Skip to main content

Approximating Bandwidth by Mixing Layouts of Interval Graphs

  • Conference paper
  • First Online:
STACS 99 (STACS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1563))

Included in the following conference series:

Abstract

We examine the bandwidth problem in circular-arc graphs, chordal graphs with a bounded number of leaves in the clique tree, and k-polygon graphs (fixed k). We show that all of these graph classes admit efficient approximation algorithms which are based on exact or approximate bandwidth layouts of related interval graphs. Specifically, we obtain a bandwidth approximation algorithm for circular-arc graphs that executes in O(n log2 n) time and has performance ratio 2, which is the best possible performance ratio of any polynomial time bandwidth approximation algorithm for circular-arc graphs. For chordal graphs with not more than k leaves in the clique tree, we obtain a performance ratio of 2k in O(k(n + m)) time, and our algorithm for k-polygon graphs has performance ratio 2k 2 and runs in time O(n 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, K., A. Kaneko, S. Gervacio, The bandwidth of a tree with k leaves is at most \( \left\lceil {\frac{k} {2}} \right\rceil \) , Discrete Mathematics 150 (1996), 403–406.

    Article  MATH  MathSciNet  Google Scholar 

  2. Assmann, S. F., G.W. Peck, M.M. Syslo and J. Zak, The bandwidth of caterpillars with hairs of length 1 and 2, SIAM J. Algebraic Discrete Methods 2 (1981), 387–393.

    Article  MATH  MathSciNet  Google Scholar 

  3. Blair, J. R. S., B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, J. W. H. Liu (Eds.), The IMA Volumes in Mathematics and its Applications, Volume 56.

    Google Scholar 

  4. Booth, K.S. and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976), 335–379.

    MATH  MathSciNet  Google Scholar 

  5. Chinn, P. Z., J. Chvátalová, A. K. Dewdney and N.E. Gibbs, The bandwidth problem for graphs and matrices—a survey, J. Graph Theory 6 (1982), 223–254.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chvátalová, J., A.K. Dewdney, N.E. Gibbs and R.R. Korfhage, The bandwidth problem for graphs: a collection of recent results, Research report #24, Department of Computer Science, UWO, London,Ontario (1975).

    Google Scholar 

  7. Chvátal, V., A remark on a problem of Harary, Czech Math. J. 20 (1970), 109–111.

    Google Scholar 

  8. Corneil, D. G., S. Olariu and L. Stewart, The ultimate interval graph algorithm?, Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, 1998), 175–180.

    Google Scholar 

  9. Elmallah, E.S. and L.K. Stewart, Polygon graph recognition, J. Algorithms 26 (1998), 101–140.

    Article  MATH  MathSciNet  Google Scholar 

  10. Eschen, E.M. and J.P. Spinrad, An O(n2) algorithm for circular-arc graph recognition, Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993), 128–137, ACM, New York, 1993.

    Google Scholar 

  11. Feige, U., Approximating the bandwidth via volume respecting embeddings, Technical Report CS98-03, Weizmann Insitute of Science, Rehovot, Israel, 1998.

    Google Scholar 

  12. Garey, M. R., R.L. Graham, D.S. Johnson and D.E. Knuth, Complexity results for bandwidth minimization, SIAM J. Appl. Math. 34 (1978), 477–495.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gavril, F., The intersection graphs of subtrees in a tree are exactly the chordal graphs, J. Comb. Theory, Ser. B 16 (1974), 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  14. Golumbic, M.C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    MATH  Google Scholar 

  15. Jiang, S., The bandwidth problem and bandwidth of cographs, unpublished manuscript, 1992.

    Google Scholar 

  16. Kleitman, D.J. and R.V. Vohra, Computing the bandwidth of interval graphs, SIAM J. Discrete Math. 3 (1990), pp. 373–375.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kloks, T., D. Kratsch and H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, Algorithms—ESA’ 95 (Corfu), 434-447, Lect. Notes Comput. Sci. 979, Springer, Berlin, 1995.

    Google Scholar 

  18. Kloks, T., D. Kratsch and C. K. Wong, Minimum fill-in on circle and circular-arc graphs, J. Algorithms 28 (1998), 272–289.

    Article  MATH  MathSciNet  Google Scholar 

  19. Mahesh, R., C. Pandu Rangan and A. Srinivasan, On finding the minimum bandwidth of interval graphs, Inf. Comput. 95 (1991), 218–224.

    Article  MATH  Google Scholar 

  20. Monien, B., The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete, SIAM J. Algebraic Discrete Methods 7 (1986), 505–512.

    Article  MATH  MathSciNet  Google Scholar 

  21. Papadimitriou, C.H., The NP-completeness of the bandwidth minimization problem, Computing 16 (1976), 263–270.

    Article  MATH  MathSciNet  Google Scholar 

  22. Sprague, A.P., An O(n log n) algorithm for bandwidth of interval graphs, SIAM J. Discrete Math. 7 (1994), 213–220.

    Article  MATH  MathSciNet  Google Scholar 

  23. Unger, W., The complexity of the approximation of the bandwidth problem, Proceedings of the Thirty-ninth Annual IEEE Symposium on Foundations of Computer Science (Palo Alto, CA, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratsch, D., Stewart, L. (1999). Approximating Bandwidth by Mixing Layouts of Interval Graphs. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-49116-3_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65691-3

  • Online ISBN: 978-3-540-49116-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics