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Abstract. Specifications for security protocols range from informal nar-
rations of message flows to formal assertions of protocol properties. This
paper (intended to accompany a lecture at ETAPS ’99) discusses those
specifications and suggests some gaps and some opportunities for further
work. Some of them pertain to the traditional core of the field; others
appear when we examine the context in which protocols operate.

1 Introduction

The method of “security by obscurity” dictates that potential attackers to a
system should be kept from knowing not only passwords and cryptographic keys
but also basic information about how the system works, such as the specifica-
tions of cryptographic algorithms, communication protocols, and access-control
mechanisms. It has long been argued that “security by obscurity” is usually
inferior to open design [55, 28]. Of course, the value of writing and publishing
specifications is greater when the specifications are clear, complete, and at an
appropriate level of abstraction.

Current specifications of security mechanisms and properties vary greatly in
quality, scope, purpose, and vocabulary. Some specifications are informal nar-
rations that mix natural language and ad hoc notations. For example, the doc-
uments that describe the functioning of security protocols such as SSL [27],
SSH [63], and IKE [32] often have this style. Other specifications are precise
mathematical statements, sometimes expressed in formal calculi. These specifi-
cations have played a particularly significant role in cryptography and crypto-
graphic protocols, but also appear in other areas, for example in information-flow
analysis (e.g., [28, 22, 43, 48]).

Many of these specifications serve as the basis for reasoning, with various
degrees of rigor and effectiveness, during system design, implementation, and
analysis. In recent years, there has been much progress in the development of
techniques for stating and proving properties about small but critical security
components. For example, a substantial and successful body of work treats the
core messages of security protocols and the underlying cryptographic functions.
In this area, theory has been relevant to practice, even in cases where the theory
is simplistic or incomplete. There seems to have been less progress in treating
more complex systems [56], even those parts in the vicinity of familiar security
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mechanisms. For example, we still have only a limited understanding of many of
the interfaces, prologues, and epilogues of practical security protocols.

In this paper, we discuss specifications in the field of security, focusing on
protocol specifications. We examine specifications of several sorts:

– In section 2, we consider specifications that concern the step-by-step be-
havior of a protocol. Such specifications can be largely independent of any
assumptions or intended effects of the protocol.

– In section 3, we consider properties of protocols, in particular authentic-
ity and secrecy properties, but also more exotic properties. We emphasize
secrecy properties.

– In section 4, we view protocols in context by discussing their boundaries.
These boundaries include programming interfaces, protocol negotiation, and
error handling.

This paper is an informal, partial overview, and does not advocate any particular
methods for specification and verification. Occasionally, however, the spi calcu-
lus [6] serves in explanations of formal points. In addition, the paper suggests
some gaps and some opportunities for further work. The subject of this paper
seems to be reaching maturity, but also expanding. There is still much scope for
applying known techniques to important protocols, for developing simpler tech-
niques, for exploring the foundations of those techniques, and also for studying
protocols in context, as parts of systems.

2 Protocol narrations

The most common specifications are mere narrations of protocol executions.
These narrations focus on the “bits on the wire”: they say what data the various
participants in a protocol should send in order to communicate. They are some-
times simple, high-level descriptions of sequences of messages, sometimes more
detailed documents that permit the construction of interoperable implementa-
tions.

Following Needham and Schroeder [52], we may write a typical pair of mes-
sages of a protocol thus:

Message 1 A → B : {NA}KAB

Message 2 B → A : {NA, NB}KAB

Here A and B represent principals (users or computers). In Message 1, A sends
to B an encrypted message, with key KAB and cleartext NA. In Message 2,
B responds with a similar message, including NB in the cleartext. The braces
represent the encryption operation, in this case using a symmetric cryptosystem
such as DES [48]. The subscripts on KAB, NA, and NB are merely hints. It may
be understood that A and B both know the key KAB in advance and that A
and B freshly generate NA and NB respectively, so NA and NB serve as nonces.

As Bob Morris has pointed out [7], the notation “Message n X → Y : M”
needs to be interpreted with care, because security protocols are not intended
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to operate in benign environments. The network between X and Y may be
unreliable and even hostile; X and Y themselves may not deserve total trust.
So we may interpret “Message n X → Y : M” only as “the protocol designer
intended that X send M as the nth message in the protocol, and for it to
be received by Y ”. One may want additional properties of this message, for
example that only Y receive it or that Y should know that this message is part
of a particular protocol execution; however, such properties cannot be taken for
granted.

