Skip to main content

A Logical Characterisation of Linear Time on Nondeterministic Turing Machines

  • Conference paper
  • First Online:
STACS 99 (STACS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1563))

Included in the following conference series:

Abstract

The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f 1··∃f k R 1··∃R m xϕ that is true exactly for all strings in L. In this formula the f i are unary function symbols, the R i are unary relation symbols and ϕ is a quantifier-free formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in ϕ no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these results we derive an Ehrenfeucht game characterisation of NTIME(n).

full paper: ftp://ftp.informatik.uni-mainz.de/pub/publications/misc/Schwentick/stacs99_NTimeN_full.ps

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected finite graphs. Journal of Symbolic Logic, 55(1):113–150, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata. Handbook of Formal Languages, 2:111–174, 1997.

    MathSciNet  Google Scholar 

  3. R. Book and S. Greibach. Quasi-realtime languages. Math. Syst. Theory, 4:97–111, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

    Article  MATH  Google Scholar 

  5. H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  6. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R.M. Karp, editor, Complexity of Computation, volume 7 of SIAM-Proceedings, pages 43–73. AMS, 1974.

    Google Scholar 

  7. E. Grädel. Capturing complexity classes by fragments of second order logic. Theoretical Computer Science, 101:35–57, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Grandjean. Invariance properties of RAMs and linear time. Computational Complexity, 4:62–106, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Grandjean. Linear time algorithms and NP-complete problems. SIAM Journal of Computing, 23:573–597, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Grandjean. Sorting, linear time and the satisfiability problem. Annals of Mathematics and Artificial Intelligence, 16:183–236, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979.

    Google Scholar 

  12. N. Immerman. Descriptive and Computational Complexity. Springer-Verlag, New York, 1998.

    Google Scholar 

  13. C. Lautemann, T. Schwentick, and D. Thérien. Logics for context-free languages. In Proceedings of the Annual Conference of the EACSL, volume 933 of Lecture Notes in Computer Science, pages 205–216, 1994.

    Google Scholar 

  14. J. F. Lynch. The quantifier structure of sentences that characterize nondeterministic time complexity. Computational Complexity, 2:40–66, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Maass, G. Schnitger, E. Szemerédi, and G. Turán. Two tapes versus one for off-line turing machines. Computational Complexity, 3:392–401, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Paul, N. Pippenger, E. Szemerédi, and W. Trotter. On determinism versus nondeterminism and related problems. In Proc. 24th Ann. Symp. Found. Comput. Sci., pages 429–438, 1983.

    Google Scholar 

  17. T. Schwentick. Padding and the expressive power of existential second-order logics. In 11th Annual Conference of the EACSL, CSL’ 97, pages 461–477, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lautemann, C., Schweikardt, N., Schwentick, T. (1999). A Logical Characterisation of Linear Time on Nondeterministic Turing Machines. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-49116-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65691-3

  • Online ISBN: 978-3-540-49116-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics