pedersen, and Birgit Pfitzmann. New Constructions of Fail-Stop Signatures and Lower Bounds. Crypto’ 92, Lecture Notes in Computer Science 740, pages 15–30, 1993.

    Google Scholar 

  26. E. van Heyst and T.P. Pedersen. How to Make Efficient Fail-Stop Signatures. Eurocrypt’ 92, pages 337–346, 1992.

    Google Scholar 

  27. Michael Waidner and Birgit Pfitzmann. The Dining Cryptographers in the Disco: Unconditional Sender and Recipient Untraceability with Computationally Secure Serviceability. Eurocrypt’ 89, Lecture Notes in Computer Science 434, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Susilo, W., Safavi-Naini, R., Pieprzyk, J. (1999). Fail-Stop Threshold Signature Schemes Based on Elliptic Curves. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds) Information Security and Privacy. ACISP 1999. Lecture Notes in Computer Science, vol 1587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48970-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-48970-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65756-9

  • Online ISBN: 978-3-540-48970-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics