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Abstract. As its analogue in the continuous framework, the digital fun-
damental group represents a major information on the topology of dis-
crete objects. However, the fundamental group is an abstract informa-
tion and cannot directly be encoded in a computer using its definition.
A classical mathematical way to encode a discrete group is to find a pre-
sentation of this group. In this paper, we define a presentation for the
fundamental group of any subset of a digital surface. This presentation
can be computed by an efficient algorithm.

Introduction

As its analogue in the continuous framework, the digital fundamental group,
originally introduced by T. Y. Kong in [4] in the 3D case (see also [5]), represents
a major information on the topology of discrete objects. It is in particular related
to the notion of a simple point in 3D ([1]), and an even closer relationship between
the fundamental group and topology preservation has been established within
digital surfaces ([9]).

For these reasons, we would obtain a very powerfull tool for pattern recog-
nition if we could make the information of the fundamental group accessible to
computers in the 3D case. An even more difficult problem is to find an algorithm
to determine whether two given 3D discrete objects have isomorphic fundamen-
tal groups. Such an algorithm would represent a significant step to determine
whether two objects could be the same up to some “continuous deformation”.

The fundamental group contains strictly more information than the first ho-
mology group. However, whereas the first homology group is always accessible
to computers, it is somehow difficult to transform the abstract notion of the
fundamental group into some data which can be handled by computers. A clas-
sical way to encode certain types of discrete groups is to find presentations of
these groups. A presentation of a group is a model of the group up to isomor-
phism, which is characterized by an integer and some words on an alphabet
called relators. Such a data can easily be encoded in a computer.

Since the problem of computing a presentation of the fundamental group
seems difficult in the general case, we are lead to study it, at first, in simpler
frameworks than the complete 3D case. Though the practical motivation comes
from the 3D case, the study of some easier cases gives some ideas on how to

G. Bertrand, M. Couprie, L. Perroton (Eds.): DGCI’99, LNCS 1568, pp. 136–150, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Presentation of the Fundamental Group in Digital Surfaces 137

proceed in the general case. In [7] (see also [8]), the author studies the planar
2D case. In this case, the fundamental group is shown to be isomorphic to a
free group (i.e. there are no relators in this case). This is an ideal case since
computations in the free groups are easy to perform, and the type of the group
up to isomorphism is easily determined. In this paper, we study the case of
digital surfaces.

Digital surfaces of three dimensional objects have proved to be a fruitful
model for visualization and analysis of the objects they represent ([2]), especially
in the biomedical field. Efficient algorithms for extracting surfaces from volumes,
and computing shape characteristics exist ([6]). Sometimes, the surface itself
needs to be segmented since some particular points are defined on it. Then we
obtain a subset X of the set of the surfels of the surface. In [9], we introduce
two complementary notions of adjacency between surfels on a digital surface,
which can be used to study the topology of such subsets X of a digital surface,
and we study the problem of topology preservation. In particular, a relationship
is established between the fundamental group, and the relation between sets
generated by sequential deletions of simple surfels. Here we consider the same
model for the fundamental group.

We apologize for the high number of definitions necessary to the statement of
the results of this paper. After having set these definitions, since the statement
of the results is very technical, we first give an intuitive and non formal idea of
how to proceed in the continuous case. Finally, we construct a presentation of
the fundamental group of any connected subset of a digital surface. Our proof
is constructive and leads to an efficient algorithm to compute this presentation.

1 Basic Definitions and Notations

1.1 Groups, Normal Subgroups

We consider a group (Γ, ∗) with 1Γ as unit element. Let h ∈ Γ . A conjugate of
h in Γ is an element of Γ of the form: g ∗ h ∗ g−1 with g ∈ Γ . Now let H be a
subgroup of Γ , we say that H is normal in Γ if for any h ∈ H, any conjugate of
h in Γ belongs to H.

Given H a normal subgroup of Γ , we consider ≡H the relation on Γ defined
by [g ≡H g′] ⇐⇒ [g′ ∗ g−1 ∈ H]. Since H is a normal subgroup of Γ , this is an
equivalence relation. We denote by Γ/H the set of equivalence classes of elements
of Γ under the relation ≡H , and by pH : Γ −→ Γ/H the projection which to
an element of Γ associates its equivalence class under ≡H . Now, if g ≡H g′ and
g1 ≡H g′

1, then since H is normal we have g ∗ g1 ≡H g′ ∗ g′
1. Hence the product ∗

defines an operation, which we also denote by ∗, on Γ/H. To pH(g) and pH(g′),
this operation associates pH(g ∗ g′). Obviously, the element pH(1Γ ) of Γ/H is a
unit element for the operation ∗ on Γ/H. Furthermore, given g ∈ Γ , the element
pH(g−1) of Γ/H is an inverse for pH(g). Therefore, (Γ/H, ∗) is a group which
we call quotient group of Γ by the normal subgroup H. Intuitively, all elements
of H are collapsed with the unit element to obtain the quotient group.
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Now let P be any subset of Γ . We consider the subset H of Γ composed of
all products of conjugates of elements of P and inverses of elements of P . Then
H is a normal subgroup of Γ which we call normal subgroup of Γ generated by
P . The normal subgroup generated by P is the smallest normal subgroup of Γ
which contains P .

