
Decidability and U ndecidability of Marked PCP

Vesa Halava 1 , Mika Hirvensalo2,i., and Ronald de Wolf3,·l

1 Turku Centre for Computer Science, Lemminkaisenkatu 14 A, 4th floor, FIN-20520,
Turku, Finland, vehalava©cs. utu. fi

Department of Mathematics, University of Turku, FIN-20014, Turku, Finland.
mikhirve©utu.fi

3 CWI, P.O. Box 94079, Amsterdam, The Netherlands, rdewolf©cwi. nl
4 University of Amsterdam

Abstract. We show that the marked version of the Post Correspondence
Problem, where the words on a list are required to differ in the first
letter, is decidable. On the other hand, PCP remains undecidable if we
only require the words to differ in the first two letters. Thus we locate
the decidability /undecidability-boundary between marked and 2-marked
PCP.

1 Introduction: PCP and Marked PCP

The Post Correspondence Problem (PCP) [6] is one of the most useful unde
cidable problems, because it can be simply described and many other problems
can easily be reduced to it, particularly problems in formal language theory. The
general form of the problem is as follows. An instance of PCP is a four-tuple
I= (E, .<l, g, h), consisting of a finite source alphabet E = {ai, ... , an}, a finite
target alphabet .<l and two homomorphisms g, h : E* -+ .<l* (g(ab) = g(a)g(b)
and h(ab) = h(a)h(b) whenever a, b EE*). It is enough to define g, h: E-+ .d*,
the extension is just concatenation. PCP is the following decision problem:

Given I= (E,.d,g,h), is there an x EE+ such that g(x) = h(x)?

In other words, we have two lists of words g(a1), ... ,g(an) and h(a1), ... , h(an)
and we want to decide if there is a correspondence between them: are there
ai,, ... , aik EE such that g(ai1) •• • g(%) = h(ai1) ••• h(aik)?

The general form of this problem is undecidable [6], the reason being that the
two morphisms together can simulate the computation of a Turing machine on
a specific input. Examining restricted versions of PCP allows one to determine
the exact boundary between decidability and undecidability. For instance, the
problem becomes trivially decidable (but NP-complete) if we ask for the exis
tence of a solution x of length at most some fixed k [2, p. 228]. If we restrict
to g, h which have to be injective (g is injective if x =/:- y :::? g(x) =I- g(y)), the
problem remains undecidable [4]. Also PCP(7), where we restrict to n = 7, is

* Supported by the Academy of Finland under grant 14047.

C. Meinel and S. Tison (Eds.): STACS'99, LNCS 1563, pp. 207-216, 1999.
© Springer-Verlag Berlin Heidelberg 1999

208 Vesa Halava, Mika Hirvensalo, and Ronald de Wolf

still undecidable [5}, but PCP(2) is decidable [1}. As far as we know, decidability
or undecidability is still open for 2 < n < 7.

A further restriction which we will examine in this paper is to have g and h
marked, which we formally define as follows. If z is a string, we use Prefk(z) to
denote the prefix of length k of z (Prefk(z) = z if [z[~ k). A homomorphism g
is k-marked if g(a) and g(b) are nonempty and have Prefk(g(a)) # Prefk(g(b))
whenever a i= b E E. An instance I = (E, .6., g, h) of PCP is k-marked if both g
and h are k-marked, and k-marked PCP is the PCP decision problem restricted
to k-marked instances. We will abbreviate 1-marked to marked. If I is marked
then g(a) and g(b) start with a different letter whenever a-=/:- b E E, which implies
that [E[~ f.6.f. Without loss of generality we may assume Es:;:; ..1. Markedness
clearly implies injectivity: suppose g is marked and x -=/:- y E E+, let x = zax' and
y = zby', a and b being the first letter where x and y differ. Because of markedness
we have g(a) -=/:- g(b), hence g(x) = g(z)g(a)g(x') -=/:- g(z)g(b)g(y') = g(y), so g
is injective. The converse does not hold. Consider for instance E = L1 = {1, 2},
g(l) = 11, g(2) = 12, then g is injective but not marked.

The proof of decidability of PCP(2) in [1) is based on a reduction from
arbitrary instances of PCP(2) to marked instances of generalized PCP(2). [1)
then prove by means of extensive case analysis that marked generalized PCP(2) is
decidable. In particular marked PCP(2) is decidable. Here we prove that marked
PCP is decidable for any alphabet size. We will in fact show that marked PCP
is in EXPTIME (the class of languages that can be recognized in time upper
bounded by 2P(N) for some polynomial p of the input size N).

As stated above, PCP can be used for establishing the boundaries between
decidability and undecidability. The main result of this paper is decidability of
marked PCP. How much can we weaken the markedness condition before we
lose decidability? We will show in Section 3 that 2-marked PCP is undecidable,
thus locating the decidability/undecidability-boundary between 1-markedness
and 2-markedness.

In another direction, we can weaken the markedness condition by only re
quiring g and h to be prefix morphisms (g is prefix if no g(ai) is a prefix or
another g(aJ)) or even biprefix (g is biprefix if no g(ai) is a prefix or suffix of
another g(aJ)). It turns out that biprefix PCP is undecidable [8).1

2 Marked PCP Is Decidable

2.1 A Simpler Decision Problem

We would like to give a decision method for marked PCP. First we give an
algorithm for the following simpler problem, which also occurs in [1, Section 6]:

Given marked I= (E, .6., g, h) and a E .6., are there x, y E E+ such that
g(x) = h(y) and g(x) starts with a?

1 Clearly, a marked morphism is prefix. Both marked and biprefix PCP are special
cases of injective PCP, but 2-marked PCP is not. See also at the end of Section 3.

Decidability and Undecidability of Marked PCP 209

We do not look for g(x) = h(x) here but only for g(x) = h(y), and we additionally
require that g(x) starts with some specific a E .1. For example, if I has

g(a1) = a1
h(ai) = a1a3

g(a2) = a2
h(a2) = a4a2

g(a3) = a3a4
h(a3) = a3a3

g(a4) = a4
h(a4) = a2a2

then for a= a1, a solution would be x = a1a3a2 and y = a1a2.

The next algorithm decides the problem.

1. Set G = H = 0, i = j = 1.

2. If there are x1, Y1 E E such that g(x1) and h(y1) start with a, then set
x = X1, y = Yl

else goto 4.
3. (a) If g(x) = h(y), then print "solution x = x1 ... xi and y = y1 . .. y/ and

terminate.
(b) If g(x) is not a prefix of h(y) nor vice versa, then goto 4.
(c) If g(x)s = h(y), then do the following.

If s E G then go to 4; else set i = i + 1 and G = G U { s}.
If there is an Xi such that g(xi) and s start with the same letter, then
set x = xxi and goto 3; else goto 4.

(d) If g(x) = h(y)s, then analogous to previous step.
4. Print "no solution" and terminate.

Informally, we are building x = X1 ... Xi and y = Y1 ... yj, trying to achieve
g(x) = h(y). We add on a new xi+1 as long as g(x) is a proper prefix of h(y)
(i.e., g(x)s = h(y) for some suffix s), and add on a new Yj+l if h(y) is a proper
prefix of g(x). Note that at each point such Xi+l or YJ+l are unique (if they
exist) because of markedness; if they do not exist we know there is no solution.
We keep track of the suffixes we have seen so far in the sets G and H. Because
the number of possible suffixes is finite, either the process terminates with a
solution, or at some point a suffix is encountered for the second time, in which
case we know the process will cycle forever and there is no solution.

The solutions produced by this algorithm are of minimal length. Note care
fully that the whole procedure is deterministic, because g and h are marked.
Furthermore, if N is the length of the instance I given as input (i.e., the num
ber of bits needed to describe the instance), then this procedure runs in time
polynomial in N. Namely, each g(ai) and h(ai) can have length at most N, and
hence can have at most N - 1 proper suffixes. Since there are only 2n = O(N)
different g(ai) and h(ai), there are only O(N2) different suffixes, hence the loop
of the algorithm can be repeated at most O(N2) times. This loop itself takes
O(N) steps, because (1) to check if g(x) = h(y) or g(x)s = h(y) or g(x) = h(y)s,
we only need to check the way g(x) and h(y) have been changed by the addition
of the previous x; or yj, and (2) searching for a new Xi (in step c) or Yj (in step
d) can be done in O(n) = O(N) steps. Therefore the whole procedure runs in
O(N3) steps.

210 Vesa Halava, Mika Hirvensalo, and Ronald de Wolf

2.2 Reducing to Simpler Instances

Consider an instance I= (E,!J.,g,h) of marked PCP: we have two marked
homomorphisms g,h: E+-+ !J.+, where E = {a1, ... ,an} ~ Ll, and we want
to decide if there is an x E E+ such that g(x) = h(x). Below we describe an
approach to decide I by reducing it to an equivalent but simpler instance I' of
marked PCP ("equivalent" meaning that I has a solution iff I' has one).

Suppose !J. = {a 1, ... , a1}, l ~ n. We can run the procedure of the pre
vious section for every ai E !J., yielding pairs of (minimal-length) solutions
(u1, v1), ... , (u1,v1) where ui,Vi EE+ and g(ui) = h(vi) starts with ai, or non
existence of solutions for certain i. At most n of the ai can have a solution.
Without loss of generality assume 1, ... , m ::; n are the i that have a solu
tion. We can turn this into a new instance I' = (E', !J., g', h') of PCP, where
E' = {a1, ... , am}, g'(ai) == Ui and h'(ai) =Vi· Note that g' and h' are marked,
so I' is an instance of marked PCP. Also, since the procedure of the previous
section runs in O(N3) steps and has to be run n times here, I' can be built from
I in O(N4) steps. The reduction from I to I' preserves equivalence:

Lemma 1. If I and I' are as above, then I and I' are equivalent.

Proof. Note that every solution x to I must be built up from Ui and w there
must be i 1, •.. , ik such that x = ui1 ••• uik = vi1 ••• Vik. This is easy to see
from the example in Figure 1. Here u1 == asa3a1 and V1 = asa3 is a solution
to the simpler problem for ai, similarly (a2a4, aia2) is a solution for a6 and
(a6a3,a4asa3) is a solution for a2. Here x = asa3a1a2a4a6a3 is a solution to I,
x' = aia6a2 is a solution to I', related by x = g'(x').

g(x) =I (a1)

h(x) =I (a1)

g(as) I g(a3) I g(a1) 11 <aal g(a2) I g(a4) 11 (a.2) g(ae)

h(as) I h(a3) 11 «•al h(a1) I h(a2) ll<a.2) h(a4) I h(as) I

Fig. 1. How a solution to I translates to I' and vice versa

I g(a3) I
h(a3) I

In general, by construction, if x' is a solution to I' then x = g'(x') = h'(x')
's a solution to I. And conversely, for every solution x to I there is a solution x'
.o I' such that x = g'(x') = h'(x'). Thus I and I' are equivalent. D

If we could prove that I' is somehow simpler than I, then we could repeat the
procedure, reduce to simpler and simpler equivalent instances I", 1111 , • •• , and
eventually decide I. There are at least two ways in which J' can be simpler than
I: IE'I < !El (m < n) or a(I') < a(I), where a measures the "suffix complexity"
of an instance I= (E, !J., g, h) [l]:

a(I) =I UaEE {x Ix is a proper suffix of g(a)}I

+I UaEL' {x Ix is a proper suffix of h(a)}I

Decidability and Undecidability of Marked PCP 211

If n = m, we would like I' to be simpler than I in the sense that a(J') < a(J).
The following lemma shows that J' at least cannot be more complex than 1:

Lemma 2. If I and I' are as above, then a(!') :::; a(I).

Proof Define the following four sets:

G = UaeE{x Ix is a proper suffix of g(a)}
G' = UaeE'{x Ix is a proper suffix of g'(a)}
H = UaeE{X I x is a proper suffix of h(a)}
H' = UaeL''{x Ix is a proper suffix of h'(a)}

We will define an injective function p : G' ~ H. Let u E G', sou is a proper
suffix of some specific g' (ai) = Ui = x1 ... Xc generated by the procedure of the
previous section. Let Xr be the first letter of u, and s be the shortest suffix of
some h(yt) due to which Xr was added to Ui in the procedure of the previous
section, so sis a prefix of g(xr) (see Figure 2) or vice versa. Define pas p(u) = s.

g(u;) = ~· j g(Xr-1) II g(xr) I g(xr+1) J ~

h(v;) = j h(y1) J j h(y{jl h(Yt+1) J j h(yd)

s

Fig. 2. The suffix s corresponding to u

We will show p is injective. If u, u' E G' and p(u) = p(u'), then u and u' are
associated with the same suffix s = p(u), hence u and u' must start with the
same Xr and (by determinism of the procedure of the previous section) continue
in the same way, giving u = u'. Thus p is injective, which implies IG'I ::S IHI.

Similarly we can define an injective function from H' to G, which proves
IH'I ::S IGI. It now follows that a(I') = IG'I + IH'j ::S JGJ + JHI = a(I). D

2.3 The Algorithm

We will here give a method to decide if a given instance I = (E, .6.., g, h) of
marked PCP has a solution. The idea is to make a sequence of equivalence
preserving reductions lo = I, 11, h, ... , such that once in a while a reduction
from Ii to Ii+l simplifies the instance (makes the source alphabet or the suffix
complexity smaller). We will show that either this sequence of reductions reaches
an Ij which has source alphabet of size 1 or er equal to 0 (so 11 is decidable),
or the sequence will repeat itself after a while and start cycling. Such cycles
are detectable, and we will show that every I leading to such a cycle is easily
decidable.

So suppose the sequence of reductions does not reach an 11 with alphabet of
size 1 or a(I1) = 0. Then it must get "stuck" at a certain source alphabet size

212 Vesa Halava, Mika Hirvensalo, and Ronald de Wolf

and cr. That is, there exist a k, m and z such that all Ii in the infinite sequence
Ik,h+1,h+2, ... have source alphabet of size m and have cr(/i) = z. Now this
sequence must repeat itself after a while, for otherwise there would be infinitely
many distinct instances with the same alphabet and cr-value, contradicting the
next lemma.

Lemma 3. Let E = { a1, ... , am} s;;: Ll be finite sets and z be a positive natural

number. There exist only finitely many distinct instances I= (E, Ll, g, h) of PCP
that satisfy cr(J) ::; z.

Proof. An instance l = (E, Ll, g, h) is completely specified by giving the 2m
words g(a1), ... , g(am), h(a1), ... , h(am) E Ll+. Note that if one of those words
has length > z + 1, then this word has more than z proper suffixes and O"(l) > z.
Accordingly, each of the 2m words can have length at most z + 1. There are
:z::::,!f ILlli ::; ILllz+2 such words. Thus there are at most ILll(z+2l2m choices for
2m such words, and hence finitely many different l that satisfy cr(l) ::; z. D

This lemma shows that if the procedure does not converge to very simple
instances then it will cycle, and we can detect this by noting that some Ik and
Ir (k < r) are equal. It remains to show how we can decide such "cycling"
instances of marked PCP. So suppose we have a cycle, assume without loss of
generality that it already starts at 10 :

lo_, 11 _, · · · _, Ir-1 _, lr =lo,

where Ii = (.E, Ll, gi, hi)· By the proof of Lemma 1, for every solution Xi to
some Ii, there is a solution xi+l to 1;+1 such that x; = g;+1(xH1) = hi+1(xi+i).
Suppose xo is a solution to lo of minimal length. There must exist some solution
Xr to Ir such that

Xo = g1g2 · · · 9r(Xr)
Xo = hih2 ... hr(Xr)

Since the g; and h; cannot be length-decreasing, we have lxo I ;::- lxr I· But x 0 was
chosen to be a minimal-length solution to 10 and Xr is also a solution to Ir = lo,
hence lxol = lxrl· This implies that go(= gr) and ho(= hr) map the letters
occurring in Xr to letters. But then the first letter of Xr is already a solution,
hence lxol = lxrl = 1. Thus lo has a solution iff lo has a 1-letter solution (i.e.,
there is an a E Eo such that go(a) = ho(a)), and this is trivially decidable.

Below we summarize this analysis in an algorithm and a theorem:

Decision procedure for marked PCP

1. Set I= 0, i = 0, lo = l.
2. Set i = i + 1.
3. Reduce /i-1 to l; in the way stated above.
4. If Ii has source alphabet of size 1 or cr = 0, then decide l;, print the outcome

and terminate.

Decidability and Undecidability of Marked PCP 213

5. If Ii is simpler than li-1 (smaller source alphabet or a) then set I= 0 and
goto 2.

6. If Ii E I then there is a cycle and we can decide Ji by checking if it has a
1-letter solution, print the outcome and terminate;
else set I= I U {Ji} and goto 2.

Theorem 1. Marked PCP is decidable.

2.4 Complexity Analysis

Let us analyze the complexity of this algorithm. Let N be the length of the input
instance I. Each reduction from Ii to Ji+l can be done in O(N4) steps. How
many different reductions do we need to make? For a fixed alphabet size !El :::;
l.11 = m and suffix complexity z, we can make at most m<z+2l2m reductions
before detecting a cycle (proof of Lemma 3). Since m = O(N) and z = O(N2),

this gives an upper bound of 20(logN·N3 l on the number of reductions for fixed
alphabet size and suffix complexity. Alphabet size and suffix complexity cannot
increase during the process. There are at most n = O(N) different alphabet sizes
and at most u(I) = O(N2) different suffix complexities possible, so we have to
make no more than O(N3) • 2°<togN·N3 l reductions. Since the set I can contain
at most 2°<1og N·N3

) instances, the test Ii E I in step 6 can be performed in
20(log N ·N3) steps. Thus the whole algorithm works in 20(log N·N3) steps, which
means that marked PCP is in EXPTIME.

3 2-Marked PCP Is Undecidable

Here we will show that if we weaken the condition of markedness, by only re
quiring the morphisms to be 2-marked, then PCP becomes undecidable again.

Consider the following semi-group S7 with set of 5 generators I'= {a, b, c, d, e}
and 7 relations:

S1 = (a,b,c,d,e I R)
R = {ac =ea, ad= da, be= cb, bd = db, eca = ce, edb =de, cca = ccae}

Tzeitin [10] (see also [7, p. 445]) proved that the following problem for this
semi-group is undecidable:

Given u,v Er+, is u = v E S1?

Note that the set of 7 left-hand-sides of R is 2-marked, and similarly for the
set of 7 right-hand-sides of R. We will reduce this problem to 2-marked PCP.
We use a slight modification of the standard reduction from word problems to
PCP, involving an alphabet with some underlined letters in order to ensure 2-
markedness.

Define the source alphabet as

E =I' U I' u {B, E, #, #,r1,r2, ... ,r1,r1,r2, ... ,r7},

214 Vesa Halava, Mika Hirvensalo, and Ronald de Wolf

where r_ = fa, Q., ~'d., d, and r 1, ..• , r1 are the 7 relations in R and r1, ... , r1

are their underlined versions (considered as single letters), so r1 = [ac = ea],
r 1 = [ac = ea] etc. Define the target alphabet as

Li= rur_u {B,E,#,#}.

B and E will mark the beginning and end of expressions, respectively. Given
u, v E r+, g and h are defined by Table 1:

I II B I E I # I # I a I I e I !! I I f I [s = t] I [£ = t] I

I ~ II B;# I #:EI : I : I : I I : I : I I : I ; I : I
Table 1. Definition of g and h

Note that the constructed instance I= (E, L:i, g, h) is an instance of 2-marked
PCP. The following lemma shows that the reduction preserves equivalence with
Tzeitin's problem:

Lemma 4. Let u, v, I be as above. Then u = v E 87 iff I has a solution.

Proof.
==?: Suppose u = v E 87 . Then there is a sequence u = u1 ___, u2 --+ · • · ___,

Uk = v, where ui = u'su" and ui+l = u1tu11 , and s = t ER or t = s E R. We
construct a solution to I by induction on k.

If k = 1, then u = v Er+. Now x = Bu#gE is a solution to I.
Now let I' = (E, Li, g', h') be the instance of 2-marked PCP corresponding

to u = Uk-1 E S7. By the induction hypothesis we can assume that I' has
a minimal-length solution x'. It is easy to see that every solution must begin
with B and end with E, so x' = ByE, and therefore g'(By) = w#uk-1 and
h'(By) = w for some w. Note that since I and I' only differ in the assignment
h(E) and h'(E), and E cannot occur in y (because x' is minimal), we also have
g(By) = w#uk-l and h(By) = w. We distinguish two cases. Firstly, uk-l =

u' su" and v = Uk = u'tu", where r = [s = t] is one of the 7 relations. Then
it is easily verified that x = By#u'ru"#u'tu" E is a solution to I. Secondly, if
Uk-1 = u'tu" and v =Uk = u' su", then x = By#u'tu"#u'ru" E is a solution.
This completes the induction step. -

{:=: Suppose I has a solution x. We can assume x is of minimal length.
This x must be of the form Bx1x2 ... xmE, where Xi EE, so g(Bx1 ... xmE) =
Bu#g(x1 ... Xm)E = h(Bx1 ... XmE) = Bh(x1 ... Xm)#vE. Ignoring the un
derlining, g(x) = h(x) must be of the form Bui #u2# ~. #uk-I #ukE, where
ui E I'*, u1 = u and Uk = v. We will show that Ui = ui+ 1 E S7 for every
1 ~ i ~ k - 1, from which u = v E 87 follows.

Because# occurs in h(x1 ... Xm), there must be some least i such that Xi =
#, and hence u = h(x1 ... Xi-1). Since there is no underlining in u, it follows that

Decidability and Undecidability of Marked PCP 215

x1, ... , Xi-1 must have been chosen from a, ... , e, r1, ... , r7. Let x1 ... x;_ 1 =
w1ri 1 w2ri2 ••• w1, with w.i EI'* and ri = [si = t;] E {r1 1 ••• ,r7}. Then u =
h(w1ri 1 w2ri2 ••• wz) = w1si 1 w2si 2 ••• wi. See Figure 3 for illustration.

g(B)=Bu# g(E) ,....,,,.__

g(Bx1 ... x; ... XmE) =I B W1Bi1 W2Bi 2 ••. Wt #II g(x1) j g(x2) I· []:[]
h(Bx1 ... Xi···XmE)= [}[JI w1s;1 w2s; 2 ... w1 l[Illh(x;+i)j , if._vE I

'-.,,.-'~=::::::::::::;:::::::::::::~.._.,,....,, '---,.---'
h(B) h(x1 ... x,_,)=u=u1 h(x;) h(B)

Fig. 3. Picture leading to u = v

Note that g(x1 ... Xi_i) = g(w1ri, w2r; 2 ••• w1) = w1ti, w2t; 2 ••• wz. But now,
since we must have g(x1 ... XmE) = h(xi+1 ... XmE), there must be a least j > i
such that Xj E {#,#}and h(xi+l ·· .XJ-1) = g(x1 ... Xi-1) = w1ti 1 w2ti2 •• • w1.
The latter string (without underlining) is u2. Note that u1 = u2 E S1, because
u1(= u) and u2 only differ by u2 having ti where u1 has si.

Continuing this reasoning, we can show that for every two words ui, ui+l E I'*
occurring in g(x) = h(x) separated by #, ignoring underlining, we must have
u; = U;+i E S7 (some of the words u; and U;+l may actually already be equal in
E+). Hence u = v E S7 , since g(x) starts with u1 = u and ends with Uk= v. 0

Together with Tzeitin's result, the above lemma implies:

Theorem 2. 2-Marked PCP is undecidable.

To end this section, we note that 2-marked PCP is not a special case of
injective PCP. For example, the morphism defined by g(l) = 23, g(2) = 2, g(3) =
3 is 2-marked but not injective. We can combine k-markedness and injectivity by
calling a morphism g strongly k-marked if g is both k-marked and prefix (i.e., no
g(ai) is a prefix of another g(aj)). This clearly implies injectivity. It follows from
a construction of Ruohonen [8] that strongly 5-marked PCP is undecidable: the
biprefix instances of PCP constructed there to show undecidability of biprefix
PCP are also 5-marked. Decidability of strongly k-marked PCP for 1 < k < 5 is
still open.

4 Conclusion and Future Work

We can investigate the boundary between decidability and undecidability by ex
amining which restrictions on the Post Correspondence Problem render the prob
lem decidable. We have shown here that restricting PCP to marked morphisms
gives us decidability. On the other hand, 2-marked PCP is still undecidable.

216 Vesa Halava, Mika Hirvensalo, and Ronald de Wolf

The following questions are left open by this research:

- Is exponential time the best we can do when deciding marked PCP, or is
there a polynomial-time algorithm for the problem?

- What about decidability of strongly k-marked PCP for 1 < k < 5?
- What about decidability of marked generalized PCP [1,3]?
- The decidability status of PCP with elementary morphisms [9, pp. 72-

77] is still open. A morphism g is elementary if it cannot be written as
a composition g2g1 via a smaller alphabet. Marked PCP is a subcase of
elementary POP which we have shown here to be decidable. Can our results
help to settle the decidability status of elementary PCP?

Acknowledgment

We would like to thank Tero Harju, Juhani Karhumaki, and John Tromp for
reading and commenting this paper, and Harry Buhrman for some discussions.
The second author would like to thank the CWI for its hospitality during the
summer of 1998, when part of this work was done.

References

1. A. Ehrenfeucht, J. Karhuma.ki, and G. Rozenberg. The (generalized) Post
correspondence problem with lists consisting of two words is decidable. The
oretical Computer Science, 21(2):119-144, 1982.

2. M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

3. T. Harju, J. Karhumaki, and D. Krob. Remarks on generalized Post corre
spondence problem. In Proceedings of 13th STAGS, volume 1046 of Lecture
Notes in Computer Science, pages 39-48. Springer-Verlag, 1996.

4. Y. Lecerf. Recursive insolubilite de !'equation generale de diagonalisation de
deux monomorphisms de mono1des libres cpx = tJ!x. Comptes Rendus Acad.
Sci. Paris, 257:2940-2943, 1963.

5. Y. Matiyasevich and G. Senizergues. Decision problems for semi-Thue sys
tems with a few rules. In Proceedings of the 11th IEEE Symposium on Logic
in Computer Science, pages 523-531, 1996.

6. E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52:264-268, 1946.

7. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, vol
ume 1. Springer-Verlag, Berlin, 1997.

8. K. Ruohonen. Reversible machines and Post's correspondence problem for
biprefix morphisms. Journal of Information Processing and Cybernetics
{EIK), 21(12):579-595, 1985.

9. A. Salomaa. Jewels of Formal Language Theory. Pitman, 1981.
10. G. C. Tzeitin. Associative calculus with an unsolvable equivalence problem.

T'r. Mat. Inst. Akad. Nauk, 52:172-189, 1958. In Russian.

