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Abstract. This paper introduces a dimension-independent multiresolu-
tion model of a shape, called the Multi-Complex (MC), which is based on
decomposition into cells. An MC describes a shape as an initial cell com-
plex approximating it, plus a collection of generic modification patterns
to such complex arranged according to a partial order. The partial order
is essential to extract variable-resolution shape descriptions in real time.
We show how existing multiresolution models reduce to special cases of
MCs characterized by specific modification patterns. The MC acts as a
unifying framework that is also useful for comparing and evaluating the
expressive power of different approaches.

1 Introduction

Multiresolution geometric models support representation and processing of spa-
tial entities at different levels of detail. Such representations have gained recently
much of attention in the literature because of their potential impact on appli-
cations, such as terrain modeling in geographic information systems, scientific
data visualization, virtual reality, etc. The basis for a multiresolution geometric
model is the decomposition of the shape it describes into simple elements, called
cells.

Cell complexes are used as discrete models of a variety of shapes in two, three
or higher dimensions. For example, two-dimensional complexes made of polyg-
onal cells are used for describing the boundary of solid objects. In particular,
two-dimensional simplicial complexes (triangle meshes) are used for representing
surfaces in computer graphics, and for representing terrains in geographic appli-
cations. In solid modeling, three-dimensional complexes are used for describing
the interior of an object as well as its boundary. d-Dimensional simplicial com-
plexes are used as approximate representations of scalar or vector fields.

The accuracy of a cell complex in representing a shape depends on the size,
number, and density of its cells: a parameter that we call the resolution of the
complex. A high resolution, and thus a high number of cells, is needed to pro-
duce accurate descriptions. On the other hand, maximum accuracy is not always
required in each part of a shape, but a sufficiently high accuracy for the specific
application task can be achieved by locally adapting the resolution of a complex
in different parts of the shape, thus reducing processing costs and memory space.
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The process of building an adaptive cell complex from scratch is usually time-
consuming. Sophisticated techniques are required, for instance, to decide where
to place the vertices, how to optimize the shape of the cells, how to estimate and
bound the approximation error. With a multiresolution approach, most of the
time-consuming operations are performed off-line, in order to build a structure
which can be queried efficiently on-line, according to the parameters specified
by the application task.

Several multiresolution models for cell complexes have been proposed in the
literature, but the field still lacks a unifying framework since:

– Most existing models are designed for specific applications, or classes of
applications (i.e., virtual reality, rendering, terrain modeling) and designed
for certain operations.

– Existing models usually rely on a specific construction techniques: such mod-
els can only obtained from an initial cell complex by applying a specific type
of transformation operator.

– Most proposed models are a direct abstraction of the data structure used to
implement them.

Here, we formally define a general multiresolution model of a shape based
on cell complexes, called the Multi-Complex (MC), which extends the Multi-
Triangulation, proposed in [Pup96,DFPM97]. The MC describes a partially or-
dered set of modification patterns specifying how an initial coarse cell complex
can be iteratively refined in order to obtain more and more accurate represen-
tations. The partial order captures dependency relations between modifications
that affect the same portion of the complex. This framework permits to select
subsets of modification patterns which are consistent with the partial order:
when such modification patterns are applied to the initial cell complex, a variety
of complexes at different, variable resolutions can be obtained.

The Multi-Complex is independent of the specific type of modification pat-
tern. Existing multiresolution models reduce to special cases of MCs where modi-
fication patterns have certain characteristics. In the MC framework, we deal with
generic k-dimensional cell complexes in IEd which decompose a regular shape,
and we allow more general modifications, including refining boundaries, changing
the topological type, merging and splitting connected components.

The remainder of the paper is organized as follows: In Section 2, we introduce
the concept of modification pattern, an entity which describes a modification of
a cell complex, and plays a fundamental role in the definition of the Multi-
Complex. In Section 3, we define the Multi-Complex (MC) as a structure which
organizes a partially ordered set of modification patterns in the form of a directed
acyclic graph and we discuss its more relevant properties. In Section 4, we show
how existing multiresolution models can be seen as special instances of a Multi-
Complex and we discuss their properties in such a framework. Finally, Section
5 presents some concluding remarks.
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2 Preliminaries

2.1 Background Notions

A k-dimensional cell in IEd is a subset of IEd homeomorphic to a closed k-
dimensional ball. The union as pointset of a set of cells Γ in IEd is called the
carrier of Γ . A cell complex is a finite set of cells Γ in IEd of heterogeneous
dimension such that their interiors are disjoint, their union cover the carrier,
and the boundary of each cell is made of cells of lower dimensions belonging to
the complex. A cell γ in a complex Γ is a top cell if there is no other cell in Γ
bounded by γ. A k-dimensional cell complex is called regular if all its top cells
are k-dimensional cells.

A special and interesting case is that of simplicial complexes (e.g., triangle
and tetrahedral meshes): a k-dimensional simplex in IEd is the locus of the points
in IEd that can be expressed as the convex combination of k+1 affinely indepen-
dent points; a k-dimensional simplicial complex is a cell complex where all top
cells are simplices, and every other cell is generated by an appropriate subset of
vertices of some top cell.

Thus, the basic elements of an approach to modeling a geometric shape
through cell complexes are:

– a regular cell complex Γ , where each top cell has an associated approxima-
tion error, and where, in general, each cell may have application-dependent
attributes associated with it;

– possibly, a function f , piecewise defined on the top cells of Γ .

For instance, (k + 1)-dimensional scalar fields are described by subdividing
the k-dimensional domain of the field into a regular k-dimensional simplicial
complex, and by associating an approximation of the field to each k-dimensional
simplex.

We are interested in modeling at multiple resolutions the cell complex Γ
underlying the model of a spatial entity, independently of the function f defined
on its top cells and on the attributes of cells.

2.2 Modifications of a Cell Complex

A modification is an operation that replaces a cell complex Γold (possibly con-
tained in a bigger complex Γ ) with another cell complex Γnew. The interesting
case is when Γold and Γnew are approximations at two different resolutions of
the same (portion of a) shape. A modification pattern specifies a modification as
the pair of cell complexes C = (Γold, Γnew). In what follows, we use the symbols
Π1(C) and Π2(C) to denote the first and second element, respectively, of the
pair of cell complexes in a modification pattern C.

Applying a modification pattern C = (Γold, Γnew) to a cell complex Γ consists
of replacing Γold with Γnew in Γ . The result of applying C to Γ , denoted with
Γ [C], is the set of cells (Γ \ Γold) ∪ Γnew. Note that set Γ [C] may not always be
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a cell complex. We are interested in the case where Γ [C] is a cell complex, and
C does not open or close holes in the boundary of Γ . This corresponds to the
notion of validity of a modification pattern for a cell complex:

Definition 1. Let Γ be a regular k-dimensional cell complex in IEd and C =
(Γold, Γnew) be a k-dimensional modification pattern in IEd. C is a valid modifi-
cation pattern for Γ if and only if

1. Γold ⊆ Γ (as sets of cells);
2. the cell complex obtained by deleting Γold from Γ does not intersect Γnew

outside the common cells of the boundaries of Γold and Γnew;
3. the boundary of Γnew must match with the boundary of the “hole” created in

Γ when removing Γold.

G [C2]

G [C1]

C2C1

unvalid

p3p2

p1

p0

q p1

p3
p2

p0

hole

unvalid

C3 C4

Fig. 1. Six modification patterns on a two-dimensional cell complex: C1 and C2 are
valid; C3 is not valid since it violates condition 2; C4 is not valid since it violates
condition 3.

Examples of valid and invalid modification patterns are shown in Figure 1.
It has been proven that the result Γ [C] of applying a valid k-dimensional mod-
ification pattern C to a regular k-cell complex Γ is either empty, or is a regular
k-dimensional cell complex [Mag98].

