Abstract
Fail-stop signatures provide security for a sender against a forger with unlimited computational power. In this paper we present a fail-stop signature scheme based on discrete logarithm problem for elliptic curves and then show that the signing process can be distributed among a group of senders to obtain a threshold signature scheme. The threshold signature scheme has a cheater detection property and allows the combiner to detect a sender who is submitting false shares. We will show that our fail-stop signature scheme works in the two commonly used models of signature schemes, with or without a trusted authority.
This work is in part supported by Australian Research Council Grant Number A49703076
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Niko Bari’c and Birgit Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. Eurocrypt’ 97, Lecture Notes in Computer Science 1233, pages 480–494, 1997.
G. Blakley. Safeguarding Cryptographic Keys. Proceedings of AFIPS 1979 National Computer Conference, 48:313–317, 1979.
Gerrit Bleumer, Birgit Pfitzmann, and Michael Waidner. A Remark on a Signature Scheme where Forgery can be Proved. Eurocrypt’ 90, Lecture Notes in Computer Science 437, pages 441–445, 1991.
C. Boyd. Digital Multisignatures. Cryptography and Coding, ed. H. Beker and F. Piper, Clarendon Press, Oxford, pages 241–246, 1989.
David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. Interner Bericht, Fakultät für Informatik, Universität Karlsruhe, 1/91, 1990.
Ivan B. Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the Existence of Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures. Journal of Cryptology, 10/3:163–194, 1997.
Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE IT, 22:644–654, 1976.
Tetsuya Izu, Jun Kogure, Masayuku Noro, and Kazuhiro Yokoyama. Efficient Implementation of Schoof’s Algorithm. Asiacrypt’ 98, Lecture Notes in Computer Science 1519, pages 66–79, 1998.
Neal Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, Berlin, 1994.
Neal Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin, 1997.
Leslie Lamport. Constructing Digital Signatures from a One-Way Function. PSRI International CSL-98, 1979.
Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
Torben Pryds Pedersen and Birgit Pfitzmann. Fail-Stop Signatures. SIAM Journal on Computing, 26/2:291–330, 1997.
Birgit Pfitzmann. Fail-stop Signatures: Principles and Applications. Proc. Compsec’ 91, 8th world conference on computer security, audit and control, pages 125–134, 1991.
Birgit Pfitzmann. Sorting Out Signature Schemes, and some Theory of Secure Reactive Systems. Hildesheimer Informatik-Berichte, Institute für Informatik, 1993.
Birgit Pfitzmann. Fail-Stop Signatures Without Trees. Hildesheimer Informatik-Berichte, Institut für Informatik, 16/94, 1994.
Birgit Pfitzmann. Sorting Out Signature Schemes. CWI Quarterly, 8/2:147–172, 1995.
Birgit Pfitzmann. Digital Signature Schemes — General Framework and Fail-Stop Signatures. Lecture Notes in Computer Science 1100, Springer-Verlag, 1996.
Birgit Pfitzmann and Michael Waidner. Formal Aspects of Fail-stop Signatures. Interner Bericht, Fakultät für Informatik, 22/90, 1990.
Birgit Pfitzmann and Michael Waidner. Fail-stop Signatures and their Application. SECURICOM 91, 9th Worldwide Congress on Computer and Communications Security and Protection, pages 145–160, 1991.
Josef Pieprzyk, Jennifer Seberry, Chris Charnes and Rei Safavi-Naini. Crypto and Applications II. The CRC Handbook of Algorithms and Theory of Computation, ed. Mikhail J Atallah, to appear.
René Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Théeorie des Nombres, Bordeaux, 7:219–254, 1995.
A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–613, November 1979.
Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press, Boca Raton, New York, 1995.
Eugène van Heijst, Torben Pedersen, and Birgit Pfitzmann. New Constructions of Fail-Stop Signatures and Lower Bounds. Crypto’ 92, Lecture Notes in Computer Science 740, pages 15–30, 1993.
E. van Heyst and T.P. Pedersen. How to Make Efficient Fail-Stop Signatures. Eurocrypt’ 92, pages 337–346, 1992.
Michael Waidner and Birgit Pfitzmann. The Dining Cryptographers in the Disco: Unconditional Sender and Recipient Untraceability with Computationally Secure Serviceability. Eurocrypt’ 89, Lecture Notes in Computer Science 434, 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Susilo, W., Safavi-Naini, R., Pieprzyk, J. (1999). Fail-Stop Threshold Signature Schemes Based on Elliptic Curves. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds) Information Security and Privacy. ACISP 1999. Lecture Notes in Computer Science, vol 1587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48970-3_9
Download citation
DOI: https://doi.org/10.1007/3-540-48970-3_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65756-9
Online ISBN: 978-3-540-48970-2
eBook Packages: Springer Book Archive