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Abstract. We consider the problem of verifying automatically infinite-
state systems that are systems of finite machines that communicate by
exchanging messages through unbounded lossy fifo channels. In a previous
work [1], we proposed an algorithmic approach based on constructing a
symbolic representation of the set of reachable configurations of a system
by means of a class of regular expressions (SREs). The construction
of such a representation consists of an iterative computation with an
acceleration technique which enhances the chance of convergence. This
technique is based on the analysis of the effect of iterating control loops.
In the work we present here, we experiment our approach and show how it
can be effectively applied. For that, we developed a tool prototype based
on the results in [1]. Using this tool, we provide an automatic verification
of (the parameterized version of) the Bounded Retransmission Protocol.

1 Introduction

Communication protocols are naturally modeled as an asynchronous parallel
composition of finite-state machines that exchange messages through unbounded
fifo channels. Moreover, in a large class of communication protocols, e.g., link
protocols, channels are assumed to be lossy in the sense that they can at any
time lose messages. Then, an important issue is to develop automatic analysis
techniques for lossy channel systems.

Many verification problems, e.g., verification of safety properties, reduce to
computing the set of reachable configurations. However, since lossy channel sys-
tems are infinite-state systems, this set cannot be constructed by enumerative
search procedures, and naturally a symbolic approach must be adopted allow-
ing finite representations of infinite sets of configurations. Moreover, it has been
shown that there is no algorithm for computing reachability sets of lossy channel
systems [8]. Then, the approach we adopt is to develop semi-algorithms based
on a forward iterative computation with a mechanism allowing to enhance the
chances of convergence. This mechanism is based on accelerating the calculation
[18,9] by considering meta-transitions [6] corresponding to an arbitrary num-
ber of executions of control loops: in one step of the iterative computation, we
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add successors by the transitions of the system as well as all the reachable con-
figurations by iterating control loops. So, to realize this approach, we need a
good symbolic representation which should be expressive, and allow efficient per-
formance of certain operations that are used in the computation of reachability
sets, e.g., inclusion testing, computing successors by transitions of the system, as
well as the effect of iterating control loops. In [1], we proposed a new symbolic
representation formalism based on a class of regular expressions called SREs
(simple regular expressions) for use in the reachability analysis of lossy channel
systems. We showed in that work that SREs are good symbolic respresentations:
we showed that SREs can define the reachability set of any lossy channel system
(but not effectively in general), and that all the needed operations on SREs are
rather simple and can be carried out in polynomial time.

The aim of this paper is to show the power of the approach we adopt and how
our results in [1] can be effectively applied. Based on these results, we developed
a tool prototype, called Lcs. Given a lossy channel system, this tool generates
automatically its set of reachable configurations by means of SREs, and pro-
duces a symbolic graph which constitutes a finite-state abstract model of the
system. Furthermore, the tool allows on-the-fly verification of safety properties
given by finite-state labelled transition systems. The Lcs tool is connected to the
Cadp toolbox [11] which provides a variety of procedures on finite-states labelled
transition systems, e.g., comparison and minimization w.r.t. behavioural equiva-
lences, model-checking for temporal logics. For instance, it is possible to generate
automatically a finite abstract model of a system using the Lcs tool, and then
apply standard finite-state verification techniques on this abstract model.

We show an interesting experimentation we have done with our tool, which
consists of an automatic verification of the Bounded Retransmission Protocol
(BRP) of Philips. The BRP is a data link protocol which can be seen as an ex-
tended version of the well known alternating bit protocol. It consists of a sender
and a receiver that communicate through two lossy channels. The service the
protocol delivers is the transmission of large files seen as sequences of data of
arbitrary length. In addition, both the sender and receiver must indicate to their
clients whether the whole file has been delivered successfully or not. The sender
reads a sequence of data and transmit successively each datum in a separate
frame following an alternating bit protocol-like procedure. However, the sender
can resend a non-acknowledged frame up to a fixed number of retransmission
MAX, which is a parameter of the protocol. Our modeling of the BRP assumes
that the sizes of the transmitted sequences and the value MAX can be arbitrary
positive integers. The assumption concerning MAX leads to a model with un-
bounded channels which represents the whole family of BRPs with any value of
MAX. This shows an example where the model of unbounded channels allows a
parametric reasoning about a family of systems.

We use our Lcs tool to generate automatically the set of reachable config-
urations of the BRP and the corresponding finite symbolic graph (0.56 seconds
on UltraSparc). After projecting this graph on the set of external actions of the
protocol and minimization w.r.t. observational trace equivalence, we get an ab-
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stract model with 5 states and 10 transitions which corresponds exactly to the
expected external behaviour of the protocol.

Related Work: There are several works on symbolic verification of perfect fifo-
channel systems [20,12,4,5,7]. Pachl proposed to represent the set of reachable
configurations of a protocol as a recognizable set (carthesian product of regular
sets), but he gave no procedures for computing such a representation. Finkel
and Marcé proposed a symbolic analysis procedure using a class of regular ex-
pressions (not comparable with SREs), and which is based on an analysis of the
unbounded iterability of a control loop [12]. The set of configurations computed
by this procedure is, however, an upper approximation of the reachability set.
Boigelot et al. use finite automata (under the name of QDDs) to represent rec-
ognizable sets of configurations [4,5]. However, QDDs cannot characterize the
effect of any control loop of a perfect fifo-channel system (restrictions on the
type of loops are considered in order to preserve recognizability). To compute
and represent the effect of any control loop, stuctures called CQDDs combin-
ing finite automata with linear arithmetical constraints must be used [7]. Our
work ([1] and this paper) takes advantage from the fact that we are analysing
specifically lossy channel systems. For these systems, we propose a symbolic rep-
resentation (SREs) which captures exactly the class of reachability sets of such
systems. Then, while the operations on QDDs and CQDDs are of exponential
complexity and are performed by quite non-trivial algorithms, all needed opera-
tions on SREs can be performed by much simpler algorithms and in polynomial
time. Moreover, although QDDs and CQDDs are more expressive than SREs,
the algorithms in [4,5,7] cannot simulate the ones we use on SREs. The reason
is that lossy transitions are implict in our model, whereas all transitions are
explicitly represented in the algorithms in [4,5,7]. Thus to simulate in [4,5,7] the
effect of iteration of a loop in the lossy channel model, we have to add transi-
tions explicitly to model the losses. These transitions add in general new loops
to the system, implying that a loop in the lossy channel system is simulated by
a nested loop in the perfect channel system. However analysis of nested loops is
not feasible in the approaches of [4,5,7].

Several works addressed the specification and verification of the BRP. To
tackle the problem of unboundedness of the size of the transmitted files and
the parameter MAX, these works propose proof-based approaches using theorem
provers, combined with abstraction techniques and model checking. In [14] the
system and its external specification are described in µCRL and are proved to be
(branching) bisimilar. The proof is carried out by hand and checked using Coq.
An approach based on proving trace inclusion (instead of bisimulation) on I/O
automata is developed in [17]. In [16] the theorem prover PVS is used to prove
that the verification of the BRP can be reduced by means of abstraction to a
finite-state problem that can be solved by model checking. In [13,3] a more auto-
mated approach is applied based on constructing automatically a finite abstract
model using PVS, for an explicitely given abstraction function.

It is possible to see the unbounded lossy channel system we use to model the
BRP as an abstraction of the whole family of the BRPs for all possible values
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of its parameters. But this model is infinite-state: the unboundedness of the
parameters is in some sense transformed into an unboundedness of the channels.
Then, starting from this infinite-state system, our verification technique is fully
automatic. It is based on an automatic generation of a finite abstract model,
without giving explicitly the abstraction relation. So, our work provides a fully
automatic, and efficient, verification of the (untimed) parameterized version of
the BRP.

Finally, we mention two works where the BRP has been verified automatically
but only for some fixed instances of its parameters: In [19], an untimed version
of the BRP is verified using both a bisimulation-based approach and a model
checking approach using Cadp. In [10] a timed version of the BRP is verified
using the tools Spin and Uppaal. These two works avoid the issue of parameter
unboundedness and use standard finite-state techniques. However, the work in
[10] consider timing aspects that we have abstracted since our model is untimed.
Outline: In Section 2 we define the model of lossy channel systems. In Section 3
we present the verification approach we adopt. In Section 3.3 we present the class
of SREs and we overview our results concerning this symbolic representation. In
Section 4 we describe our tool prototype. In Section 5 we present our modeling
and verification of the BRP. Concluding remarks are given in Section 6.

2 Lossy Channel Systems

We consider system models consiting of asynchronous parallel compositions of
finite-state machines that communicate through sending and receiving messages
via a finite set of unbounded lossy fifo channels (in the sense that they can
nondeterministically lose messages).

A Lossy Channel System (LCS) L is a tuple (S, sinit, C, M, Σ, δ), where

– S is a finite set of (control) states, The control states of a system with n
finite-state machines is formed as the Cartesian product S = S1 × · · · × Sn

of the control states of each finite-state machine.
– sinit ∈ S is an initial state, The initial state of a system with n finite-state

machines is a tuple 〈sinit1 , . . . , sinitn
〉 of initial states of the components.

– C is a finite set of channels,
– M is a finite set of messages,
– Σ is a finite set of transition (or action) labels,
– δ is a finite set of transitions, each of which is of the form (s1, `,Op, s2),

where s1 and s2 are states, ` ∈ Σ, and Op is a mapping from C to (channel)
operations. An operation is either a send operation !a, a receive operation
?a, or an empty operation nop, where a ∈ M .

A configuration γ of L is a pair 〈s, w〉 where s ∈ S is a control state, and
w is a mapping from C to M∗ giving the contents of each channel. The initial
configuration γinit of L is the pair 〈sinit, ε〉 where ε denotes the mapping where
each channel is assigned the empty sequence ε.

We define a labelled transition relation on configurations in the following
manner:〈s1, w1〉 `−→〈s2, w2〉if and only if there exists a transition(s1, `,Op, s2)∈δ
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such that, for each c ∈ C, we have: if Op(c) =!a, then w2(c) = w1(c) · a, and if
Op(c) =?a, then a · w2(c) = w1(c), and if Op(c) = nop, then w2(c) = w1(c).

Let � denote the subsequence relation on M∗. For two mappings w and w′

from C to M∗, we use w � w′ to denote that w(c) � w′(c) for each c ∈ C. Then,
we introduce a weak transition relation on configurations in the following manner:
〈s1, w1〉 `=⇒ 〈s2, w2〉 if and only if there are w′

1 and w′
2 such that w′

1 � w1,
w2 � w′

2, and 〈s1, w
′
1〉 `−→ 〈s2, w

′
2〉. Intuitively, 〈s1, w1〉 `=⇒ 〈s2, w2〉 means that

〈s2, w2〉 can be reached from 〈s1, w1〉 by first losing messages from the channels
and reaching 〈s1, w

′
1〉, then performing the transition 〈s1, w

′
1〉 `−→ 〈s2, w

′
2〉, and

thereafter losing messages from channels. Given a configuration γ, we let post(γ)
denote the set of immediate successors of γ, i.e., post(γ) = {γ′ : ∃` ∈ Σ. γ

`=⇒
γ′}. The function post is generalized to sets of configurations in the obvious
manner. Then, we let post∗ denote the reflexive transitive closure of post, i.e.,
given a set of configurations Γ , post∗(Γ ) is the set of all reachable configurations
starting from Γ . Let Reach(L) be the set post∗(γinit). For every control location
s ∈ S, we define R(s) = {w : 〈s, w〉 ∈ Reach(L)}.

A run of L starting from a configuration γ is a finite or infinite sequence
ρ = γ0`0γ1`1γ2 . . . such that γ0 = γ and ∀i ≥ 0. γi

`i=⇒ γi+1. The trace of the
run ρ is the sequence of action labels τ = `0`1`2 . . .. We denote by Traces(L)
(resp. Tracesf(L)) the set of all traces (resp. finite traces) of L starting from
the initial configuration γinit.

We introduce two extensions of the basic model given above: the first one
consists in introducing channel emptiness testing: we use enabling conditions on
transitions involving a predicate empty on channels telling whether a channel is
empty. The second extension consists in allowing the components of a system
to test and set boolean shared variables (remember that we consider here asyn-
chronous parallel composition following the interleaving semantics). The formal
semantics of the extended model is an obvious adaptation of the one given above.

3 Symbolic Reachability Analysis

We adopt an algorithmic verification approach based on the computation of the
set of reachable configurations. We explain hereafter the general principle we
consider in order to compute reachability sets, and how it can be applied to
solve verification problems.

3.1 Computing reachability sets

The basic question is how to construct the set Reach(L) for any given system
L, or more generally, how to construct the set post∗(Γ ) for any given set of
configurations Γ of the system. Clearly, post∗(Γ ) is the least solution of the
equation X = Γ ∪ post(X), and thus, it is the limit of the increasing sequence
of sets (Xi)i≥0 where X0 = Γ and Xi+1 = Xi ∪ post(Xi). From this fact, one
can derive an iterative procedure computing the set post∗(Γ ) which consists in
computing the elements of the sequence of the Xi’s until the inclusion Xi+1 ⊆ Xi

holds for some index i, which means that the limit is reached. However, since the
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systems we are interested in have an infinite number of reachable configurations,
this naive procedure does not terminate in general. Moreover, in the case of lossy
channel systems, it has been shown that the set Reach(L) cannot be effectively
constructed although it is recognizable (finite-state automata definable) [8].

Hence, since an algorithm to construct the reachability sets does not exist
in general, we adopt the approach of using semi-algorithms with a mechanism
allowing to enhance their chance to terminate. This mechanism is based on
the idea of accelerating fixpoint computations [18,9]. For instance, consider a
control loop of a lossy channel system that sends a symbol a on a channel,
initially empty (we mean by control loop a circuit in the graph (S, δ)). The
set of all reachable contents of the channel by iterating this loop is the regular
language a∗. However, the naive procedure given above will compute successively:
X0 = {ε}, X1 = {ε, a}, X2 = {ε, a, a2}, . . ., and never reach the limit. This
example shows that if we are able to compute the effect of a loop on a set of
configurations, we can use it to jump to the limit in one step, and help the fixpoint
computation to converge: Given a control loop θ and a set of configurations Γ , let
post∗θ(Γ ) be the set of reachable configurations by iterating θ an arbitrary number
of times starting from Γ . Then, if the post∗θ image of any set of configurations
is effectively constructible, we can consider the loop θ as a meta-transition of
the system [6]. This means that at each step of the iterative computation of
the reachability set, we add immediate successors by original transitions of the
system as well as successors by meta-transitions.

To realize this procedure, we need representation structures of sets of con-
figurations. A good representation structure must allow a finite representation
of the infinite sets of configurations we are interested in, it should be at least
effectively closed under union and post, and it must have a decidable inclusion
problem. Furthermore, this representation structure must allow the computation
of the effects of control loops. Finally, any reasonable representation structure
should be “normalizable”, i.e., for every representable set, there is a unique nor-
mal (or canonical) representation which can be derived from any alternative
representation (there is a normalization procedure). Indeed, all operations (e.g.,
entailement testing) are often easier to perform on normal forms. Furthermore,
in many cases normality (canonicity) corresponds to a notion of minimality (e.g.
for deterministic automata), which is crucial for practical reachability analysis
procedures.

3.2 Use in verification

Verification of invariance properties It consists in checking whether start-
ing from the initial configuration of the system, a state property ϕ is always
satisfied. Clearly, this statement holds if Reach(L) ⊆ [[ϕ]], where [[ϕ]] is the set
of configurations satisfying ϕ. Thus, if Reach(L) can be computed using a class
C of good representation structures, and if [[ϕ]] is also effectively representable in
C, then our problem is solvable (inclusion is decidable for good representations).
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Automata-based verification of safety properties A regular safety property
is a set of finite traces over Σ. Then, the system L satisfies a property Π iff

Tracesf(L) ⊆ Π (1)

Naturally, a regular safety property Π is represented by a deterministic finite-
state labelled transition system AΠ . This system is completed by adding a special
state bad to the set of states Q, and adding transitions (q, `, bad) for every q ∈ Q
and ` ∈ Σ such that there is no transitions in AΠ starting from q which are
labelled by `. Let Abad

Π be the so obtained transition system and let L × Abad
Π

be the synchronous product of L and Abad
Π . The system L × Abad

Π is a lossy
channel system (with the n channels of L) whose control states are elements of
S×(Q∪{bad}). Then, the problem (1) reduces to checking if Reach(L×Abad

Π ) ⊆
S × Q × (M∗)n (i.e., bad configurations are never reached).

It is convenient to consider a safety property Π as a set of traces over a set
of observable actions Ω ⊆ Σ. Then its verification problem consists in checking
if Tracesf(L)|Ω ⊆ Π , where |Ω denotes projection on Ω (i.e., hiding all symbols
except those in Ω). Given Abad

Π defined as previousely, this problem is equivalent
to Reach(L ×Ω Abad

Π ) ⊆ S × Q × (M∗)n, where ×Ω is the product of labelled
transition systems with synchronisation on actions in Ω.

Generation of finite abstractions A C-indexed language W over M is a
mapping from C to 2M∗

representing a set of C-indexed sequences such that
w ∈ W iff ∀c ∈ C. w(c) ∈ W (c).

A symbolic state of L is a pair φ = 〈s, W 〉 where s ∈ S is a control state and
W is a C-indexed language over M . The symbolic state φ represents the set of
configurations [[φ]] = {〈s, w〉 : w ∈ W}.

Let Φ be a finite set of symbolic states. Then, the symbolic graph associated
with Φ is the finite-state labelled transition system GΦ such that its set of states
is Φ and, ∀φ1, φ2 ∈ Φ. ∀` ∈ Σ. φ1

`−→ φ2 iff ∃γ1 ∈ φ1, γ2 ∈ φ2. γ1
`−→ γ2.

We consider as initial state in GΦ any configuration which contains the initial
configuration γinit.

In particular, we consider the partition of Reach(L) according to the control
states, i.e., ΦL = {〈s, W 〉 : s ∈ S and [[W ]] = R(s)}. The labelled transition
system GΦL is called the canonical symbolic graph of L.

Lemma 1. For every finite set of symbolic states Φ, if Reach(L) ⊆ ⋃
φ∈Φ [[φ]],

then GΦ simulates L.

Indeed, it is easy to see that the membership relation, i.e., the relation R such
that γRφ iff γ ∈ [[φ]], is a simulation relation (using the fact that every reachable
configuration of L belongs to at least one symbolic state in Φ).

Clearly, Lemma 1 holds for the canonical symbolic graph of L. This means
that if Reach(L) can be constructed, we obtain directly a finite-state abstraction
of the system L. This abstract model can be used to check linear-time properties
and, if the result is positive, to deduce that the same result holds for the concrete



Symbolic Verification of Lossy Channel Systems 215

system L1. More precisely, given an ∞-regular linear-time property Π , i.e., a set
of finite or infinite traces over Σ, a system L satisfies Π if Traces(L) ⊆ Π .
By Lemma 1, we have Traces(L) ⊆ Traces(GΦL). Hence, for every ∞-regular
property Π , if GΦL satisfies Π , then L satisfies Π too.

Notice that if GΦL does not satisfy Π , this could be due to the fact that the
abstraction corresponding to the partition of Reach(L) according to control state
is too coarse. Then, one could try to check Π on refinements of this partition.

3.3 Computing Reachability Sets of LCSs
We introduced in [1] a new symbolic representation formalism, based on a class
of regular expressions called SREs (simple regular expressions), for use in the
calculation of reachability sets of lossy channel systems. We showed in that previ-
ous work that SREs are “good” representation structures in the sense introduced
in Section 3.1. We give hereafter the definition of SREs and a brief overview of
the results of [1] concerning these representations.

Definition 2 (SREs). An atomic simple expression over M is a regular expres-
sion of one of two following forms: (a + ε), where a ∈ M , or (a1 + · · · + am)∗,
where a1, . . . , am ∈ M . A simple product p over M is either ε (denoting the
language {ε}) or a concatenation e1 · e2 · · · en of atomic simple expressions over
M . A simple regular expression (SRE) r over M is either ∅ (denoting the empty
language) or a sum p1 + · · · + pn of simple products over M . Given an SRE r,
we denote by [[r]] the language it defines. A language is said to be simply regular
if it is definable by an SRE.

A C-indexed SRE R over M is a mapping from C to the set of SREs. The
expression R defines the C-indexed language L (denoted [[R]]) such that, for every
c ∈ C, L(c) = [[R(c)]]. A C-indexed language is said to be simply recognizable if
it is a finite union of languages definable by C-indexed SREs.

Any set of configurations Γ is a union of the form
⋃

s∈S{s} × Ws where the
Ws’s are C-indexed languages over M . We say that Γ is SRE definable if Ws is
simply recognizable for each s ∈ S.

For a lossy channel system L, the set Reach(L) is SRE definable (the set
R(s) is simply recognizable for each control state s) [1]. This means that SREs
are expressive enough to represent the reachability set of any lossy channel sys-
tem. However, as we mentionned before, there is, in general, no algorithm for
computing a representation of Reach(L) for a lossy channel system L [8].

An entailment relation can be defined on SREs: For SREs r1 and r2, we say
that r1 entails r2 (we write r1 v r2), if [[r1]] ⊆ [[r2]]. This relation is extended to
indexed SREs in the obvious manner. It can be shown that entailment among
indexed SREs can be checked in quadratic time [1].

