
Constructor Subtyping

Gilles Barthe12 and Maria João Frade1

1 Departamento de Informática, Universidade do Minho, Braga, Portugal
2 Institutionen för Datavetenskap, Chalmers Tekniska Högskola, Göteborg, Sweden

{gilles,mjf}@di.uminho.pt

Abstract. Constructor subtyping is a form of subtyping in which an
inductive type σ is viewed as a subtype of another inductive type τ if τ
has more constructors than σ. As suggested in [5,12], its (potential) uses
include proof assistants and functional programming languages.
In this paper, we introduce and study the properties of a simply typed
λ-calculus with record types and datatypes, and which supports record
subtyping and constructor subtyping. In the first part of the paper, we
show that the calculus is confluent and strongly normalizing. In the sec-
ond part of the paper, we show that the calculus admits a well-behaved
theory of canonical inhabitants, provided one adopts expansive exten-
sionality rules, including η-expansion, surjective pairing, and a suitable
expansion rule for datatypes. Finally, in the third part of the paper, we
extend our calculus with unbounded recursion and show that confluence
is preserved.

1 Introduction

Type systems [3,8] lie at the core of modern functional programming languages,
such as Haskell [28] or ML [26], and proof assistants, such as Coq [4] or PVS [32].
In order to improve the usability of these languages, it is important to devise
flexible (and safe) type systems, in which programs and proofs may be written
easily. A basic mechanism to enhance the flexibility of type systems is to endorse
the set of types with a subtyping relation ≤ and to enforce a subsumption rule

a : A A ≤ B

a : B

This basic mechanism of subtyping is powerful enough to capture a variety of
concepts in computer science, see e.g. [9], and its use is spreading both in func-
tional programming languages, see e.g. [25,30,31], and in proof assistants, see
e.g. [7,24,32].

Constructor subtyping is a basic form of subtyping, suggested in [12] and de-
veloped in [5], in which an inductive type σ is viewed as a subtype of another in-
ductive type τ if τ has more constructors than σ. As such, constructor subtyping
captures in a type-theoretic context the ubiquitous use of subtyping as inclusion
between inductively defined sets. In its simplest instance, constructor subtyping
enforces subtyping from odd or even numbers to naturals, as illustrated in the
following example, which introduces in a ML-like syntax the mutually recursive
datatypes Odd and Even, and the Nat datatype:

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 109–127, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

110 Gilles Barthe and Maria João Frade

datatype Odd = s of Even
and Even = 0

| s of Odd ;

datatype Nat = 0
| s of Nat
| s of Odd
| s of Even ;

Here Even and Odd are subtypes of Nat (i.e. Even ≤ Nat and Odd ≤ Nat), since
every constructor of Even and Odd is also a constructor of Nat.

In a previous paper [5], the first author introduced and studied constructor
subtyping for one first-order mutually recursive parametric datatype, and showed
the calculus to be confluent and strongly normalizing. In the present paper, we
improve on this work in several directions:

1. we extend constructor subtyping to the class of strictly positive, mutually re-
cursive and parametric datatypes. In addition, the present calculus supports
incremental definitions;

2. following recent trends in the design of proof assistants (and a well-established
trend in the design of functional programming languages), we replace the
elimination constructors of [5] by case-expressions. This leads to a simpler
system, which is easier to use;

3. we define a set of expansive extensionality rules, including η-expansion, sur-
jective pairing, and a suitable expansion rule for datatypes, so as to obtain
a well-behaved theory of canonical inhabitants (i.e. of closed expressions in
normal forms). The latter is fundamental for a proper semantical understand-
ing of the calculus and for several applications related to proof assistants,
such as unification.

The main technical contribution of this paper is to show that the calculus enjoys
several fundamental meta-theoretical properties including confluence, subject
reduction, strong normalization and a well-behaved theory of canonical inhabi-
tants. These results lay the foundations for constructor subtyping and open the
possibility of using constructor subtyping in programming languages and proof
assistants, see Section 7.

Organization of the paper The paper is organized as follows: in Section 2, we
provide an informal account of constructor subtyping. In Section 3, we introduce
a simply typed λ-calculus with record types and datatypes, and which supports
both record subtyping and constructor subtyping. In Section 4, we establish
some fundamental meta-theoretical properties of the calculus. In Section 5, we
motivate the use of expansive extensionality rules, show that they preserve con-
fluence and strong normalization and lead to a well-behaved theory of canonical
inhabitants. In Section 6, we extend our core language with fixpoint operators,
and show the resulting calculus to be confluent. Finally, we conclude in Section
7. Because of space constraints, proofs are merely sketched or omitted. We refer
the reader to [6] for further details.

Acknowledgments We are grateful to T. Altenkirch, P. Dybjer and L. Pinto
for useful discussions on constructor subtyping. The first author is partially

Constructor Subtyping 111

supported by a TMR fellowship. The second author is partially supported by
the Logcomp project.