1.2 Free Group, Generators and Relations

Now, before to introduce groups given by generators and relations, we must
introduce the notion of the (non abelian) free group with m generators. Let
{a1, . . . , am} ∪ {a−1

1 , . . . , a−1
m } be an alphabet with 2m distinct letters, and let

Wm be the set of the all words over this alphabet (i.e. finite sequences of letters
of the alphabet). We say that two words w ∈ Wm and w′ ∈ Wm are the same up
to an elementary simplification if, either w can be obtained from w′ by inserting
in w′ a sequence of the form aia

−1
i or a sequence of the form a−1

i ai with i ∈
{1, . . . , m}, or w′ can be obtained from w by inserting in w a sequence of the
form aia

−1
i or a sequence of the form a−1

i ai with i ∈ {1, . . . , m}. Now, two words
w ∈ Wm and w′ ∈ Wm are said to be free equivalent if there is a finite sequence
w = w1, . . . , wk = w′ of words of Wm such that for i = 2, . . . , k the word
wi−1 and wi are the same up to an elementary simplification. This defines an
equivalence relation on Wm, and we denote by Fn the set of equivalence classes
of this equivalence relation. If w ∈ Wm, we denote by w the class of w under the
free equivalence relation. The concatenation of words defines an operation on
Fn which provides Fn with a group structure. The group thus defined is called
the free group with m generators.

We denote by 1m the unit element of Fm, which is equal to w where w is
the empty word. The only result which we shall admit on the free group is the
classical result that if a word w ∈ Ln is such that w = 1m and w is not the
empty word, then there exists in w two successive letters aia

−1
i or a−1

i ai with
i ∈ {1, . . . , m}. This remark leads to an immediate algorithm to decide whether
a word w ∈ Ln is such that w = 1m. If w = aε1

i1
· · · a

εp

ip
is a word of Wm, we

denote by w−1 the word w−1 = a
−εp

ip
· · · a−ε1

i1
. We have: (w)−1 = w−1.

Now we introduce the groups given by generators and relations. We consider
m ∈ N∗ and a finite subset R of Wm. In this context, we call elements of R
relators. We want to define a group from the free group with m generators, in
which the words of R represent the unit element. This group, called the group
with m generators and the relations of R, is the quotient of the free group Fm

by the normal subgroup generated by the set of the equivalence classes in Fm of
elements of R. Now, given Π a group, finding a presentation of Π is finding an
(explicit) isomorphism from Π to a group given by generators and relations.

1.3 Connectedness in Digital Spaces

Let Σ be a fixed set and let X ⊂ Σ. We denote by card(X) the number of
elements of X and we denote X = Σ \ X. In the following, we shall define
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an adjacency relation α on X to be an antireflexive symmetric binary relation
on X. An α-path with a length p is a sequence (x0, . . . , xp) in which xi−1 is
α-adjacent or equal to xi for i = 1, . . . , p. Such an α-path is called closed if
and only if x0 = xn and is called simple if the points xi for i ∈ {0 . . . p} are
pairwise distinct. Given an α−path c = (x0, . . . , xp), we denote by c−1 the
reversed α−path (xp, . . . , x0). Two elements x and y are said to be α-connected
in X if there exists an α-path (x0, . . . , xp) in X with x0 = x and xp = y. The
α−connectedness relation is an equivalence relation and we call α−connected
components its equivalence classes. A set is α−adjacent to an element x if at least
one element of the set is α−adjacent to x. We also define the α−neighborhood
Nα(x) of x by Nα(x) = {y ∈ Σ / y is α − adjacent to x}.

1.4 Structure of a Digital Jordan Surface

We describe here the model of surface we consider, and some local structures
which can be defined on such a surface. Afterwards, we do not consider anymore
the volume from which the surface is build, and we give some intrinsic definitions
and results on subsets of a surface.

First we recall some definitions, which can be found for example in [3] or
[10], restricted to the three dimensional case. In the following, voxels may be
seen as units cubes rather than points of Z3. We consider two kinds of adjacency
between voxels. Two voxels are said to be 18−adjacent if they share a face or
an edge. They are said to be 6−adjacent if they share a face. A surfel is a pair
(c, d) of 6−adjacent voxels. It can be seen as a unit square shared by c and d. A
surface is a set of surfels.

Let O ⊂ Z3 be a 6−connected or 18−connected set. We consider Σ the set
of all surfels of the form (x, y) with x ∈ O and y ∈ O: we call Σ the surface
of O. it is possible to define an adjacency relation between surfels of Σ. Such
a surfel has exactly 4 neighbors, one per edge under this relation. We call this
adjacency relation the e−adjacency relation on the surface of O. Let s and s′

be two e−adjacent surfels of Σ. The surfels s and s′ share an edge. The pair
{s, s′} is called an edgel. The definition of the e−adjacency relation depends on
whether we consider O as 18−connected or 6−connected.