Definition 3 (Normal form). A simple product e1 · · · en is said to be normal
if ∀i ∈ {1, . . . , n}. ei · ei+1 6v ei+1 and ei · ei+1 6v ei. An SRE r = p1 + · · · + pn

1 This approach can also be applied for branching-time properties expressed in uni-
versal positive fragments of temporal logics or µ-calculi like ∀CTL∗ [15] or 2Lµ

[2].
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is said to be normal if ∀i ∈ {1, . . . , n}. pi is normal, and ∀i, j ∈ {1, . . . , n}. i 6=
j. pi 6v pj.

It can be shown that for each SRE r, there is a unique (up to commutativity
of products) normal SRE, denoted r, such that [[r]] = [[r]], and which can be
derived from r in quadratic time [1].

Finally, we can show that, for a lossy channel system L and an SRE repre-
sentable set of configurations Γ , the set post(Γ ) is SRE definable and effectively
constuctible in linear time, and that for any control loop θ in L, the set post∗θ(Γ )
is also SRE definable and effectively constuctible in quadratic time [1].

4 Implementation
We implemented our techniques in a tool prototype called Lcs. The input of the
Lcs is a finite set of communicating automata, given seperately. Then, the tool
allows the following options:

Generation of the reachability set: The tool allows calling a procedure
which computes a representation of the reachability set of the system by means
of (normal) SREs. The computation is done according to a depth-first-search
strategy, and uses the acceleration principle (see Sections 3 and 3.3): Starting
from the initial configuration, the procedure explores a graph where nodes are
symbolic states. When visiting a node, the procedure computes its immediate
successors using the post function. Whenever a control loop is detected, i.e., the
current symbolic state has an ancestor with the same control state, the effect
of iterating this loop is computed, leading to a new symbolic state. Notice that
the loops used for acceleration are found on-the-fly and are not explicitly given
by the user. The set of reachable configurations is memorized progressively. If a
visited node (symbolic state) is included in the set of reachable configurations
computed so far, the successors of the node are not generated. Otherwise, its set
of configurations is added to the current set of reachable configurations, and the
search continues.

Generation of the canonical symbolic graph: During the computation the
reachability set, the Lcs tool can construct the corresponding canonical symbolic
graph (transitions between symbolic states).

The symbolic graph is produced in the input format of the Cadp toolbox
(Caesar/Aldebaran Development Package) [11] which contains several tools
on finite-state labelled transition systems, e.g., graphical visualisation, compar-
ison with respect to various behavioural equivalences and preorders like obser-
vational bisimulation and simulation, minimization, on-the-fly automata-based
verification, model-checking for an ACTL-like temporal logic (action-based vari-
ant of CTL) and the alternation-free modal µ-calculus.

On-the-fly checking of safety properties: Given a safety property described
as a deterministic labelled transition system over a set observable actions Ω ⊆ Σ,
the tool checks whether the projection of the system on Ω satisfies Π . This
verification (based on a reachability set generation, see Section 3.2) is done on-
the-fly: the procedure stops as soon as a bad configuration is encountered.
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5 The Bounded Retransmission Protocol

5.1 Specification of the service
The Bounded Retransmission Protocol (BRP for short) is a data link protocol.
The service it delivers is to transmit large files (sequences of data of arbitrary
lengths) from one client to another one. Each datum is transferred in a separate
frame. Both clients, the sender and the receiver, obtain an indication whether
the whole file has been delivered successfully or not.

More precisely, at the sender side, the protocol requests a sequence of data
s = d1, . . . , dn (action REQ) and communicates a confirmation which can be
SOK, SNOK, or SDNK. The confirmation SOK means that the file has been
transferred successfully, SNOK means that the file has not been transferred com-
pletely, and SDNK means that the file may not have been transferred completely.
This occurs when the last datum dn is sent but not acknowledged. Now, at the
receiver side, the protocol delivers each correctly received datum with an indi-
cation which can be RFST, RINC, or ROK. The indication RFST means that the
delivered datum is the first one and more data will follow, RINC means that the
datum is an intermediate one, and ROK means that this was the last datum and
the file is completed. However, when the connection with the sender is broken,
an indication RNOK is delivered (without datum). Properties the service must
satisfy are:

1. a request REQ must be followed by a confirmation (SOK, SNOK, or SDNK)
before the next request,

2. a RFST indication (delivery of the first datum) must be followed by one of the
two indications ROK or RNOK before the beginning of a new transmission
(next request of the sender),

3. a SOK confirmation must be preceded by a ROK indication,
4. a ROK indication can be followed by either a SOK or a SDNK confirmation,

but never by a SNOK (before next request),
5. a RNOK indication must be preceded by SNOK or SDNK (abortion),
6. if the first datum has been received (with the RFST indication), then a SNOK

confirmation is followed by a RNOK indication before the next request.

5.2 Description of the protocol
The BRP consists of two processes, the sender S and the receiver R, that
communicate through two lossy fifo channels K and L: messages can either
be lost or arrive in the same order in which they are sent. The BRP can be
seen as an extended version of the alternating bit protocol. Messages sent from
the sender S to the receiver R through the channel K are frames of the form
(first, last, toggle, datum) where a datum is accompanied by three bits: first
and last indicate whether the datum is the first or the last one of the considered
file, toggle is the alternating bit allowing to detect duplications of intermediate
frames. As for the acknowledgments (sent from R to S through L), they are
frames of the form (first, last, toggle). Notice that in the description we con-
sider of the BRP, the value of toggle is relevant only for intermediary frames.
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Indeed, the first and last frames can be distinguished from the intermediary ones
using the booleans first and last.

The behaviours of S and R are the following: The sender S starts by reading
(action REQ) a sequence s = d1, . . . , dn. We consider here that n ≥ 2, the case
n = 1 does not introduce any difficulty. Then, S sends to R through K the first
data frame (1, 0, 0, d1), and waits for the acknowledgement. Let us consider first
the ideal case where frames are never lost. When R receives the frame from K,
it delivers to its client the datum d1 with the indication RFST, and sends to
S an acknowledgement frame (1, 0, 0) through the channel L. When S receives
this acknowledgement, it transmits to R the second frame (0, 0, 0, d2) (toggle is
still equal to 0 since its value is relevant for intermediate frames). Then, after
reception, R delivers d2 with the indication RINC and sends the acknowledgement
(0, 0, 0) to S. Then, the next frame sent by S is (0, 0, 1, d3) (now toggle has
flipped), and the same procedure is repeated until the last frame (0, 1,−, dn) is
sent (here again, like in the case of the first frame, the value of toggle is not
relevant). When R receives the last frame, it delivers dn with the indication
ROK, and acknowledges receipt. Then, the sender S communicates to its client
the confirmation SOK meaning that the whole sequence s has been successfully
transmitted.

Now, let us consider the case where frames are lost. When S send a data
and realizes that it may be lost (a timer Ts expires and it did not receive a
corresponding acknowledgement from R), it retransmits the same frame and
waits again for the acknowledgement. However, it can try only up to a fixed
maximal number of retransmissions MAX which is a parameter of the protocol.
So, the sender maintains a counter of retransmissions CR, and when CR reaches
the value MAX, it gives up and concludes that the connection with the receiver
is broken. Then, it informs its client that a failure occured by communicating
one of the two confirmations: SNOK if the frame in consideration is not the last
frame of the sequence, or SDNK if it is the last one (the sender cannot know
if the frame was lost or if its acknowledgement was lost). On the other side,
the receiver R uses also a timer Tr to measure the time elapsed between the
arrival of two different frames. When R receives a new frame, it resets Tr and,
it delivers the transmitted datum with the corresponding indication, otherwise
it resends the last acknowledgement. If the timer expires, it concludes that the
connection with the sender is broken and delivers an indication RNOK meaning
that the transmission failed. Notice that if the first frame is continuously lost,
the receiver has no way to detect that the sender is trying to start a new file
transmission. In addition, two assumptions are made on the behaviour of S and
R:

A1 R must not conclude prematurely that the connection with S is broken.
A2 In case of abortion, S cannot start transmitting frames of another file until

R has reacted to abortion and informed its client.