For the purpose of defining a multiresolution model, we are interested in k-
dimensional refinement patterns, i.e., modification patterns where Γnew contains
more k-cells than Γold, and in minimal modification patterns, i.e., modification
patterns that cannot be split into two or more valid modifications to be be
performed in a sequence. Modification patterns that induce changes in the topo-
logical type of the shape (e.g., increasing or decreasing its genus, merging or
splitting connected components) will be allowed.

2.3 Sequences of Modification Patterns

A sequence of modification patterns is valid for a cell complex Γ0 if and only if
every modification pattern Ci in the sequence is valid for the complex obtained
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as the result of successively applying to Γ0 all the patterns preceding Ci in the
sequence.

We say that a modification pattern C ′ directly depends on another modifi-
cation pattern C (and, thus, C directly blocks C ′) if and only if the effect of
applying C ′ is removing some of the cells introduced by applying C. In a set of
modification patterns, two modification patterns depend on each other if they
are in the transitive closure of the relation of direct dependency; in a similar way
we can define when they block each other.

In a generic valid sequence a cell γ may be created and removed several times
and this creates cycles in the relation of dependency. Thus, we define a modifi-
cation pattern as non-redundant with respect to a set of modification patterns
if it does not recreate k-cells eliminated by some other modification pattern of
the set. It is easy to verify that, in non-redundant and valid sequences, each
cell either is in the initial complex, or there is exactly one modification pattern
specifying its “creation”; moreover, each cell either is in the final complex, or
there is exactly one modification pattern specifying its “deletion”.

Even if two modification patterns are independent, they cannnot necessarily
be applied to the same cell complex without interfering. We say that Ci and Cj

are not in conflict when all the pairs of complexes Π1(Ci) and Π1(Cj), Π1(Ci)
and Π2(Cj), Π2(Ci) and Π1(Cj), and Π2(Ci) and Π2(Cj) intersect at most
in a subset of their boundary cells, which are preserved in the modifications
represented by Ci and Cj . This means that any of such pairs share the same
subset of boundary cells, and the union of all their cells forms a complex. A set
of modification patterns is thus conflict-free if and only if there are no conflicts
between pairs modification patterns that are independent.

3 The Multi-Complex and its Properties

In a Multi-Complex, a partially ordered set of modification patterns of a cell
complex is encoded in the form of a directed acyclic graph (DAG), where nodes
represent modification patterns, and arcs represent relations of direct depen-
dency between them. An MC is defined by abstracting over the relation of direct
dependency from a valid, non-redundant, and conflict-free sequence of minimal
refinement patterns. The non-redundancy of the sequence ensures that the direct
dependency relation is a partial order. Since all nodes describe refinement pat-
terns, the resolution monotonically increases while traversing the DAG according
to the direction of its arcs. The validity and absence of conflicts ensure that, for
every subset of modification patterns “closed” with respect to the dependency
relation, the result of applying its elements, sorted in any total order consistent
with the partial one, is a cell complex.

Definition 2. Let Γ0 be a k-dimensional cell complex, C1, C2, . . . , Cn be a se-
quence of k-dimensional modification patterns such that:

– for every 1 ≤ i ≤ n,Ci is a refinement pattern, it isminimal, and Π1(Ci) 6= ∅;
– C1, C2, . . . , Cn is a valid sequence for Γ0;
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– sequence C0, C1, C2, . . . , Cn is non-redundant, where C0 = (∅, Γ0);
– set {C1, . . . , Cn} is conflict-free.

Then, a Multi-Complex (MC) is a directed graph M where:

– M has n nodes, which are in one-to-one correspondence with the modification
patterns of set {C0, . . . , Cn};

– there is an arc (Ci, Cj) if and only if Cj directly depends on Ci.

A simplicial Multi-Complex is a special case of MC where each modification
pattern consists of a pair of simplicial complexes. The MC of Figure 2(a) is a
simplicial MC.

0

1

2

3

5

4

(a)

(b)

Fig. 2. (a) A Multi-Complex: each node is a modification pattern Ci, where Π1(Ci),
and Π2(Ci) are the complex on the left side and on the right side, respectively; (b) its
front cell complex.

Given a Multi-Complex M , and a consistent sequence of its nodes (including
the root C0) C0, C1, . . . , Cn , the front cell complex of M is

F(M) ≡ Π2(C0)[C1] · · · [Cn].

The front cell complex is a regular cell complex, and it is uniquely defined because
it is independent on the specific sequence considered [Mag98]. Figure 2(b) shows
the front complex associated with the MC of Figure 2(a).

A sub-MC M′ of a Multi-Complex M identifies a subset of the modification
patterns of M which contains the root C0 and is closed with respect to the
dependency relation (i.e., it contains the parents of any of its nodes). Since the
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MC-nodes represent refinement patterns, F(M′) is a cell complex at a lower
resolution than the front cell complex of M (see Figure 3). Different sub-MCs of
M provide cell complexes at different resolutions. Cell complexes at intermediate
resolutions are front complexes of sub-MCs.

0

1

2

3

5

4

(b)

(a)

Fig. 3. Asub-MCcontaining nodes {0, 3, 4, 5} (a), and its front cell complex (b).

In what follows , we will discuss some properties of an MC which are relevant
to the efficiency of its encoding data structures, and of the query algorithms op-
erating on it, as discussed in [DFMP98,Mag98]. Such properties are determined
by the construction algorithm used to produce the initial cell complex and the
sequence of modification patterns which form the basis of a Multi-Complex.

We define the height of a Multi-Complex as the maximum number of arcs
in a path from the root to a leaf; the width of a node C as the number of top
cells in Π2(C), and the width of a Multi-Complex as the maximum width of its
nodes; the size of a Multi-Complex as the total number of top cells in it, and
the size of the front cell complex of an MC as the number of its top cells.

We are interested in Multi-Complexes which have a height logarithmic in the
number of its top cells, and a width bounded from above by a small constant b. In
[DFMP97,Mag98], we have shown that bounded width and logarithmic height
are important for the efficiency of traversal operations on an MC required in
query processing, such as a point location or a range query.
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We say that an MC M has a linear growth if and only if there exists a positive
real number b such that for every sub-MC M′ of M, the ratio between the size
of M′ and the size of the front cell complex of M′ is less or equal to b. It can
be easily seen that if an MC has bounded width, then it has a linear growth as
well.

If an MC has a linear growth, then the size of any sub-MC is linear in the
size of its front complex. In particular, the size of the MC itself is linear in
the size of its front cell complex. This means that the multiresolution structure
introduces only a linear storage overhead with respect to a simple cell complex
at the maximum resolution.

In [Pup96,Mag98], we have shown that a linear growth is fundamental to
achieve optimal time complexity (i.e., linear in the output size) for algorithms
which extract a cell complex at a given resolution from an MC: since these
algorithms perform a DAG traversal to find the appropriate sub-MC, linear
growth guarantees that the size of the traversed sub-MC is linear in the output
size.

4 Existing Multiresolution Models as Multi-Complexes

In this section, we show how multiresolution models presented in the literature
can be seen as special cases of Multi-Complexes. Each of these models gives a
class of MCs characterized by certain properties of the modification patterns,
and, consequently, by certain properties in terms of width, height and growth.
Moreover, each existing model provides an implementation of an MC with a
specific data structure.

Often some information present in the MC is either lost or incorrectly repre-
sented in some data structures. Examples of lost information are found in models
which encode a linear sequence [Hop96,KS97] instead of the DAG; we will see
examples of incorrectly represented information, for instance, in nested models.
Such an aspect will be examined for existing models in Sections 4.1, and 4.2. For
the sake of brevity, we explain the interpretation of just two-dimensional mul-
tiresolution models as two-dimensional MCs. Higher-dimensional models can be
interpreted in a similar way.

4.1 Nested Models

Nested models are based on a nested subdivision of a square or triangular do-
main into scaled copies of it and are usually described by a tree, where each
node corresponds to a complex which covers one of the cells of its parent node.
Examples of nested models are the quadtree, the quaternary triangulation, the
restricted quadtree, the hierarchies of right triangles and the hierarchical irreg-
ular triangulations. Figure 4 (a) shows an example of a hierarchical irregular
triangulation.