The kind of surface thus defined satisfies the Jordan property ([3]): a surface
separates the space into two parts, one of which is 6−connected, and the other
one which is 18−connected. This kind of surface is widely used in image analysis
and manipulation.

We define a loop in Σ as an e−connected component of the set of the surfels
of Σ which share a vertex w. For example, in Figure 1.b, we see an object with
three voxels. The vertex w marked with a filled circle defines two loops, one
which can be seen on the figure and is composed of 3 surfels, and the other
loop which is hidden and is composed of 6 surfels. Considering loops is a way to
duplicate formally such vertices. We can define a unique cycle in any loop l: from
a pair (s1, s2) of e−adjacent surfels in l choose s3 the unique surfel of l which
is e−adjacent to s2 and which is distinct from s1. By repeating this process we
obtain a unique simple closed e−path of surfels which we call a parametrization
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(a) (b)

Fig. 1. Counter example and example

of the loop l. The length of a loop ranges between 3 and 7. All the surfels of a loop
share a common vertex. For this reason, we say that two surfels are v−adjacent
(vertex adjacent) if they belong to a common loop.

Note that in the case of a planar surface orthogonal to one of the coordinate
lines (i.e. in the case when the object O is a half space), v−adjacency coincides
with the classical 2D digital image notion of 8−adjacency and e−adjacency to
the classical 4−adjacency.

Definition 1 (d−cell). We associate a dimension to surfels, edgels, and loops,
which is equal respectively to 2, 1, and 0. We can identify a surfel s with {s}.
We call a surfel a 2-cell, an edgel a 1-cell, and a loop a 0-cell.

This dimension is compatible with the continuous analog of the digital sur-
face. If a surfel is a member of a loop or of an edgel, we also say that it is incident
to this loop or this edgel. Moreover, whenever an edgel is a subset of a loop, we
also say that it is incident to this loop. We see that each surfel is incident to 4
loops and 4 edgels, and each edgel is incident to 2 loops.

In the sequel, we take the assumption that each loop of the surface of our
object O is a topological disk. More precisely, we assume that any two v−adjacent
surfels which are not e−adjacent cannot both belong simultaneously to two
given distinct loops. For instance, in Figure 1, the object (a) does not satisfy
this hypothesis: The two loops corresponding to the vertices marked with filled
circles contain two non e−adjacent surfels in common. In opposite, the object
(b) satisfies our hypothesis. We can express this assumption on the object O
the surface of which we consider, saying that we assume that if O is considered
as 18−connected and x and y are two 18−adjacent voxels of O which are not
6−adjacent, one of the two following properties is satisfied:

1. The voxels x and y have an 18−neighbor (or 6−neighbor) in O in common;
2. The voxels x and y have two 26−neighbors in O in common which are

themselves 26−adjacent.

We must have the same assumptions on O if O is considered as 6−connected.
In the sequel of this paper, we consider Σ a fixed e−connected component of

a digital surface, and n ∈ {e, v}. We also denote by n the element of {e, v} such
that {n, n} = {e, v}.
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2 Fundamental Groups, Topology Preservation

2.1 Simple Surfels, Homotopy

Let x ∈ Σ. As we have already said, we assume that any loop in Σ is a topological
disk. However, the v−neighborhood of the surfel x is not always a topological
disk (see the v−neighborhood of the grey surfel of the surface of Figure 1.b for
instance). If this is the case, we have to define a topology on Nv(x) ∪ {x} under
which it is a topological disk. Let us consider two surfels y and y′ in Nv(x)∪{x}.
We say that y and y′ are ex−adjacent [respectively vx−adjacent ] if they are
e−adjacent [respectively v−adjacent] and are contained in a common loop which
contains x. We denote by Ge(x, X) [respectively Gv(x, X)] the graph whose
vertices are the surfels of Nv(x) ∩ X and whose edges are pairs of ex−adjacent
[respectively vx−adjacent] surfels of Nv(x)∩X. We denote by Cx

n(Gn(x, X)) the
set of all connected components of Gn(x, X) which are n−adjacent to x. Note
that Cx

n(Gn(x, X)) is a set of subsets of the set of all surfels of Σ and not a set
of surfels.

Definition 2. We call x an n−isolated surfel if Nn(x)∩X = ∅ and an n−interior
surfel if Nn(x) ∩ X = ∅.

Definition 3 (Simple surfel). A surfel x is called n−simple in X if and only
if the number card(Cx

n(Gn(x, X))) of connected components of Gn(x, X) which
are n−adjacent to x is equal to 1, and if x is not interior to X.

Definition 4 (homotopy). Let be Y ⊂ X ⊂ Σ. The set Y is said to be (lower)
n−homotopic to X if and only if Y can be obtained from X by sequential deletion
of n−simple surfels.