Assumption A1 means that Tr must be large enough to allow MAX retransmis-
sions of a frame. Assumption A2 can be implemented for instance by imposing
to S to wait enough time after abortion to be sure that Tr has expired.
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5.3 Modeling the BRP as a Lossy Channel System

We model the BRP as a lossy channel system which consists of two communicat-
ing finite-state machines, the sender S and the receiver R represented in Figures
1 and 2 (with obvious notational conventions). For that, we proceed as follows:

K!fstK!fst

L?0

L?fst

L?fst

K!fst

K!1

K!0

0 1 2

3 4

567

SOK
L?last

K!last

K!last

K!1

8

9

SNOK:Op2

SNOK:Op2

L?last

SDNK:
Op2

L?last

SNOK:Op2 K!last

K!0

L?0

Op1

Op1

Op1 = ¬rtrans ∧ empty(K) ∧ empty(L) 7→ abort := false
Op2 = empty(L) 7→ abort := true

L?1

REQ

L?1

Fig. 1. The sender S

Frames: Since the control of the BRP does not depend on the transmitted
data, we hide their values and consider only the informations (first, last, toggle).
The set of relevant informations of such form corresponds to a finite alphabet
M = {fst, last, 0, 1}, where fst (resp. last) represents the first (resp. last) frame,
and 0 and 1 represents the intermediate frames since only toggle is relevant in
this case.

The number of transmitted frames: Only is relevant whether a frame is the first
one, the last one, or an intermediate one, we abstract from the actual value n
corresponding to the size of the transmitted sequence of frames, and consider
that it can be any positive integer, chosen nondeterministically (by the sender).
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RNOK: abort ∧ empty(K) 7→ rtrans := false

RNOK: abort ∧ empty(K) 7→ rtrans := false
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abort ∧
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0

1 2
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empty(K) 7→
rtrans := false

K?0, L!0

Fig. 2. The receiver R

Time-outs: Since our model is untimed, we cannot express time-outs explic-
itly. Then, we consider that the sender and the receiver decide nondeterminis-
tically when time-outs occur, provided that their corresponding input channels
are empty (we use channel emptiness testing).

The counter CR and the value MAX: Only is relevant whether CR < MAX or CR
≥ MAX. Then, we consider that the sender can resend frames an arbitrary num-
ber of times before considering that MAX is reached and deciding the abortion
of the transmission. This makes the size of the channels K and L unbounded.
Our model is an abstraction of the whole family of BRPs for arbitrary values of
MAX.

Assumptions A1 and A2: Again, since our model is untimed, we cannot im-
pose real-time constraints to implement the assumptions A1 and A2. Then,
we use boolean shared variables to synchronise the sender and the receiver. We
consider the two following variables: abort which tells whether the sender has
decided abortion, and rtrans which tells whether the receiver considers that the
transmission of a sequence of frames has started and is not finished yet, i.e.,
from the moment it receives the first frame until it informs its client that the
transmission is terminated, either successfully or not.
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5.4 Verifying the Bounded Retransmission Protocol

To verify the BRP, we follow the following steps: First, we use our Lcs tool to
generate automatically the set of reachable configurations of the BRP and the
corresponding canonical symbolic graph. The obtained graph has 24 symbolic
states and 61 transitions. The execution time is 0.56 seconds (UltraSparc).

Then, we use the tool Aldebaran to minimize this graph according to the
observational trace equivalence where the set of observable actions is {REQ, SOK,
SNOK, SDNK, RFST, RINC, ROK, RNOK}. We obtain the finite-state labelled
transition system with 5 states and 10 transitions given in Figure 3. Properties

REQ

ROK

RFST

RNOK

RINC

SDNK

SNOK

SOK

SDNK

SNOK

Fig. 3. The minimized symbolic graph of the BRP

such as those given in Section 5.1 are expressible in ACTL (the action-based
variant of CTL) and can be automatically model checked on the obtained finite-
state abstract model of the BRP.

6 Conclusion

We have presented a symbolic approach for verifying automatically a class of
infinite-state systems: the class of unbounded lossy channel systems. This ap-
proach is based on a procedure of constructing the set of reachable configurations
of the system by means of a symbolic representation (SREs), and acceleration
techniques based on the analysis of the effect of control loops. In addition to
the generation of the reachability set of a system, we showed that this approach
allows the automatic generation of a finite abstract model of the system which
can be used for checking various properties by means of standard finite-state
verification methods.

We applied this approach to the non-trivial example of the BRP. We showed
that considering unbounded channels allows parametric reasoning: unbounded-
ness of the channels models the fact that the number of retransmissions can be
any arbitrary positive integer. Our experimentation with the Lcs tool show that
the algorithmic approach we adopt is quite effective. For a first prototype, we
obtained quite satisfactory performances.
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