A sequence of messages is not a complete description of a protocol; it must
be complemented with explanations of other forms. Protocol narrations often
give some but not all of these explanations.

– As done above, a specification should say which pieces of data are known to
principals in advance and which are freshly generated.

– A specification should also say how principals check the messages that they
receive. For example, after receipt of Message 2, principal A may be expected
to check that it is encrypted under KAB and that the first component of its
cleartext is the nonce NA sent in Message 1. If this check fails, A may ignore
the message or report an error. (Section 4 discusses errors further.) Checks
are an essential part of protocols. For example, the absence of a check in
the CCITT X.509 protocol [18] allowed an attack [16]; other attacks arise
when principals assume that the messages that they receive have particular
forms [9].

– The emission of Message n+1 follows the reception of Message n only in
the simplest protocols. In general, a protocol may allow multiple messages
belonging to the same session to be in flight simultaneously. The constraints
on the order of messages in SSL have often been misunderstood [60]. Other
complex protocols may be similarly confusing.

– As a convention, it is generally assumed that many protocol executions may
happen simultaneously, and that the same principal may participate in sev-
eral such executions, possibly playing different roles in each of them. This
convention has exceptions, however. For example, some protocols may re-
strict concurrency in order to thwart attacks that exploit messages from
two simultaneous executions. In addition, some roles are often reserved for
fixed principals—for example, the name S may be used for a fixed authen-
tication server. A complete specification should not rely on unclear, implicit
conventions about concurrency and roles.

These limitations are widely recognized. They have been addressed in approaches
based on process calculi (e.g., [41, 6, 47, 38, 57]) and other formal descriptions of
processes (e.g., [53, 58]). The process calculi include established process calculi,
such as CSP, and others specifically tailored for security protocols. Here we
sketch how protocols are described in the spi calculus [6]; descriptions in other
process calculi would have similar features.

The spi calculus is an extension of the pi calculus [50] with primitives for
cryptographic operations. Spi-calculus processes can represent principals and
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sets of principals. For example, the process:

(νKAB)(PA | PB)

may represent a system consisting of two principals, playing the roles of A and
B as described above, in a single execution of the protocol. The construct ν is
the standard restriction binder of the pi calculus; here it binds a key KAB, which
will occur in PA and PB. The construct | is the standard parallel-composition
operation of the pi calculus. Finally, PA and PB are two processes. The process
PB may be:

c(x).case x of {y}KAB
in (νNB)c〈{y, NB}KAB

〉
Informally, the components of this process have the following meanings:

– c is the name of a channel, which we use to represent the network on which
the principals communicate.

– c(x) awaits a message on c. When a message is received, the bound variable
x is instantiated to this message. The expected message in this example is
{NA}KAB

.
– case x of {y}KAB

in (νNB)c〈{y, NB}KAB
〉 attempts to decrypt x using

the key KAB. If x is a term of the form {M}KAB
, then the bound vari-

able y is instantiated to the contents M , and the remainder of the process
((νNB)c〈{y, NB}KAB

〉) is executed.
– (νNB) generates NB .
– c〈{y, NB}KAB

〉 sends {M, NB}KAB
on c, where M is the term to which y

has been instantiated.

The syntax of the spi calculus distinguishes names (such as c, KAB, and NB)
from variables (x and y), and processes (active entities) from terms (data that
can be sent in messages). We refer to previous papers for the details of this
syntax. We also omit a definition of PA; it is similar in style to that of PB.

Since the spi calculus is essentially a programming language, it is a matter of
programming to specify the generation of data, checks on messages, concurrency,
and replication. For these purposes, we can usually employ standard constructs
from the pi calculus, but we may also add constructs when those seem inadequate
(for example, for representing number-theoretic checks). In particular, we can
use the ν construct for expressing the generation of keys, nonces, and other data.
For example, the name NB bound with ν in PB represents the piece of data that
B generates. On the other hand, the free names of PB (namely c and KAB)
represent the data that B has before the protocol execution.

Thus, specifications in the spi calculus and other formal notations do not
suffer from some of the ambiguities common in informal protocol narrations.
Moreover, precise specifications need not be hard to construct: in recent work,
Lowe, Millen, and others have studied how to turn sequences of messages into
formal specifications [47]. To date, however, formal specifications do not seem to
have played a significant role for protocol implementations. Their main use has
been for reasoning about the properties of protocols; those properties are the
subject of the next section.
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3 Protocol properties

Although the execution of a protocol may consist in sending bits on wires, the
bits have intended meanings and goals. These meanings and goals are not always
explicit or evident in protocol narrations (cf. [7]).

There is no universal interpretation for protocols. Two usual objectives are to
guarantee authenticity and secrecy of communications: only the intended prin-
cipals can send and receive certain pieces of data. Other objectives include for-
ward secrecy [24], non-repudiation, and availability. Some objectives contradict
others. For example, some protocols aim to guarantee anonymity rather than au-
thenticity, or plausible deniability [54] rather than non-repudiation. Moreover,
many definitions have been proposed even for such basic concepts as authenticity
(e.g., [11, 30, 42, 3]).

Nevertheless, there are some common themes in the treatment of protocol
properties.

– The participants in security protocols do not operate in a closed world, but
in communication with other principals. Some of those principals may be
hostile, and even the participants may not be fully trusted. Thus, interaction
with an uncertain environment is crucial.

– Security properties are relative to the resources of attackers. Moreover, it
is common to attempt to guarantee some properties even if the attackers
can accomplish some unlikely feats. For example, although precautions may
be taken to avoid the compromise of session keys, an attacker might obtain
one of those keys. A good protocol design will minimize the effect of such
events. In particular, certificates for keys should expire [23]; and when one
key is expiring, it should not be used for encrypting the new key that will
replace it.

– It is common to separate essential security properties from other properties
such as functional correctness and performance. For example, one may wish
to establish that messages between a client and a server are authentic, even
if one cannot prove that the server’s responses contain the result of applying
a certain function to the client’s requests.

Protocol properties have been expressed and proved in a variety of frame-
works. Some of these frameworks are simple and specialized [16], others powerful
and general. A frequent, effective approach consists in formulating properties as
predicates on the behaviors (sequences of states or events) of the system con-
sisting of a protocol and its environment (e.g., [62, 11, 31, 41, 51, 53, 14, 57]). For
example, in the simple dialogue between A and B shown in section 2, the au-
thenticity of the second message may be expressed thus:

If A receives a message encrypted under KAB, and the message contains
a pair NA, NB where NA is a nonce that A generated, then B has sent
the message sometime after the generation of NA.

Once properly formalized, this statement is either true or false for any particular
behavior. Such predicates on behaviors have been studied extensively in the
literature on concurrency (e.g., [8, 36]).
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A richer view of authenticity also takes into account concepts such as author-
ity and delegation [29, 37]. Those concepts appear, for example, when we weaken
the authenticity statement by allowing B to delegate the task of communicating
with A and the necessary authority for this task. However, it is still unclear how
to integrate those concepts with predicates on behaviors.

Furthermore, some security properties—such as noninterference—are not
predicates on behaviors [44, 45]. For instance, suppose that we wish to require
that a protocol preserve the secrecy of one of its parameters, x. The protocol
should not leak any information about x—in other words, the value of x should
not interfere with the behavior of the protocol that the environment can ob-
serve. The parameter x may denote the identity of one of the participants or the
sensitive data that is sent encrypted after a key exchange. In general, we cannot
express this secrecy property as a predicate on behaviors. On the other hand,
representing the protocol as a process P (x), we may express the secrecy prop-
erty by saying that P (M) and P (N) are equivalent (or indistinguishable), for all
possible values M and N for x (cf. [59, 33]). Here we say that two processes P1

and P2 are equivalent when no third process Q can distinguish running in par-
allel with P1 from running in parallel in P2. This notion of process equivalence
(testing equivalence) has been applied to several classes of processes and with
several concepts of distinguishability, sometimes allowing complexity-theoretic
arguments (e.g., [21, 15, 6, 38]). Now focusing on the spi calculus, we obtain one
definition of secrecy:

Definition 1 (One definition of secrecy). Suppose that the process P (x) has
at most x as free variable. Then P preserves the secrecy of x if P (M) and P (N)
are equivalent for all terms M and N without free variables.