2 An informal account of constructor subtyping

Constructor subtyping formalizes the view that an inductively defined set σ is
a subtype of an inductively defined set τ if τ has more constructors than σ. As
may be seen from the example of even, odd and natural numbers, the relative
generality of constructor subtyping relies on the possibility for constructors to
be overloaded and, to a lesser extent, on the possibility for datatypes to be
defined in terms of previously introduced datatypes. The following example,
which introduces the parametric datatypes List of lists and NeList of non-
empty lists, provides further evidence.

datatype ’a List = nil
| cons of (’a * ’a List) ;

datatype ’a NeList = cons of (’a * ’a List) ;

Here ’a NeList ≤ ’a List since the only constructor of ’a NeList, cons :
(’a * ’a List) →’a NeList is matched by the constructor of ’a List, cons
: (’a * ’a List) →’a List.

The above examples reveal a possible pattern of constructor subtyping: for
two parametric datatypes d and d′ with the same arity, we set d ≤ d′ if every
declaration (c in case of a constant, c of B otherwise) of d is matched in d′.1

Another pattern, used in [5], is to take subtyping as a primitive. Here we allow for
the subtyping relation to be specified directly in the definition of the datatype.
As shown below, such a pattern yields simpler definitions, with less declarations.

datatype Odd = s of Even
and Even = 0

| s of Odd ;

datatype Nat = s of Nat
with Odd ≤ Nat,

Even ≤ Nat ;

The original datatype may be recovered by adding a declaration of the form
c : σ → d′ whenever c : σ → d and d ≤ d′. The same technique can be used to
define ’a List and ’a NeList:

datatype ’a List = nil
and ’a NeList = cons of (’a * ’a List)
with ’a NeList ≤ ’a List ;

For the clarity of the exposition, we shall adopt the second pattern in examples,
whereas we consider the first pattern in the formal definition of λ→,[],data.

1 For the sake of simplicity, we gloss over renamings and assume the parameters of d
and d′ to be identical.

112 Gilles Barthe and Maria João Frade

Thus far, the subtyping relation is confined to datatypes. It may be extended
to types in the usual (structural) way. In this paper, we force datatypes to be
monotonic in their parameters. Hence, we can derive

Odd List ≤ Nat List
[l1 : Even, l2 : Nat List, l3 : Odd] ≤ [l1 : Nat, l2 : Nat List]

Nat → Even NeList ≤ Odd → Nat NeList

from the fact that Odd ≤ Nat, Even ≤ Nat and ’a NeList ≤ ’a List. The
formal definition of the subtyping relation is presented in the next section.

In order to introduce strict overloading, which is a central concept in this
paper, let us anticipate on the next section by considering the evaluation rule
for case-expressions. Two observations can be made: first, our informal definition
of datatype allows for arbitrary overloading of constructors. Second, it is not
possible to define a type-independent evaluation rule for case-expressions for
arbitrary datatypes. For example, consider the following datatype, where Sum is
a datatype identifier of arity 2:

datatype (’a,’b) Sum = inj of ’a
| inj of ’b ;

Note that the datatype is obtained from the usual definition of sum types by over-
loading the constructors inj1 and inj2. Now, a case-expression for this datatype
should be of the form

case a of (inj x) => b1 | (inj x) => b2

with evaluation rules

case (inj a) of (inj x) => b1 | (inj x) => b2 → b1{x:=a}
case (inj a) of (inj x) => b1 | (inj x) => b2 → b2{x:=a}

As b1 and b2 are arbitrary, the calculus is obviously not confluent. Thus one
needs to impose some restrictions on overloading. One drastic solution to avoid
non-confluence is to require constructors to be declared at most once in a given
datatype, but this solution is too restrictive. A better solution is to require
constructors to be declared “essentially” at most once in a given datatype. Here
“essentially” consists in allowing a constructor c to be multiply defined in a
datatype d, but by requiring that for every declaration c of rho, we have rho ≤
rhom where c of rhom is the first declaration of c in d. In other words, the only
purpose of repeated declarations is to enforce the desired subtyping constraints
but (once subtyping is defined) only the first declaration needs to be used for
typing expressions. This notion, which we call strict overloading, is mild enough
to be satisfied by most datatypes that occur in the literature, see [5] for a longer
discussion on this issue.

We conclude this section with further examples of datatypes. Firstly, we
define a datatype of ordinals (or better said of ordinal notations). Note that the
datatype is a higher-order one, because of the constructor lim which takes a
function as input.

Constructor Subtyping 113

datatype Ord = s of Ord | lim of (Nat -> Ord)
with Nat ≤ Ord ;

Second, we define a datatype of binary integers. These datatypes are part of the
Coq library, but Coq does not take advantage of constructor subtyping.

datatype positive = xH | xI of positive | xO of positive ;
datatype natural = ZERO
with positive ≤ natural ;
datatype integer = NEG of positive
with natural ≤ integer ;

Thirdly, and as pointed out in [5,12], constructor subtyping provides a suitable
framework in which to formalize programming languages, including the object
calculi of Abadi and Cardelli [1] and a variety of other languages taken from [29].
Yet another example of language that can be expressed with constructor seman-
tics is mini-ML [22], as shown below. Here we consider four datatypes identifiers:
E of expressions, I for identifiers, P of patterns and N for the nullpattern, all with
arity 0.

datatype I = ident ;
datatype N = nullpat ;
datatype P = pairpat of (P * P)
with I ≤ P, N ≤ P ;
datatype E = num | false | true | lamb of (P * E)

| if of (E * E * E) | mlpair of (E * E)
| apply of (E * E) | let of (P * E * E)
| letrec of (P * E * E)

with I ≤ E, N ≤ E ;

Lastly, we conclude with a definition of CTL∗ formulae, see [15]. In this exam-
ple, we consider two datatypes identifiers SF of state formulae and PF of path
formulae, both with arity 1.

datatype ’a SF = i of (’a * ’a SF) | conj of (’a SF * ’a SF)
| not of ’a SF | forsomefuture of ’a PF
| forallfuture of ’a PF

and ’a PF = conj of (’a PF * ’a PF) | not of ’a PF
| nexttime of ’a PF | until of ’a PF

with ’a SF ≤ ’a PF ;

CTL∗ and related temporal logics provide suitable frameworks in which to verify
the correctness of programs and protocols, and hence are interesting calculi to
formalize in proof assistants.

114 Gilles Barthe and Maria João Frade

3 A core calculus λ!;[];data

In this section, we introduce the core calculus λ→,[],data. The first subsection is
devoted to types, datatypes and subtyping; the second subsection is devoted to
expressions, reduction and typing.

3.1 Types and subtyping

Below we assume given some pairwise disjoint sets L of labels, D of datatype
identifiers, C of constructor identifiers and X of type variables. Moreover, we
let l, l′, li, . . . range over L, d, d′, . . . range over D, c, c′, ci, . . . range over C and
α, α′, αi, β, . . . range over X . In addition, we assume that every datatype iden-
tifier d has a fixed arity ar(d) and that α1, α2, . . . is a fixed enumeration of X .

Definition 1 (Types). The set T of types is given by the abstract syntax:

σ, τ := d[τ1, . . . , τar(d)] | α | σ → τ | [l1 : σ1, . . . , ln : σn]

where in the last clause it is assumed that the lis are pairwise distinct. By con-
vention, we identify record types that only differ in the order of their declarations,
such as [l : σ, l′ : τ] and [l′ : τ, l : σ].

We now turn to the definition of datatype. Informally, a datatype is a list of
constructor declarations, i.e. of pairs (c, τ) where c is a constructor identifier and
τ is a constructor type, i.e. a type of the form

ρ1 → . . . → ρn → d[α1, . . . , αar(d)]

with d ∈ D. However not all datatypes are valid. In order for a datatype to be
valid, it must satisfy several properties.

1. Constructors must be strictly positive, so that datatypes have a direct set-
theoretic interpretation. For example, c1 : nat → d and c2 : (nat → d) → d
are strictly positive w.r.t. d, whereas c3 : (d → d) → d is not.

2. Parameters must appear positively in the domains of constructor types, so
that datatypes are monotonic in their parameters. For example, the pa-
rameter α appears positively in the domain of α → d[α], while it appears
negatively in the domain of (α → nat) → d[α].

3. Datatypes that mutually depend on each other must have the same number
of parameters, for the sake of simplicity.

4. Constructors must be strictly overloaded, so that case-expressions can be
evaluated unambiguously.

In addition, we allow datatypes to depend on previously defined datatypes. This
leads us naturally to the notion of datatype context. Informally, a datatype con-
text is a finite list of datatypes. Below we let σ, τ range over types, ℵ range
over datatype contexts, c range over datatype constructors and d, d′ range over
datatype identifiers.

Constructor Subtyping 115

Definition 2.

1. σ is a legal type in ℵ with variables in {α1, . . . , αk} (or ∅ if k = 0), written
ℵ `k σ type, is defined by the rules of Figure 1;

2. σ is a subtype of τ in ℵ, written ℵ ` σ ≤ τ , is defined by the rules of Figure
2, where ℵ ` d ≤ d′ if
– ar(d) = ar(d′) = m;
– every declaration c : τ1 → . . . → τn → d[α1, . . . , αm] in ℵ is matched

by another declaration c : τ1 → . . . → τn → d′[α1, . . . , αm] in ℵ.
3. τ is a d-constructor type in ℵ, written ℵ ` τ coty(d), is defined by the rules

of Figure 3, where:
– α appears positively in τ , written α pos τ , is defined as in [17];
– ρ is strictly positive w.r.t. d, written ρ spos d, is defined as in [17];
– d ∈ ℵ if there exists a declaration (c : τ) ∈ ℵ in which d occurs;

4. ℵ is a legal datatype context, written ℵ legal, is defined by the rules of Figure
4, where ℵ compatible D, c : τ if
– for every (c : τ ′) ∈ D, ℵ ` τ ′ coty(d) ⇒ ℵ ` τ ′ ≤ τ ;
– for every (c′ : τ ′) ∈ D, ℵ ` τ ′ coty(d′) ⇒ ar(d) = ar(d′).

In addition, we say c : τ is a main d-declaration if it is the first declaration of
the form c : τ ′ with ℵ ` τ ′ coty(d).

A special case of constructor type is given by the rule

ℵ `0 ρi type ∨ ρi ∈ {α1, . . . , αar(d), d[α1, . . . , αk]}
ℵ ` ρ1 → . . . → ρn → d[α1, . . . , αk] coty(d)

d 6∈ ℵ

Note that conditions 3 and 4 above are enforced by the side-conditions in (add-
cons) whereas conditions 1 and 2 above are enforced by the rule (coty). Also
note that in the side condition for (add-cons), τ ′ and τ are compared w.r.t. ℵ
and not ℵ; D.

(→)
ℵ `k σ type ℵ `k τ type

ℵ `k σ → τ type

([])
ℵ `k σi type (1 ≤ i ≤ n)

ℵ `k [l1 : σ1, . . . , ln : σn] type

(data)
d ∈ ℵ ℵ `k σi type (1 ≤ i ≤ ar(d))

ℵ `k d[�] type

(α)
ℵ legal

ℵ `k αi type
(1 ≤ i < k)

Fig. 1. Type formation rules

116 Gilles Barthe and Maria João Frade

(≤refl)
ℵ `k σ type

ℵ ` σ ≤ σ

(≤trans)
ℵ ` σ ≤ τ ℵ ` τ ≤ ρ

ℵ ` σ ≤ ρ

(≤→)
ℵ ` σ′ ≤ σ ℵ ` τ ≤ τ ′

ℵ ` σ → τ ≤ σ′ → τ ′

(≤[])
ℵ ` σi ≤ τi (1 ≤ i ≤ n) ℵ `k σj type (n + 1 ≤ j ≤ m)

ℵ ` [l1 : σ1, . . . , ln+m : σn+m] ≤ [l1 : τ1, . . . , ln : τn]

(≤data)
ℵ ` d ≤ d′ ℵ ` σi ≤ τi (1 ≤ i ≤ ar(d))

ℵ ` d[�] ≤ d′[�]

Fig. 2. Subtyping rules

(coty)
ℵ `k ρi type ρi spos d αj pos ρi (1 ≤ i ≤ n , 1 ≤ j ≤ k)

ℵ ` ρ1 → . . . → ρn → d[α1, . . . , αk] coty(d)
d 6∈ ℵ

Fig. 3. Constructor type rule

3.2 Expressions and typing

In this subsection, we conclude the definition of λ→,[],data by defining its expres-
sions, specifying their computational behavior and providing them with a typing
system. Below we assume given a set V of variables and let x, x′, xi, y, . . . range
over V. Moreover, we assume given a legal datatype context ℵ and let T0 be the
set of legal types in ℵ; finally σ, τ, . . . are assumed to range over T0.

Definition 3. The set E of expressions is given by the abstract syntax:

a, b := x | λx:τ. a | a b | [l1 = a1, . . . , ln = an] | a.l |
c[σ] a | caseτ

d[σ] a of {c1 ⇒ b1 | . . . | cn ⇒ bn}

(empty) . legal

(close)
ℵ; D legal

ℵ; D; legal

(add-cons)
ℵ; D legal ℵ ` τ coty(d)

ℵ; D, c : τ legal
ℵ compatible D, c : τ

Fig. 4. Datatype rules

Constructor Subtyping 117

Free and bound variables, substitution .{. := .} are defined the usual way. More-
over we assume standard variable conventions [2] and identify record expres-
sions which only differ in the order of their components, e.g. [l = a, l′ = a′]
and [l′ = a′, l = a]. All the constructions are the usual ones, except perhaps for
case-expressions, which are typed so as to avoid failure of subject reduction, see
e.g. [19], and are slightly different from the usual case expressions in that we
pattern-match against constructors rather than against patterns.

Definition 4 (Typing).

1. A context Γ is a finite set of assumptions x1 : τ1, . . . , xn : τn such that the
xis are pairwise distinct elements of V and τi ∈ T0.

2. A judgment is a triple of the form Γ ` a : τ , where Γ is a context, a ∈ E
and τ ∈ T0.

3. A judgment is derivable if it can be inferred from the rules of Figure 5,
where in the (case) rule it is assumed that c1 : τ1, . . . , cn : τn are the sole
main d-declarations and that τσ denotes ξ1 → . . . → ξn → σ whenever
τ = ξ1 → . . . → ξn → d[ρ].

4. An expression a ∈ E is typable if Γ ` a : σ for some context Γ and type σ.

(start) Γ ` x : τ if x : τ ∈ Γ

(application)
Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ

(abstraction)
Γ, x : τ ` e : σ

Γ ` λx:τ. e : τ → σ

(record)
Γ ` ei : τi (1 ≤ i ≤ n)

Γ ` [l1 = e1, . . . , ln = en] : [l1 : τ1, . . . , ln : τn]

(select)
Γ ` e : [l1 : τ1, . . . , ln : τn]

Γ ` e.li : τi
if 1 ≤ i ≤ n

(constructor)
Γ ` bi : ρi{� := �} (1 ≤ i ≤ k)

Γ ` c[�] b : d[�]
if c : ρ1 → ... → ρk → d[�] ∈ ℵ

(case)
Γ ` a : d[�] Γ ` bi : (τi{� := �})σ (1 ≤ i ≤ n)

Γ ` caseσ
d[�] a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ

(subsumption)
Γ ` e : τ

Γ ` e : σ
if τ ≤ σ

Fig. 5. Typing rules

118 Gilles Barthe and Maria João Frade

The computational behavior of λ→,[],data is drawn from the usual notion of
β-reduction, ι-reduction and π-reduction.

Definition 5.

1. β-reduction →β is defined as the compatible closure of the rule

(λx:σ. a) b →β a{x := b}

2. π-reduction →π is defined as the compatible closure of the rule

[l1 = a1, . . . , ln = an].li →π ai

3. ι-reduction →ι is defined as the compatible closure of the rule

caseσ
d[τ ′] (ci[τ] a) of {c1 ⇒ f1 | . . . | cn ⇒ fn} →ι fi a

4. →basic is defined as →β ∪ →π ∪ →ι.
5. �basic and =basic are respectively defined as the reflexive-transitive and the

reflexive-symmetric-transitive closures of →basic.

Note that we do not require τ and τ ′ to coincide in the definition of ι-reduction
as it would lead to too weak an equational theory. However, the typing rules will
enforce τ ≤ τ ′ on legal terms.

4 Meta-theory of the core language

In this section, we summarize some basic properties of the core language.

Proposition 1 (Confluence). →basic is confluent:

a =basic b ⇒ ∃c ∈ E . a �basic c ∧ b �basic c

Proof. By the standard technique of Tait and Martin-Löf.

Proposition 2 (Subject reduction). Typing is closed under →basic:

Γ ` a : σ ∧ a →basic b ⇒ Γ ` b : σ

Proof. By induction on the structure of the derivations, using some basic prop-
erties of subtyping.

As usual, we say that an expression e is strongly normalizing with respect to a
relation → if there is no infinite sequence

e → e1 → e2 → . . .

We let SN(→) denote the set of expressions that are strongly normalizing with
respect to →.

Constructor Subtyping 119

Proposition 3 (Strong normalization). →basic is strongly normalizing on
typable expressions:

Γ ` a : σ ⇒ a ∈ SN(→basic)

Proof. By a standard computability argument.

We now turn to type-checking. One cannot rely on the existence of minimal types,
as they may not exist (for minimal types to exist, one must require datatypes
to be pre-regular, see e.g. [5,18]). Instead, we can define for every context Γ and
expression a a finite set minΓ (a) of minimal types such that

σ ∈ minΓ (a) ⇒ Γ ` a : σ
Γ ` a : σ ⇒ ∃τ ∈ minΓ (a). τ ≤ σ

The set minΓ (a), which is defined in the obvious way, is finite because there are
only finitely many declarations for each constructor.

Proposition 4. Type-checking is decidable: there exists an algorithm to decide
whether a given judgment Γ ` a : σ is derivable.

Proof. Proceed in two steps: first compute minΓ (a), second check whether there
exists τ ∈ minΓ (a) such that τ ≤ σ.

5 Extensionality

5.1 Motivations

Extensionality, as embodied e.g. in η-conversion, is a basic feature of many type
systems. Traditionally, extensionality equalities are oriented as contractive rules:
e.g. η-conversion is oriented as η-reduction. On the other hand, expansive rules
provide an alternative computational interpretation of extensionality equalities:
e.g. η-conversion may be oriented as η-expansion. Expansive extensionality rules
have numerous applications in categorical rewriting, unification and partial eval-
uation. In addition to these traditional motivations, which are nicely summarized
in [13], subtyping adds some new fundamental reasons to use expansive rules:

1. contractive rules lead to non-confluent calculi, even on well-typed expres-
sions: if we adopt η-reduction for λ-abstractions, then the following critical
pair cannot be solved:

λx:τ. (λy:σ. y) x

β

wwoooooooooooo
η

''OOOOOOOOOOO

λx:τ. x λy:σ. y

120 Gilles Barthe and Maria João Frade

On the other hand, λx:τ. (λy:σ. y) x is well-typed (of type τ → σ) whenever
τ ≤ σ (this observation is due to Mitchell, Hoang and Howard [27]). A similar
remark applies to datatypes: if we adopt µ-reduction for lists, as defined by

case
list[τ]
list[τ]

e of {nil ⇒ nil[τ] | cons ⇒ λa:τ. λl:list[τ]. cons[τ]a l} →µ e

then the following critical pair cannot be solved:

M

ι

||zzzzzzzz
µ

""DDDDDDDD

nil[τ] nil[σ]

where M ≡ case
list[τ]
list[τ] (nil[σ]) of {nil ⇒ nil[τ] |cons ⇒ λa:τ.λl:list[τ].cons[τ]a l}.

On the other hand, case
list[τ]
list[τ]

(nil[σ]) of {nil ⇒ nil[τ] | cons ⇒ λa : τ. λl :
list[τ]. cons[τ]a l} is well-typed (of type list[τ]) whenever σ ≤ τ .

2. contractive rules lead to calculi with too many canonical inhabitants (i.e.
closed expressions in normal form): if we adopt µ-reduction for lists then
the following expressions are canonical inhabitants of list[τ], provided σ ≤ τ ,
a : σ and l : list[σ]:

nil[σ] nil[τ] cons[σ]a l cons[τ]a l

On the other hand, one would expect canonical inhabitants of list[τ] to be
of the form

nil[τ] cons[τ]a l

where in the second case l itself is a canonical inhabitant of list[τ] and a is
a canonical inhabitant of τ . Remarkably we obtain the desired effect if we
reverse µ-reduction. With this new reduction rule, which we call µ-expansion
and denote by →µ, we have:

nil[σ] →µ case
list[τ]
list[τ] nil[σ] of {nil ⇒ nil[τ] | cons ⇒ cons[τ]}

→ι nil[τ]

Similarly, for a : σ and l : list[σ], one has:

cons[σ]a l →µ case
list[τ]
list[τ] (cons[σ]a l) of {nil ⇒ nil[τ] | cons ⇒ cons[τ]}

→ι cons[τ] a l

(Strictly speaking, expansive extensionality rules are defined relative to a
context and a type and the above reductions are performed at type list[τ]);

3. expansive rules provide a simple but useful program optimization: if we adopt
expansive rules for records, the expression [n = 3, c = blue] reduces at type
[n : nat] to [n = 3], thus throwing out the irrelevant fields at type [n : nat].

We therefore embark upon studying an expansive interpretation of extensionality
in λ→,[],data.

Constructor Subtyping 121

5.2 Expansive extensionality rules

The computational behavior of the calculus is now obtained by aggregating the
expansive extensionality rules to →basic. Expansive extensionality rules need to
be formulated in a typed framework so we consider judgments of the form

Γ ` a → b : σ

For the sake of uniformity, we first reformulate →basic in a typed framework.

Definition 6.

1. Typed basic-reduction →basic is defined by the clause

Γ ` a →basic b : σ

iff Γ ` a : σ and a →basic b.
2. η-expansion →η is defined as the quasi-compatible closure (see below) of the

rule
Γ ` a →η λx:τ. a x : τ → σ

provided a 6= λx:τ. b. The usual rule

Γ ` a →η b : τ → σ Γ ` c : τ

Γ ` a c →η b c : σ

is only allowed under the proviso b 6= λx:τ. a x.
3. Surjective pairing →sp is defined as the quasi-compatible closure (see below)

of the rule

Γ ` a →sp [l1 = a.l1, . . . , ln = a.ln] : [l1 : τ1, . . . , ln : τn]

provided a 6= [l1 = a1, . . . , ln = an]. The usual rule

Γ ` a →sp b : [l1 : τ1, . . . , ln : τn]
Γ ` a.li →sp b.li : τi

is only allowed under the proviso b 6= [l1 = a.l1, . . . , ln = a.ln].
4. µ-expansion →µ is defined as the quasi-compatible closure (see below) of the

rule

Γ ` a →µ case
d[τ]
d[τ] a of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]} : d[τ]

provided a 6= ci[τ]b and a 6= case
d[τ]
d[τ] a′ of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}.

The usual rule

Γ ` a →µ a′ : d[τ]

Γ ` caseσ
d[τ] a of {c ⇒ b} →µ caseσ

d[τ] a′ of {c ⇒ b} : σ

is only allowed under the proviso a′ 6= case
d[τ]
d[τ]

a of {c1 ⇒ c1[τ] | . . . | cn ⇒
cn[τ]}.

122 Gilles Barthe and Maria João Frade

5. Typed full-reduction →full is defined as the union of basic, η, sp, µ-reduction,
i.e.

Γ ` a →full b : σ ⇔ Γ ` a →basic,η,sp,µ b : σ

6. �full and =full are respectively defined as the reflexive-transitive and the
reflexive-symmetric-transitive closures of →full.

Several points deserve attention:

1. the various restrictions on →η, →sp and →µ are required to enforce strong
normalization. Without those restrictions, one would have loops or infinite
reductions, see the appendix.

2. unlike the traditional formulations of η-expansion, we do allow η-expansions
on λ-abstractions at type τ → σ if the type of the variable is not τ . Such
a possibility is indeed crucial for expressions of type σ → τ to reduce to
an expression of the form λx :σ. e at that type. On the other hand, note
that η-expansion as defined here does not preserve →basic-normal forms. For
example, for τ ≤ σ,

` λx:σ. x : τ → σ

is in →basic-normal form but

` λx:σ. x →η λz:τ. (λx:σ. x) z
→β λz:τ. z

: τ → σ

A similar remark applies to records and case-expressions.
3. →µ-like rules for datatypes seem to have received very little attention in the

literature. As far as we know, only Ghani [16] proposes a possible such rule
(his rule is motivated by categorical considerations) but does not study it in
detail. Our expansion rule for datatypes is weaker than the one suggested
by Ghani [16] and thus is inadequate to capture the categorical view of
datatypes as initial algebras in a suitable category. It nevertheless serves its
purpose, see Proposition 7.

4. reduction is not preserved under subsumption: that is, one may have

Γ ` a →full b : σ ∧ Γ 6` a →full b : τ

for σ ≤ τ . On the other hand,

Γ ` a →full b : σ ⇒ Γ ` a =full b : τ

for σ ≤ τ .

5.3 Preservation of confluence and strong normalization

Expansive extensionality rules preserve the fundamental properties of λ→,[],data.

Proposition 5 (Strong normalization). The relation →full is strongly nor-
malizing on typable expressions.

Constructor Subtyping 123

Proof. By modifying, along the lines of e.g. [20], the computability argument of
Theorem 3.

Proposition 6 (Confluence). The relation →full is confluent on typable ex-
pressions.

Proof. Using Newman’s Lemma, strong normalization and weak confluence, which
is proved by a case analysis on the possible critical pairs.