2.2 The Digital Fundamental Group

First, if α and β are two n−paths such that the last surfel of α is n−adjacent
of equal to the first surfel of β, we denote by α ∗ β the concatenation of the two
n−paths α and β.

Now we need to introduce the n−homotopy relation between n−paths. Let
us consider X ⊂ Σ. First we introduce the notion of an elementary deformation.
Two closed n−paths π and π′ in X having the same extremities are said to be
the same up to an elementary deformation (with fixed extremities) in X if they
are of the form π = π1 ∗ γ ∗ π2 and π′ = π1 ∗ γ′ ∗ π2, the n−paths γ and γ′

having the same extremities and being both contained in a common loop. Now,
the two n−paths π and π′ are said to be n−homotopic (with fixed extremities)
in X if there exists a finite sequence of n−paths π = π0, . . . , πm = π′ such that
for i = 1, . . . , m the n−paths πi−1 and πi are the same up to an elementary
deformation (with fixed extremities).

Let B ∈ X be a fixed surfel called the base surfel. We denote by An
B(X)

the set of all closed n−paths π = (x0, . . . , xp) which are contained in X and
such that x0 = xp = B. The n−homotopy relation is an equivalence relation on
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An
B(X), and we denote by Πn

1 (X) the set of equivalence classes of this equivalence
relation. If c ∈ An

B(X) is a closed n−path, we denote by [c] ∈ Πn
1 (X) the class

of c for this relation.
The concatenation of closed n−paths is compatible with the n−homotopy

relation, hence it defines an operation on Πn
1 (X), which to the class of α and

the class of β associates the class of α ∗ β. This operation provides Πn
1 (X)

with a group structure. We call this group the n−fundamental group of X. The
n−fundamental group defined using a surfel B′ as base surfel is isomorphic to the
n−fundamental group defined using a surfel B as base surfel if X is n−connected.

Now we consider Y ⊂ X ⊂ Σ and B ∈ Y a base surfel. A closed n−path in Y
is a particular case of a closed n−path in X. Furthermore, if two closed n−paths
of Y are n−homotopic (with fixed extremities) in Y , they are n−homotopic (with
fixed extremities) in X. These two properties enable us to define a canonical
morphism i∗ : Πn

1 (Y ) −→ Πn
1 (X), which we call the morphism induced by the

inclusion map i : Y −→ X. To the class of a closed n−path α ∈ An
B(Y ) in

Πn
1 (Y ) the morphism i∗ associates the class of the same n−path in Πn

1 (X).
The following is proved in [9]:

Theorem 1. Let Y ⊂ X ⊂ Σ be n−connected sets. Then the two following
properties are equivalent:

1. The set Y is lower n−homotopic to X.
2. The morphism i∗ : Πn

1 (Y ) −→ Πn
1 (X) induced by the inclusion map i :

Y −→ X is an isomorphism and each n−connected component of Y contains
a surfel of X.

2.3 Homotopy in Subgraphs of n−adjacency Graphs

Let G be a subgraph of the n−adjacency graph of a set X ∈ Σ with the same set
of vertices. Let π and π′ be two paths in the graph G. We say that π and π′ are
homotopic in the subgraph G if there exists a finite sequence π = π0, . . . , πm = π′

of paths in G such that for i = 1, . . . , m the paths πi−1 and πi, as n−paths,
are the same up to an elementary deformation (with fixed extremities). The
subgraph G of the n−adjacency graph of X is called simply connected if any
path in G is homotopic in G to a constant path of the form (B, B) with B ∈ X.

3 About the Continuous Case

Let us first recall some definitions about C1 surfaces embedded in R3. We denote
by D the opened disk of R2 with a unit radius and centered at (0, 0).

A continuous map ϕ : D −→ R3 is called C1 if all the partial derivatives of
ϕ exist at any point (s, t) ∈ R2, and are continuous functions of (s, t).

Let ϕ : D −→ R3 be a C1 map.
We denote ϕ(s, t) = (ϕ1(s, t), ϕ2(s, t), ϕ3(s, t)) ∈ R3.
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The map ϕ is called regular if for any (s, t) ∈ D the two vectors

(∂ϕ1
∂s (s, t), ∂ϕ2

∂s (s, t), ∂ϕ3
∂s (s, t)) and (∂ϕ1

∂t (s, t), ∂ϕ2
∂t (s, t), ∂ϕ3

∂t (s, t))

are both non zero and are linearly independent in R3.
Given two metric spaces X and Y , a continuous map f : X −→ Y is called

a homeomorphism if it is one to one and its inverse map is continuous.

Definition 5 (C1 surfaces, local parametrization). A subset X of R3 is
called a C1 surface embedded in R3 (or C1 surface for short) if for any x ∈ X
the two following properties are satisfied :

1. There exists an opened neighborhood Wx of x in R3 (we denote by Vx the
neighborhood Wx ∩ X of x in X) ;

2. There exists a homeomorphism ϕx : D −→ Vx which is C1 and regular and
with ϕx((0, 0)) = x.

Such a map ϕx is called a local parametrization of X in the neighborhood of x.

We have to introduce the notion of an oriented surface. Under the notions of
previous Definition 5, we first consider, for x, x′ ∈ X such that Vx ∩Vx′ 6= ∅, the
map

{
gxx′

: ϕ−1
x (Vx ∩ Vx′) −→ ϕ−1

x′ (Vx ∩ Vx′)
(s, t) 7−→ ϕ−1

x′ ◦ ϕx(s, t)

We also denote gxx′
(s, t) = (gxx′

1 (s, t), gxx′
2 (s, t)) ∈ R2. Then the two vectors

(∂gxx′
1

∂s (s, t), ∂gxx′
2

∂s (s, t)) and (∂gxx′
1

∂t (s, t), ∂gxx′
2

∂t (s, t)) of R2 exist and form a basis
of R2 for any (s, t). An oriented surface is a couple (X, (ϕx)x∈X) satisfying all
the above properties, and such that for any x, x′ ∈ X such that Vx ∩Vx′ 6= ∅ and
for any (s, t) ∈ ϕ−1

x (Vx ∩ Vx′), the basis

((∂gxx′
1

∂s (s, t), ∂gxx′
2

∂s (s, t)), (∂gxx′
1

∂t (s, t), ∂gxx′
2

∂t (s, t)))

of R2 is direct (i.e. has a positive orientation). Such a structure exists for any
C1 surface X embedded in R3.

Let X be a C1 oriented surface. A path c in X is a continuous map c :
[0, 1] −→ X. Such a path c is called closed if its two extremities c(0) and c(1) are
equal. A C1 curve is a path which, as a map, admits a nowhere zero continuous
derivative. A simple curve is a curve c such that ∀α, β ∈ [0, 1] [c(α) = c(β) ⇐⇒
α = β]. A simple closed curve is a curve c such that ∀α, β ∈ [0, 1] [c(α) =
c(β) ⇐⇒ (α = β or {α, β} = {0, 1})].

Let us consider two curves c1 and c2 in X which have finitely many intersec-
tions, and such that the directions tangent to c1 and c2 are distinct at any of their
intersections, and let α and β in [0, 1] be such that c1(α) = c2(β) (in other words
we consider an intersection between c1 and c2). We denote x = c1(α) = c2(β) the
intersection point. We consider the two following vectors of R2: v = d(ϕ−1

x ◦c1)
dα (α)

and w = d(ϕ−1
x ◦c2)
dβ (β). We define the orientation number of the intersection
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(α, β) of c1 and c2, and we denote by O(α, β, c1, c2), the number equal to 1 if
the basis (v, w) has a positive orientation in R2, and equal to −1 otherwise. This
number depends on the oriented surface (X, (ϕx)x∈X) and not only on the C1

surface X.
Now we introduce in an informal way the fundamental group of a connected

subset X of R3. We consider B ∈ X a fixed point called the base point, and
AB(X) the set of all closed paths c in X such that c(0) = c(1) = B. We
introduce on AB(X) an equivalence relation of homotopy between paths which
intuitively represents the relation of being continuously deformable one into each
other inside X (with fixed extremities). Then, similarly to the discrete case, we
denote by Π1(X, B) the set of the equivalence classes of paths up to homotopy in
AB(X), and the concatenation of paths defines an operation on Π1(X, B). This
operation provides Π1(X, B) with a group structure, and this group is called the
fundamental group of X. A set X is called simply connected if its fundamen-
tal group reduces to a singleton (i.e. any path of AB(X) can be continuously
deformed to a point inside X.

Now we can explain how to construct a presentation of the fundamental
group of an oriented surface (X, (ϕx)x∈X). First we have to construct a finite
set {π1, . . . , πm}, where for any i ∈ {1, . . . , m} the element πi is either a simple
curve or a simple closed curve, satisfying all the following properties :

(P1): ∀i, j ∈ {1, . . . , m} with i 6= j and ∀α, β ∈]0, 1[ we have πi(α) 6= πj(β) (in
other words the curves πi can intersect only at their extremities) ;

(P2): Any curve πi which is not simple closed must intersect at least another of
the πj ’s at each of its extremities ;

(P3): The complement X\{πi(α) / i = 1, . . . , m and α ∈ [0, 1]} of the images
of all the curves πi is connected and simply connected.

x b a

Fig. 2. Example with a torus.

q
�

�i

I

I��j

Fig. 3. An intersection point.

Let us consider for example the torus represented by Figure 2. We have
represented two (simple closed) curves π1 = a, and π2 = b. All the extremities
of a and b are at the same point x. The complement in the torus of these two
curves is a topological disk.

Now let us consider the surface of genus 2 depicted by Figure 4. Here we
have 6 curves a, b, c, d, e and f . The curves c and e are simple closed and the
other curves are not closed. The complements of these 6 curves in the surface
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c
ea

d

fbc

Fig. 4. Example with a surface with a genus 2.

is a topological disk. There are three points at which we have intersections of
curves.

Now let us introduce the presentation we have for the fundamental group of
X. We consider a base point B in the complement of the images of the curves
πi. We take m generators {a1, . . . , am}, one for each of the curves πi. Let us
describe the words we take as relators : For any extremity πi(α) with α ∈ {0, 1}
of a curve πi with i ∈ {1, . . . , m}, we consider the word R(πi(α)) in the aj ’s
and a−1

j ’s corresponding to the curves πj which appear cyclically around the
extremity πi(α) (see Figure 3). The order in which the aj ’s and a−1

j ’s appear in
the word R(πi(α)) is precisely the cyclic order of the curves πj which meet at the
point πi(α). Now, whether we get in the word R(πi(α)) an aj or an a−1

j depends
on the orientation of the curve πj , i.e. depends on whether πi(α) = πj(0) or
πi(α) = πj(1).

For the example of the torus depicted by Figure 2, we have two generators
a and b. The πi’s all have the same extremity x, and the word R(x) is up to
conjugacy the word aba−1b−1, commutator of a and b.

For the example of the surface of genus 2 represented by Figure 4, we have
three words R(x1), R(x2) and R(x3), corresponding to the three intersection
points x1, x2 and x3 from the left to the right on the figure. We have (up to
conjugacy) R(x1) = acb−1c−1, R(x2) = da−1f−1b, and R(x3) = ed−1e−1f .

Now we consider R the set of all words R(πi(α)) for i = 1, . . . , m and α ∈
{0, 1}. We denote by Γ the group with m generators and the relations of R. The
fact is that the fundamental group of the C1 surface X is isomorphic to Γ . Let
us explain how the isomorphism is defined :

Let us consider a closed path c of AB(X). First we want to construct a word
w in the generators. To do this, we first chose a path c′, which is a curve, can be
continuously deformed into c inside X, and which has a finite intersection with
all the curves πi, i = 1, . . . , m (such a curve always exists). Moreover, we may
assume that at each intersection between c′ and some πi, the tangent directions
to c′ and πi are not parallel at this intersection.

Then, to construct the desired word w(c′), we go over the curve c′, adding to
the word we construct a symbol a

O(α,β,πi,c
′)

i each time we have an intersection
πi(α) = c′(β). The order in which the symbols appear in the word w(c′) is the
order in which the intersections with the πi’s appear along c′. Then we have :
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Theorem 2. The projection of w(c′) ∈ Fm on the group Γ depends only on
the class of the path c in the fundamental group. We denote this class by W(c),
which is an element of Γ .

Theorem 3 (Presentation of the fundamental group). If we denote by
[c] the class of a path c of AB(X) in the fundamental group, then the map
[c] 7−→ W(c) is well defined, and it is a group isomorphism from Π1(X, B) onto
the group Γ .

For example, for the torus depicted by Figure 2, the fundamental group has
two generators a and b with the single relation aba−1b−1, and the fundamental
group is therefore isomorphic to the group (Z2,+). For the example of Figure 4,
we have 6 generators and 3 relators as we noticed above.

In fact, in the continuous case, it is always possible to construct the curves
πi’s in such a way that all of their extremities are at the same point. In this case,
the presentation we obtain for the fundamental group has a single relation. We
shall see that it does not work the same in the discrete case.

4 The Discrete Case

4.1 Simple Curves on a Digital Surface

We remind the reader that we have defined a digital surface Σ, and n ∈ {e, v}.
In the sequel we shall assume that n = e and n = v. In other words, we shall
analyze a fixed e−connected subset X of the set of the surfels of Σ with the
e−connectivity relation, and the complement X of X in Σ with the v−connec-
tivity relation. Our purpose is to compute a presentation of the e−fundamental
group of X. We first want to define a set {π1, . . . , πm} of curves satisfying
properties analogous to the three properties (P1), (P2) and (P3) of the continuous
case. The kind of curves which are to be considered here have a thickness 0.

Definition 6 (Discrete simple curve on a surface). A oriented simple curve
on the surface Σ is a sequence π = (e1, . . . , eq), with q ≥ 1, where es = (rs, ls)
is for s = 1, . . . , q a couple of surfels with rs e−adjacent to ls, satisfying the
three following properties :

1. For s = 1, . . . , q − 1, the surfels rs, ls, rs+1 and ls+1 are all contained in a
unique common loop Lπ(s). For convenience, if q = 1 we chose Lπ(0) and
Lπ(1) two distinct loops which contain r1 and l1. If q ≥ 2 we denote by Lπ(0)
the unique loop which contains r1 and l1 and is distinct from Lπ(1), and we
denote by Lπ(q) the unique loop which contains rq and lq and is distinct from
Lπ(q − 1) ;

2. For s = 1, . . . , q − 1, the surfels ls and ls+1 are e−connected in
Lπ(s)\{rs, rs+1} and the surfels rs and rs+1 are e−connected in
Lπ(s)\{ls, ls+1} ;

3. The loops Lπ(s) for s = 0, . . . , q are all distinct.
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Definition 7 (oriented simple closed curve). An oriented simple closed
curve on Σ is a sequence such as defined by the previous definition of oriented
simple curves, but satisfying the following property 3’ instead of the property 3 :

3’ For s, t ∈ {0, . . . , q} we have [Lπ(s) = Lπ(t) ⇐⇒ (s = t or {s, t} = {0, q})].