In a k-dimensional nested model, a node represents the refinement of a top-
cell γ of its parent node into a complex Γ ′. The corresponding modification
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pattern is C = ({γ}, Γ ′), where Γ is the complex contained in the parent node.
In general (and in most existing nested models), C is not a valid modification
pattern for Γ , since Γ ′ may split some of the (k−1)-facets of γ: the intersections
of the cells of Γ \ {γ} with those of Γ ′ do not coincide with the common cells of
their boundary complexes, thus violating the second condition in the definition
of Multi-Complex. Figures 4 (a) and (b) illustrate this problem. A consistent
cell complex is especially important when interpolating functions are defined
over the cells, as in the case of scalar and vector fields.

G

g

G ’

(a)

(b)

(c)

Fig. 4. (a) The tree representing a nested model. (b) The complex Γ ′ refining a top-cell
γ does not define a valid modification pattern for the complex Γ containing γ; in fact
the boundary of Γ ′ does not match with that of the adjacent cell to γ in Γ . (c) Clusters
of tree nodes that become MC-nodes when interpreting the nested model as an MC.

If Γ ′ splits a (k − 1)-facet γ′ of γ, this means that γ can be replaced consis-
tently with Γ ′ only if also the cell γ1, adjacent to γ along γ′ in Γ , is replaced
by a complex Γ ′

1 splitting facet γ′ in the same way. Thus, nodes in the tree
representing the refinement of γ and γ′ must be clustered to form one node of
the Multi-Complex. The result of such node clustering is shown in Figure 4 (c).

A Multi-Complex representing a k-dimensional nested model is obtained as
follows:

– the MC-nodes are obtained from the nodes of the tree by iteratively joining
pairs of nodes corresponding to complexes in which two adjacent k-cells
have been refined by decomposing their common (k − 1)-facet; this defines
a mapping of nodes of the tree to MC-nodes.

– the MC arcs are obtained from the tree arcs according to the following rule:
for every arc (N1, N2) of the tree, if N1 maps to an MC-node C1 and N2
maps to an MC-node C2, then arc (C1, C2) represents (N1, N2) in the MC;
this defines a mapping of the arcs of the tree to arcs of the MC.

The Multi-Complex derived from a given nested model shows what consistent
cell complexes can be obtained from it (i.e., cell complexes that avoid cracks in
the graph of a scalar or vector field represented by the nested model). Such
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consistent cell complexes are in one-to-one correspondence with the sub-MCs
of the corresponding Multi-Complex. The range of (possibly inconsistent) sets
of cells obtained from a nested model is in one-to-one correspondence with the
analogous sub-structures of the tree. Since several nodes of the tree are merged
into one MC-node, it follows that some sub-structures of the tree are not captured
by the MC: these are exactly those cuts leading to inconsistent representations.

Since no knowledge about different tree nodes that must be clustered to form
an MC-node is explicitly encoded in the tree, algorithms for extracting generic
(i.e., variable resolution) complexes from nested models are more involved.

Nested models based on the recursive subdivision of a domain according to a
fixed pattern that splits every (k − 1)-facet of the current k-cell (e.g., quadtrees
and their extensions [Sam90], quaternary triangulations [GG79]), correspond to
Multi-Complexes where the DAG reduces to a list: all the nodes in a level of the
tree must be merged together into one MC-node. Thus, the range of consistent
complexes that can be obtained from such models reduces to one for every tree
level.

Nested models that leave some (k − 1)-facet of a k-cell γ unrefined when
expanding γ into a complex (e.g., hierarchical triangulations [SP92,DFP95], hi-
erarchies of right triangles [DWS+97,LKR+96]) may have a better expressive
power. In general, if (k − 1)-cells are split too often, then the nodes of the tree
tend to be clustered into large MC-nodes, hence exhibiting a low expressive
power. On the other hand, the persistence of (k −1)-cells across the levels of the
tree tends to produce slivery cells, which are not desirable. In two dimensions,
the best compromise seems to have been achieved with hierarchies of right tri-
angles, where, at each level, one edge of each triangle is split, and two edges are
retained to be split at the next level (see Figure 5).

4.2 Evolutionary Models

Evolutionary models track the evolution of an initial cell complex Γ0 through a
sequence of local modifications, which is assumed to be a valid sequence for Γ0.

A Multi-Complex for such models represents the local modifications of the
sequence in its nodes, and encodes their relations of direct dependency in its
arcs: there is an arc from a node Ci = (Γi, Γ

′
i ) to a node Cj = (Γj , Γ

′
j) if and

only if the intersection of Γ ′
i and Γj (as sets of cells) contains at least one top-

cell. The validity and non-redundancy of the sequence ensures that the resulting
graph is a DAG.

In most existing models, the local modifications are performed by applying
a specific operator (see Figure 6):

– In [Hop96,XESV97,Hop97,MMS97,GTLH98,KCVS98] the refinement pat-
tern is a vertex split, which expands a vertex p into an edge, two edges
incident at p into two triangles, and warps the triangles surrounding p ac-
cordingly.

– In [DF89,CDFM+94,dBD95,BFM95,KS97,CPS97,DFMP98] the refinement
pattern consists of inserting a new vertex p, and replacing a subset of trian-
gles in the neighborhood of p with a set of triangles incident at p. Note that
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(b)(a)

Fig. 5. A hierarchy of right triangles (a), with meshes shown level by level, and the
clusters of tree nodes corresponding the nodes of the Multi-Complex (b).

VERTEX SPLITVERTEX INSERTION

Fig. 6. Vertex insertion and vertex split. The shaded triangles are those involved in
the modification pattern.

a vertex split where the edge created by splitting p has p itself as one of its
endpoints can be regarded as a special case of vertex insertion.

In all models, the local modifications guarantee the non-redundancy and the
minimality of the modifications.

Evolutionary models proposed in the literature represent the local modifica-
tions and/or the cells involved within them by using different structures, from
sequential lists to DAGs. In the following we illustrate the relationship between
those structures and the corresponding Multi-Complex.

Sequential Models Sequential models [KS97,Hop96] keep the local modifica-
tions in a totally ordered list, which is consistent with the partial order repre-
sented in the Multi-Complex. Usually, such total order is either the same, or the
reverse of the order in which the local modifications have been performed during
the construction of the model. Dependencies between local modifications are not
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76
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43

1 2
(b)

Fig. 7. (a) A sequence of edge collapses, to be read reversed as a sequence of vertex
splits. Shaded triangles correspond to the two meshes forming a modification pattern in
the MC. Triangles marked with a circle are those considered in [Hop97] for determining
the vertex dependencies. (b) The corresponding binary forest of vertices.

explicitly stored, and thus they must be reconstructed on-line when extracting
a complex at variable resolution by performing considerable backtricking.

In terms of the corresponding MC, the models in [KS97] and [Hop96] do not
guarantee bounded width, logarithmic height or linear growth.
Hierarchies of Vertices Hierarchies of vertices identify a local modification
(namely, a vertex split) with the vertex v being split. Thus, dependencies between
modification patterns become dependencies between vertices. Most models (e.g.,
[Hop97,XESV97]) distinguish between two cases of dependency:

1. if a vertex v is an endpoint of the edge created by splitting w, then v depends
on w;

2. v also depends on (some of) the vertices that are incident at v when v is
split.

Dependencies of type 1 are stored as a binary tree of vertices (every vertex split
creates two new vertices, which become its children); dependencies of type 2 are
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Fig. 8. (a) The Multi-Complex corresponding to the sequence of edge splits in Figure
7; the arcs emanating from the root are shown dashed since the root does not represent
a vertex splits. (b) The DAG representing vertex dependencies according to [XESV97];
(c) The DAG representing vertex dependencies according to [Hop97]; (d) The DAG
representing vertex dependencies according to [MMS97]; redundant arcs are dashed,
missing arcs are dotted and marked with ‘=’.

v1

v2

w2w1

v
w1 w2

vertex split

edge collapse

p1
p3

p4 p5 p4 p5

p3
p2

p1

p2

Fig. 9. Edge collapse and its reverse vertex split. According to [XESV97], vertices v1

and v2 depend on the vertices of all triangles incident at v (i.e., w1, w2, p1, p2, p3, p4, p5);
according to [Hop97], v1 and v2 depend on the vertices of the shaded triangles (i.e.,
w1, w2, p1, p3, p4, p5); according to [MMS97], v1 and v2 depend just on w1 and w2.

stored separately. The various authors define dependencies of type 2 in different
ways.

Xia, El-Sana, and Varshney [XESV97] consider a vertex v as depending on
all the vertices that are adjacent to v when v is split. With respect to the Multi-
Complex, the resulting DAG contains redundant arcs, which correspond to paths
in the MC (see Figure 8 (b)).

Hoppe [Hop97] considers a vertex v as dependent only of the vertices of the
four facets incident at the two edges that are expanded into triangles when v is
split (see Figure 9). However, this does not capture all the existing dependencies,
and there are still redundant arcs (see Figure 8 (c)).

Progressive TINs [MMS97] consider a vertex p as dependent of its parent in
the binary tree, and of the other endpoints of the two edges that are expanded
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into triangles when splitting p. Again, some dependencies are missing (see Figure
8 (d)).

The model by Luebke and Erikson [LE97] is based on modifications that are
“generalized” vertex splits: a vertex may be split into two vertices not necessarily
connected by a segment (such an operation is the inverse of not only edge collapse
but also vertex-pair collapse, when the two collapsed vertices are not adjacent
in the mesh). This model keeps just the binary tree of vertices, and ignores all
other existing dependencies.

The problem of redundant arcs is intrinsic to the binary tree of vertices: a
vertex split may depend only indirectly on its parent, since other modifications
may have altered the configuration of triangles between the parent and the child.
For instance, the binary tree shown in Figure 7 contains arc (6, 1), which is not
in the corresponding MC shown in Figure 8.

Extra arcs increase the space requirements of data structures but do not
compromise the integrity of the model. On the contrary, missing arcs are a
problem because DAG traversal algorithms working on such models may extract
inconsistent cell complexes.

A cell complex extracted from a model affected by missing dependency links
[Hop97,LE97,MMS97] may contain intersecting triangles, and triangles which
were do not belong to any modification pattern in the model. The problem of
“extra” triangles is relevant in applications where it is necessary to know the
approximation error of any triangle with respect to the original shape.

Guéziec et at. [GTLH98] store vertex dependencies explicitly by means of a
DAG, but they consider dependencies as in [XESV97], thus their DAG contains
some redundant arcs.

The models of [Hop97,GTLH98,MMS97] do not guarantee bounded width,
logarithmic height or linear growth. The Multi-Complex corresponding to the
model of [XESV97] has linear growth, and logarithmic height, but it does not
necessarily have bounded width.

5 Concluding Remarks

In this paper, we have defined the Multi-Complex (MC), a general model for
multiresolution cell complexes. An MC consists of a DAG that represents a
partially ordered set of modifications refining an initial cell complex; the partial
order is induced by the relation of direct dependency, where a modification
that deletes some top-cells from the current complex directly depends on those
modifications that have previously introduced such top-cells.

Cell complexes at variable resolution can be obtained from an MC by select-
ing a subset of modifications consistent with the partial order.

We have shown that the Multi-Complex encompasses all existing multireso-
lution models and helps understanding the range of cell complexes at variable
resolution that a model can provide. Thus, the MC acts as a unifying framework
that is useful for comparing the expressive power of different approaches.
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The definition of the Multi-Complex, and of most other multiresolution mod-
els developed in the literature is limited to regular cell complexes. However, in
some applications it is important to deal with non-regular shapes, and modifica-
tion patterns that change the dimensionality of (portions of) a shape. Extensions
of the MC framework in such a perspective will be the subject of future research.
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