5.4 Theory of canonical inhabitants

Below we write Γ `nf a : τ if Γ ` a : τ and there is no b ∈ E such that
Γ ` a →full b : τ . The following result shows that the theory of canonical
inhabitants is well-behaved, i.e. that typable closed expressions in normal form
have the expected shape.

Proposition 7. Assume that Γ `nf a : τ .

1. If τ = σ → ρ, then a = λx:σ. b;
2. If τ = [l1 : σ1, . . . , ln : σn], then a = [l1 = b1, . . . , ln = bn].
3. If τ = d[σ], then a = c[σ]b.

Proof. By a case analysis on the possible normal forms.

The above result may be seen as evidence that the η, sp, µ-rules restore a se-
mantical justification of the system, and in particular of the case-expressions:
as every canonical inhabitant of d[τ] is of the form c[τ]b, it is justified to do
pattern-matching on c.

6 Adding fixpoints

λ→,[],data has a very restricted computational power. In particular, it does not
support recursion. In this section, we study an extension of λ→,[],data with fix-
points, and show the resulting calculus to be confluent.

Definition 7.

1. The set of expressions E is extended with the clause fix x : τ. a.
2. Fixpoint reduction →rec is defined as the compatible closure of the rule

fix x : τ. a →rec a{x := fix x : τ. a}

3. The typing system is extended with the rule:

Γ, x : τ ` a : τ

Γ ` fix x : τ. a : τ

4. We let →full+rec denote →full ∪ →rec.

124 Gilles Barthe and Maria João Frade

We have:

Proposition 8. The relation →full+rec is confluent on typable expressions.

Proof. Using a standard technique due to Lévy [23], and exploited e.g. in [14].
The idea is to introduce bounded fixpoints, show that the calculus remains
strongly normalizing and confluent, and then use some elementary reasoning
on abstract reduction systems to conclude that →full+rec is confluent.

Obviously, →full+rec is not strongly normalizing. In order to preserve strong
normalization, one must restrict oneself to guarded fix-expressions. Technically,
it is achieved by defining the notion of an expression e being guarded, and by
adding the side-condition a is guarded in the typing rule for fixpoints. A precise
description of the guard mechanism may be found for example in [17].

7 Conclusion and directions for further work

In this paper, we have introduced a simply typed λ-calculus with record types
and parametric datatypes. The calculus supports a combination of record sub-
typing and constructor subtyping and thus provides a flexible type system. We
have shown the calculus to be well-behaved, in particular with respect to canon-
ical inhabitants.

In the future, we intend to study definitions for λ→,[],data and its extensions.
Our goal is to aggregate a theory of definitions which is flexible enough to support
overloaded definitions, such as multiplication ∗:

∗ = ∗1 : N → E → E

= ∗2 : E → N → E

= ∗3 : O → O → O

= ∗4 : N → N → N

where each ∗i is defined using case-expressions and recursion. As suggested by
the above example, the idea is to allow identifiers to stand for several functions
that have a different type. To do so, several options exist: for example, one
may require the definitions to be coherent in a certain sense. Alternately, one
may exploit some strategy, see e.g. [10,21], to disambiguate the definitions. Both
approaches deserve further study.

Furthermore, we intend to scale up the results of this paper to more complex
type systems.

1. Type systems for programming languages: in line with recent work on the
design of higher-order typed (HOT) languages, one may envisage extending
λ→,[],data with further constructs, including bounded quantification [9], ob-
jects [1], bounded operator abstraction [11]. We are also interested in scaling
up our results to programming languages with dependent types such as DML
[33]. The DML type system is based on constraints, and hence it seems pos-
sible to consider constructor subtyping on inductive families, as for example

Constructor Subtyping 125

in X i ≤ X j if i ≤ j where X i is the type {0, . . . , i}. Extending constructor
subtyping to inductive families is particularly interesting to implement type
systems with subtyping.

2. Type systems for proof assistants: the addition of subtyping to proof assis-
tants has been a major motivation for this work. Our next step is to inves-
tigate an extension of the Calculus of Inductive/Coinductive Constructions,
see e.g. [17], with constructor subtyping. As suggested in [5,12], such a cal-
culus seems particularly appropriate to formalize Kahn’s natural semantics
[22].

In yet a different direction, it may be interesting to study destructor subtyping,
a dual to constructor subtyping, in which an inductive type σ is a subtype of
another inductive type τ if σ has more destructors than τ . The primary example
of destructor subtyping is of course record subtyping, as found in this paper. We
leave for future work the study of destructor subtyping and of its interaction
with constructor subtyping.

References

1. M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.
2. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, revised
edition, 1984.

3. H. Barendregt. The impact of the lambda calculus in logic and computer science.
Bulletin of Symbolic Logic, 3(2):181–215, June 1997.

4. B. Barras et. al. The Coq Proof Assistant User’s Guide. Version 6.2, May 1998.
5. G. Barthe. Order-sorted inductive types. Information and Computation, 199x. To

appear.
6. G. Barthe and M.J. Frade. Constructor subtyping. Technical Report

UMDITR9807, Department of Computer Science, University of Minho, 1998.
7. G. Betarte. Dependent Record Types and Algebraic Structures in Type Theory.

PhD thesis, Department of Computer Science, Chalmers Tekniska Högskola, 1998.
8. L. Cardelli. Type systems. ACM Computing Surveys, 28(1):263–264, March 1996.
9. L. Cardelli and P. Wegner. On understanding types, data abstraction and poly-

morphism. ACM Computing Surveys, 17(4):471–522, December 1985.
10. G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with

subtyping. Information and Computation, 117(1):115–135, February 1995.
11. A. Compagnoni and H. Goguen. Typed operational semantics for higher order

subtyping. Technical Report ECS-LFCS-97-361, University of Edinburgh, July
1997.

12. T. Coquand. Pattern matching with dependent types. In B. Nordström, editor,
Informal proceedings of Logical Frameworks’92, pages 66–79, 1992.

13. R. Di Cosmo. A brief history of rewriting with extensionality. Presented at
the International Summer School on Type Theory and Term Rewriting, Glasgow,
September 1996.

14. R. Di Cosmo and D. Kesner. Simulating expansions without expansions. Mathe-
matical Structures in Computer Science, 4(3):315–362, September 1994.

15. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
theoretical computer science, volume B, pages 995–1072. Elsevier Publishing, 1990.

126 Gilles Barthe and Maria João Frade

16. N. Ghani. Adjoint rewriting. PhD thesis, Laboratory for the Foundations of Com-
puter Science, University of Edinburgh, 1995.

17. E. Giménez. Structural recursive definitions in Type Theory. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of ICALP’98, volume 1443 of
Lecture Notes in Computer Science, pages 397–408. Springer-Verlag, 1998.

18. J. Goguen and R. Diaconescu. An Oxford survey of order sorted algebra. Mathe-
matical Structures in Computer Science, 4(3):363–392, September 1994.

19. H. Hosoya, B. Pierce, and D.N. Turner. Subject reduction fails in Java. Message
to the TYPES mailing list, 1998.

20. C.B. Jay and N. Ghani. The virtues of eta-expansion. Journal of Functional
Programming, 5(2):135–154, April 1995.

21. M.P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of
PEPM’94, pages 107–117, 1994. University of Melbourne, Australia, Department
of Computer Science, Technical Report 94/9.

22. G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science, volume 247 of Lecture Notes in Computer Science,
pages 22–39. Springer-Verlag, 1987.

23. J.-J. Lévy. An algebraic interpretation of the λβκ-calculus and a labelled λ-
calculus. Theoretical Computer Science, 2:97–114, 1976.

24. Z. Luo. Coercive subtyping. Journal of Logic and Computation, 199x. To appear.

25. S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings
of ICFP’97, pages 136–149. ACM Press, 1997.

26. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). The MIT Press, 1997.

27. J. C. Mitchell, M. Hoang, and B. T. Howard. Labelling techniques and typed fixed-
point operators. In A.D. Gordon and A.M. Pitts, editors, Higher Order Operational
Techniques in Semantics, pages 137–174. Cambridge University Press, 1998.

28. J. Peterson and K. Hammond (editors). Haskell 1.4.: A Non-strict, Purely Func-
tional Language, April 1997.

29. F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor,
Informal Proceedings of TYPES’93, pages 285–299, 1993.

30. B.C. Pierce and D.N. Turner. Local type inference. In Proceedings of POPL’98,
pages 252–265. ACM Press, 1998.

31. F. Pottier. Synthèse de types en présence de sous-typage: de la théorie la pratique.
PhD thesis, Université Paris VII, 1998.

32. N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference
Manual. Computer Science Laboratory, SRI International, February 1993. Sup-
plemented with the PVS2 Quick Reference Manual, 1997.

33. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings
of POPL’99. ACM Press, 1999. To appear.

Loops and infinite reductions for unrestricted
extensionality rules

For η-expansion:
Γ ` a c →η (λx:τ. a x) c

→β a c
: τ → σ

Constructor Subtyping 127

For surjective pairing (we treat the case where a : [l : τ, l′ : σ] but a similar
remark applies to arbitrary records):

Γ ` a.l →sp [l = a.l, l′ = a.l′].l
→π a.l

: τ

For µ-expansion (if we allow constructors to be expanded):

Γ ` (ci[τ] b) →µ case
d[τ]
d[τ] (ci[τ] b) of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→ι ci[τ] b

: d[τ]

and (if we allow case-expressions to be expanded):

Γ ` case
d[τ]
d[τ]

a of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}
→µ case

d[τ]
d[τ] a1 of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→µ case
d[τ]
d[τ] a2 of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→µ . . .

: d[τ]

where a0 = a and

ai+1 = case
d[τ]
d[τ] ai of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

and (if we take the compatible closure of µ):

Γ ` a →µ case
d[τ]
d[τ] a of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→µ case
d[τ]
d[τ] a1 of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→µ case
d[τ]
d[τ] a2 of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

→µ . . .

: d[τ]

where a0 = a and

ai+1 = case
d[τ]
d[τ] ai of {c1 ⇒ c1[τ] | . . . | cn ⇒ cn[τ]}

	Introduction
	An informal account of constructor subtyping
	A core calculus $lambda _{rightarrow ,[],{sf data}}$
	Types and subtyping
	Expressions and typing

	Meta-theory of the core language
	Extensionality
	Motivations
	Expansive extensionality rules
	Preservation of confluence and strong normalization
	Theory of canonical inhabitants

	Adding fixpoints
	Conclusion and directions for further work