Definition 8. Let π = (e1, . . . , eq) and π′ = (e′
1, . . . , e′

q′) be two oriented simple
curves or simple closed curves on Σ. We say that the curves π and π′ have no
interior intersection if and only if for s ∈ {0, . . . , q} and for t ∈ {0, . . . , q′} with
s 6∈ {0, q} or s′ 6∈ {0, q′} we have : Lπ(s) 6= Lπ′(t).

4.2 Construction of an Appropriate set of Curves

As we said before, we want to proceed in the discrete case as we did for the
continuous case, constructing a set {π1, . . . , πm} of simple curves and simple
closed curves satisfying properties analogous to the properties (P1), (P2) and
(P3) of the continuous case. However, in the discrete case we shall not only
compute a presentation of the fundamental group of Σ, but we shall do it for
any e−connected subset X of Σ. Hence, in the sequel of this paper, X denotes
a set of surfels of Σ, and B ∈ X is a fixed base surfel. We want to construct
a set {π1, . . . , πm} of simple curves and simple closed curves (we denote πi =
(ei

1, . . . , ei
qi

) for i = 1, . . . , m and ei
s = (ri

s, l
i
s)), on Σ satisfying the following

properties :

(P1): ∀i, j ∈ {1, . . . , m} with i 6= j, the curves πi and πj have no interior
intersection ;

(P2): For any i ∈ {1, . . . , m} and any s ∈ {0, qi}, there exists j ∈ {1, . . . , m}
and t ∈ {0, qj}, with i 6= j or s 6= t, such that Lπi(s) = Lπj (t) ;

(P3): The subgraph of the e−adjacency graph of X, obtained by removing in
the e−adjacency graph of X all the edges of the form {lis, r

i
s}, is connected

and simply connected.

To construct such a set of curves, we first construct a connected and simply
connected subgraph of the e−adjacency graph of X, having X as set of vertices.
A way to do this is to consider a covering tree G(X) in the e−adjacency graph of
X. Such a covering tree is a connected subgraph having X as set of vertices, and
with no cycle so that it is simply connected. Efficient algorithms to construct
covering trees in connected nonoriented graphs exist and can be found in most
of books on elementary algorithms.

We can consider the set A of the pairs {x1, x2} of e−adjacent surfels of X,
such that {x1, x2} is not an edge of the subgraph G(X). As we shall see, from
the data of the elements of A, we can construct a set of oriented curves satisfying
the properties (P1) and (since G(X) is connected and simply connected) (P3).

Definition 9. Let A′ be a set of pairs of e−adjacent surfels of X. An edge
σ ∈ A′, such that there is a loop l included in X which contains σ, and such that
for any σ′ ∈ A′ with σ′ 6= σ we have σ′ 6⊂ l, is called an extremity of A′.



148 Rémy Malgouyres

Because of the existence of extremities in the set A, the set of oriented curves
we can construct from the data of A does not always satisfy the property (P2).
What we can do is remove iteratively extremities in A until we get a set which
contains no more extremities. More precisely, we set A0 = A, we iteratively
choose an extremity σk in the set Ak and set Ak+1 = Ak\{σk}, until we get
a set Af which contains no extremity. For k = 0, . . . , f , we denote by Gk(X)
the graph whose vertices are the surfels of X, an edge of Gk(X) being either
an edge of G(X), or an edge of A\Ak. The graph Gk(X) is a subgraph of the
e−adjacency graph of X. We have the following lemma :

Lemma 1. For k = 0, . . . , f , the graph Gk(X) is connected and simply con-
nected.

There remains to construct the oriented curves πi’s from the data of Af .
Let us consider σ = {r1, l1} an edge of Af . We denote e1 = (r1, l1). Then the
sequence (e1) with a single term is a simple curve on Σ. Hence we can construct
a set of simple curves and simple closed curves {π1, . . . , πm} such that, denoting
πi = (ei

1, . . . , ei
qi

) for i = 1, . . . , m and ei
s = (ri

s, l
i
s), the map Φ : (ri

s, l
i
s) 7−→

{ri
s, l

i
s} is a one to one correspondence between the set {ei

s / i = 1, . . . , m and
s = 1, . . . , qi} and the set Af . We can for instance consider curves reduced to one
edge, but it is also possible to consider longer curves, by extending the curves
in loops containing exactly two edges of Af , so that we get a lower value of m.
By constructing the simple curves and the simple closed curves πi in this way,
the πi’s satisfy the property (P1). Moreover, since, from its very construction,
Af has no extremity, the πi’s satisfy the property (P2). At last, from Lemma 1,
the πi’s satisfy the property (P3).