For example, the process (νK)c〈{x}K〉, which sends x encrypted under a fresh
key K on a channel c, preserves the secrecy of x. Previous papers on the spi
calculus [6, 1] contain more substantial examples to which this concept of secrecy
applies.

Approaches based on predicates on behaviors rely on a rather different defi-
nition of secrecy, which can be traced back to the influential work of Dolev and
Yao [26] and other early work in this area [35, 49, 46]. According to that defini-
tion, a process preserves the secrecy of a piece of data M if the process never
sends M in clear on the network, or anything that would permit the computation
of M , even in interaction with an attacker.

Next we show one instantiation of this general definition, again resorting to
the spi calculus. For this purpose, we introduce the following notation from the
operational semantics of the spi calculus; throughout, P and Q are processes, M
is a term, m, m1, . . . , mk are names, and x is a variable.

– P
τ−→ Q means that P becomes Q in one silent step (a τ step).

– P
m−→ (x)Q means that, in one step, P is ready to receive an input x on m

and then to become Q.
– P

m−→ (νm1, . . . , mk)〈M〉Q means that, in one step, P is ready to create the
new names m1, . . . , mk, to send M on m, and then to become Q.
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We represent the state of knowledge of the environment of a process by a set
of terms S with no free variables (intuitively, a set of terms that the environment
has). Given a set S, we define C(S) to be the set of all terms computable from
S, with the properties that S ⊆ C(S) and C(C(S)) = C(S); thus, C is a closure
operator. The main rules for computing C(S) concern encryption and decryption:

– if M ∈ C(S) and N ∈ C(S) then {M}N ∈ C(S);
– if {M}N ∈ C(S) and N ∈ C(S) then M ∈ C(S).

Straightforward rules concern terms of other forms, for example pairs:

– if M ∈ C(S) and N ∈ C(S) then (M, N) ∈ C(S);
– if (M, N) ∈ C(S) then M ∈ C(S) and N ∈ C(S).

Given a set of terms S0 and a process P0, we let R be the least relation such
that:

– R(P0, S0).
– If R(P, S) and P

τ−→ Q then R(Q, S).
– If R(P, S) and P

m−→ (x)Q and m ∈ C(S) and M ∈ C(S) then R(Q[M/x], S).

– If R(P, S) and P
m−→ (νm1, . . . , mk)〈M〉Q and m ∈ C(S) and m1, . . . , mk

do not occur in S then R(Q, S ∪ {M}).

Intuitively, R(P, S) means that, if the environment starts interacting with pro-
cess P0 knowing S0, then the environment may know S (and all terms computable
from it, C(S)) when P0 evolves to P . The environment may know some names
initially, but it does not create more names along the way. The first clause in
this definition sets the initial state of the interaction. The second one is for silent
steps. The third one deals with a message from the environment to the process;
the environment must know the message’s channel name m and contents M .
The fourth one deals with a message in the opposite direction; assuming that
the environment knows the message’s channel name m, it learns the message’s
contents M ; some new names m1, . . . , mk may occur in M .

We arrive at the following alternative view of secrecy:

Definition 2 (Another definition of secrecy). Suppose that S is a set of
terms with no free variables, and P a process with no free variables. Suppose that
the free names of M are not bound in P or any process into which P evolves.
Let R be the relation associated with P and S. Then P may reveal M from S if
there exist P ′ and S′ such that R(P ′, S′) and M ∈ C(S′); and P preserves the
secrecy of M from S otherwise.

We do not have much experience with this definition of secrecy for the spi cal-
culus. It is a somewhat speculative translation of definitions proposed in other
settings.

By presenting both definitions of secrecy in the same framework, we are in a
position to compare them and understand them better. We can immediately see
that, unfortunately, neither definition of secrecy implies the other: the first one
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concerns a process with a free variable x, while the second one concerns a pro-
cess plus a set of terms with no free variables. There are also deeper differences
between them: in particular, the first definition rules out implicit information
flows [22], while the second one does not. We leave for further work explain-
ing when one definition is appropriate and when the other, and finding useful
relations between them.

Both of these definitions of secrecy rely on a simple, abstract representation
of cryptographic functions. More detailed accounts of cryptography may include
complexity-theoretic assumptions about those functions (e.g., [43]). Another,
challenging subject for further work is bridging the gap between those treat-
ments of cryptography. For instance, we may wonder whether the complexity-
theoretic assumptions justify our definitions of secrecy. Analogous questions arise
for definitions of authenticity.