4.3 Main Results

We consider {π1, . . . , πm} a set of curves and simple closed curves satisfying the
properties (P1), (P2) and (P3) defined above. It follows from Subsection 4.2 that
such a set of curves can always be constructed. We denote πi = (ei

1, . . . , ei
qi

) and
ei

s = (ri
s, l

i
s) for i = 1, . . . , m and s = 1, . . . , qi.

As when we have defined the free group Fm, we consider the alphabet
{a1, . . . , am, a−1

1 , . . . , a−1
m }

with 2m letters, and Wm the set of all word on this alphabet.
Let c = (x0, . . . , xp) be any e−path in X. We want to construct a word

w(c) ∈ Wm associated with c.

Definition 10. Let k ∈ {0, . . . , p − 1}, i ∈ {1, . . . , m} and s ∈ {1, . . . , qi}, be
such that {ri

s, l
i
s} = {xk, xk+1}. The triple (k, i, s) is called an intersection of c

and the πj ’s. We say that this intersection is positive if (ri
s, l

i
s) = (xk, xk+1),

and negative if (lis, r
i
s) = (xk, xk+1).

Notation: Given (k, i, s) an intersection of c and the πj ’s. We denote by
Oc(k, i, s) the number equal to +1 if the intersection (k, i, s) is positive, and to
−1 otherwise.
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We define w(c) as the word, containing one symbol a
Oc(k,i,s)
i for each inter-

section (k, i, s) of c with the πj ’s, these symbols appearing in the word w(c) in
the order of the increasing k (i.e. the order in which the intersections appear
along c). We denote by w(c) the class of w(c) up to elementary simplifications
(see the definition of the free group).

Now we can define a group Γ given by generators and relations. Let us
consider a loop Lπi

(s), with i ∈ {1, . . . , m} and s ∈ {0, qi} (which is an extremity
of the curve πi). we assume that the loop Lπi

(s) is contained in X. As we
observed when defining loops, the loop Lπi(s) admits a parametrization, which
is a closed e−path covering Lπi(s). We denote by c(i, s) such a parametrization.
We denote by R(i, s) the word w(c(i, s)), and by R the set of all words R(i, s)
for all i ∈ {1, . . . , m} and s ∈ {0, qi} such that the loop Lπi

(s) is contained in
X. Note that, since the parametrization c(i, s) of the loop Lπi

(s) is not exactly
unique, but depends on an initial surfel and the orientation of a rotation in
Lπi(s), the word R(i, s) is only defined up to cyclic permutation or inversion in
the free group. The normal subgroup of Fm generated by R does not depend
on this choice of the parametrization c(i, s) since two cyclic permutations of the
same word correspond to conjugate elements of Fm.

We denote by H the normal subgroup of the free group Fm generated by the
words of R. As in the definition of the quotient group, we denote by ≡H the
relation of equality modulo elements of H in Fm. Finally, we denote Γ = Fm/H
the quotient group, and we denote by pH : Fm −→ Γ the projection. The group
Γ is the group with m generators and the relations of R. We want to prove that
the e−fundamental group of X is isomorphic to the group Γ . More precisely, we
have the two following results :

Theorem 4. The map pH ◦ w : Ae
B(X) −→ Γ is constant on each equivalence

class of Ae
B(X) for the e−homotopy relation in X. Therefore, this map pH ◦ w

induces a map {
ϕ : Πe

1(X) −→ Γ

[c] 7−→ pH(w(c))

Obviously, since concatenation of paths corresponds to concatenation of words,
this map ϕ is a group morphism.

Theorem 5. The map ϕ : Πe
1(X) −→ Γ is a group isomorphism.

The idea is that if we consider (k, i, s) with s ∈ {0, qi} an intersection of an
e−path c in X and the πj ’s, and if c(i, s) denotes a parametrization of the loop
Lπi

(s), then the closed e−path c(i, s), since contained in a loop, is e−homotopic
in X with fixed extremities to a path reduced to a single surfel. In other words,
the element of the e−fundamental group of X represented the closed e−path
c(i, s) is the unit element of the e−fundamental group. Through the isomorphism
ϕ from Πe

1(X) onto Γ = Fm/H, this is translated into the fact that the element
of Fm represented by the word R(i, s) = w(c(i, s)) is sent onto the unit element
of Γ . Therefore, R(i, s) must belong to H, but this is precisely the definition of
H.
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Conclusion

We can compute a presentation for the fundamental group of any subset of
a digital surface. Some principles presented here can be reused to study the
complete 3D case. However, the ideas of this paper must be widely modified to
be used in the 3D case. Mainly, it seems that, in the 3D case, the curves πi’s
which we construct must be surfaces in the 3D space. Of course, the junctions
between surfaces are much more difficult to characterize than intersections of
curves on a surface. For this reason, the 3D case seems much more difficult than
the case of surfaces.
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