4 Protocol boundaries

Often the specification of a protocol and its verification focus on the core of
the protocol and neglect its boundaries. However, these boundaries are far from
trivial; making them explicit and analyzing them is an important part of under-
standing the protocol in context. These boundaries include:

(1) interfaces and rules for proper use of the protocol,
(2) interfaces and assumptions for auxiliary functions and participants, such as

cryptographic algorithms and network services,
(3) traversals of machine and network boundaries,
(4) preliminary protocol negotiations,
(5) error handling.

We discuss these points in more detail next.

(1) Whereas narrations may say what data the various principals in a protocol
should send, they seldom explain how the principals may generate and use
that data. On the other hand, the good functioning of the protocol may
require that some pieces of data be unrelated (for example, a cleartext and
the key used to encrypt it). Other pieces of data (typically session keys, but
sometimes also nonces) may need to remain secret for some period of time.
Furthermore, as a result of an execution of the protocol, the participants
may obtain some data with useful properties. For instance, the protocol may
yield a key that can be used for signing application messages. Application
program interfaces (or even programming languages) should allow applica-
tions to exploit those useful properties, with clear, modular semantics, and
without revealing tricky low-level cryptographic details (e.g., [12, 40, 39, 61,
2, 5, 10]).

(2) Some protocols rely on fixed suites of cryptosystems. In other cases, as-
sumptions about the properties of cryptographic operations are needed. For
example, in the messages of section 2, it may be important to say whether B
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can tell that A encrypted NA using KAB. This property may hold because
of redundancy in NA or in the encryption function, and would not hold if
any message of the appropriate size is the result of encrypting some valid
nonce with KAB. It may also be important to say that B is not capable of
making {NA, NB}KAB

from {NA}KAB
and NB without KAB. This property

is a form of non-malleability [25]. In recent years, the literature on protocols
has shown an increasing awareness of subtle cryptographic issues; it may be
time for some principled simplification.
Similarly, protocols often rely on network time servers, trusted third parties,
and other auxiliary participants. Detailed assumptions about these servers
are sometimes absent from protocol narrations, but they are essential in
reasoning about protocols.

(3) Protocol messages commonly go across network interfaces, firewalls with
tunnels, and administrative frontiers (e.g., [12, 61, 20, 19, 4]). In some con-
texts (e.g., [17]), even the protocol participants may be mobile. These traver-
sals often require message translations (for example, marshaling and rewrit-
ing of URLs). They are subject to filtering and auditing. Furthermore, they
may trigger auxiliary protocols. Some of these traversals seem to be a grow-
ing concern in protocol design.

(4) Systems often include multiple protocols, each of them with multiple ver-
sions and options. Interactions between protocols can lead to flaws; they can
be avoided by distinguishing the messages that correspond to each proto-
col (e.g., [7, 34]). Before executing a protocol (in a particular version, with
particular options) the participants sometimes agree to do so by a process
of negotiation in which they may consider alternatives. The alternatives can
vary in their levels of security and efficiency. In protocols such as SSL, this
process of negotiation is rather elaborate and error-prone [60]. Despite clear
narrations, it offers unclear guarantees.

(5) As discussed in section 2, protocol specifications often do not explain how
principals react when they perceive errors. Yet proper handling of errors
can be crucial to system security. For example, in describing attacks on
protocols based on RSA’s PKCS #1 standard [13], Bleichenbacher reported
that the SSL documentation does not clearly specify error conditions and
the resulting alert messages, and that SSL implementations vary in their
handling of errors. He concluded that even sending out an error message may
sometimes be risky and that the timing of the checks within the protocol is
crucial.

The intrinsic properties of a protocol, such as the secrecy of session keys,
are worthy of study. However, these intrinsic properties should eventually be
translated into properties meaningful for the clients of the protocol. These clients
may want security, but they may not be aware of internal protocol details (such
as session keys) and may not distinguish the protocol from the sophisticated
mechanisms that support it and complement it. Therefore, specification and
reasoning should concern not only the core of the protocol in isolation but also
its boundaries, viewing the protocol as part of a system.
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