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Abstract. The purpose of this paper is to define the notion of “real”
intersection between paths drawn on the 3d digital boundary of a con-
nected object. We consider two kinds of paths for different adjacencies,
and define the algebraic number of oriented intersections between these
two paths. We show that this intersection number is invariant under any
homotopic transformation we apply on the two paths. Already, this in-
tersection number allows us to prove a Jordan curve theorem for some
surfels curves which lie on a digital surface, and appears as a good tool
for proving theorems in digital topology about surfaces.
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Introduction

Digital surfaces of three dimensional objects have proved to be a fruitful model
for visualisation and analysis of the objects they represent ([2]), especially in the
biomedical field. Efficient algorithms for extracting surfaces from volumes, and
computing shape characteristics exist ([4]). Sometimes, the surface itself needs
to be segmented since some anatomic points are defined on it. Then we obtain
some subset X of the set of the surfels of the surface. In [5], several tools of
image analysis are defined in this nonplanar framework to analyse the topology
of the subset X.

In particular, in [5], two complementary adjacency relations between surfels
on a digital surface are introduced, the e−adjacency and the v−adjacency, and a
notion of topology preservation is proposed. Given Y ⊂ X two subsets of a digital
surface, a relationship is established, between the property of X to be reducible
to Y by sequential deletion of simple surfels, and the fundamental groups ([3])
of Y and X. However, the conditions obtained in [5] seem redundant, and the
authors conjecture that a stronger theorem exists. Such powerful results are
now difficult to prove because of the lack of tools for proving theorems about
homotopy of closed paths.

On the other hand, topological properties of curves, well known in the 2D
planar discrete case, have not yet been studied for curves on digital surfaces.
However, the nonplanar framework imposes us to take into account the notion
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of homotopy properties of the considered curves. Again, the need for the devel-
opment of a tool for proving theorems about homotopy of curves or closed paths
appears.

The purpose of this paper is to propose such a tool. Given two paths c and π
on a digital surface, we define a nontrivial integer invariant Iπ,c, called the inter-
section number of π and c, an e−path and a v−path, which represents intuitively
the algebraic number of transverse intersections between c and π, summing alge-
braically the intersections with a sign depending on their orientations. We prove
that the number Iπ,c is invariant when c or π ranges within a homotopy class of
paths. In other words, the number Iπ,c, which can be computed with the data
of c and π, is in fact a function of the homotopy classes of c and π.

This invariant can for instance be used as follows: given a closed path π, we
can prove that π is not homotopic to a trivial path by exhibiting another path c
such that Iπ,c 6= 0. We illustrate this principle by proving a Jordan property for
those of the simple closed curves which are homotopic, as closed paths, to a trivial
path. The intersection number appears as a good tool for proving theorems in
digital topology, and we expect to use it in the future to prove more results, in
particular concerning topology preservation within surfaces.

1 Basic notions and definitions

To define the notion of a digital surface, we must recall few notions of digital
topology. First, we consider objects as subsets of the 3 dimensional space Z3.
Elements of Z3 are called voxels (short for “volume elements”). Voxels which
do not belong to an object O ⊂ Z3 constitute the complement of the object
and is denoted by O. Any voxel can be seen as a unit cube centered on a point
with integer coordinates : v = (i, j, k) ∈ Z3. Now, we can define some binary
symetric antireflexive relations between voxels. Two voxels are said 6−adjacent
if they share a face, 18−adjacent if they share an edge and 26−adjacent if they
share a vertex. For topological considerations, we must always use two different
adjacency relations for an object and its complement. We sum this up by the
use of a couple (n, n) with {n, n} = {6, 18}, the n−adjacency being used for the
object and the n−adjacency for its complement. By transitive closure of these
adjacency relations, we can define another one : connectivity between voxels. We
define an n-path π with a length k from a voxel a to a voxel b in O ⊂ Z3 as a
sequence of voxels (vi)i=0...k such that ∀0 ≤ i < k, vi is n-adjacent or equal to
vi+1, v0 = a and vk = b. Connectivity now can be defined; two voxels a and b
are called n-connected in an object O if there exists an n-path π from a to b in
O. This is an equivalence relation on voxels of an object O, and the n−connected
components of the object O are equivalence classes of points according to this
relation. Using this equivalence relation on the complement of an object we can
define a background component of O as a connected component of O.
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1.1 Digital surface

In this paper, we are interested by surfaces constituted by the boundary between
a 6−connected or 18−connected subset O of Z3 and V , one of its background
components. As in [7] we first define the border between O and V by:

δ(O, V ) = {(a, b) | a is 6−adjacent to b, a ∈ O, b ∈ V }
The set Σ = δ(O, V ) is called a digital surface and has the Jordan property

(according to the definition given in [7]).
Each couple (a, b) of Σ is called a surfel (short for surface element) and

can be seen as the common face shared by two 6-adjacent voxels, the first one
belonging to the object, the second one to the background. Note that such a
face is oriented according to the outward normal and this definition of a surfel is
more restrictive than the classic one. In fact, we call a voxel face the unit square
shared by any two 6-adjacent voxels, but a surfel is the oriented common face
of two 6-adjacent voxels, where the first on is a voxel of O and the second one a
voxel of V .

In the sequel of this paper, Σ = δ(O, V ) is a digital surface.

1.2 Surfels Neighborhood

A surfel in a digital surface shares a given edge with at most three other ones.
Depending on the adjacency considered for the object (6 or 18), we can define
an adjacency relation between surfels in such a way that a surfel has exactly four
neighbors, one per edge (whereas at most 3 other surfels can share a given edge).
The definition of this classical regular graph on Σ can be found for instance in
[6]. This adjacency is called e−adjacency (short for “edge adjacency”). As in [5]
we define a loop as an e−connected component of the set of the surfels which
share a given vertex (see Figure 1). One can see that a vertex is not sufficient
to uniquely define a loop since a vertex can define two distinct loops. In fact, a
loop is well defined given a vertex and a surfel incident to this vertex.

We say that two surfels are v−adjacent (short for “vertex adjacent”) if they
belong to a common loop. We denote by Nn(x) for n ∈ {e, v} the n-neighborhood
of the surfel x, i.e. the set composed of the surfels of Σ which are n-adjacent to
x.

In the case when O is considered as 18−connected, we avoid some special
configurations by the assumption that any loop of the surface is a topological
disk. A formal way to express this assumption is to say that two v−adjacent
surfels which are not e−adjacent cannot both belong to two distinct loops. An
equivalent formulation can be stated as follows: we assume that if the object O
the surface of which we consider is studied with 18−connectivity, and if there
exists in O two 18−adjacent voxels which are not 6−adjacent (see Figure 2)
then, at least one of the two following properties is satisfied:

– The two voxels have an 18−neighbor in O in common.
– The voxels have two 26−neighbors in O in common which are themselves

26−adjacent.
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Fig. 1. Example of a loop.
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y

Fig. 2. A pathological case for which a
loop is not a topological disk.

This restriction is necessary and sufficient to ensure that a loop is a topological
disk. However, given a surfel x ∈ Σ, we will also need to define a topology on
the neighborhood Nv(x) under which it is a topological disk too (see [5]). For
this purpose, we define the ex−adjacency relation:

Definition 1 Let x be a surfel of a digital surface Σ. We say that two surfels y
and y′ of Nv(x)∪{x} are ex−adjacent if they are e−adjacent and both contained
in a loop which contain x.

This relation allows us to deal with the ex−connected component of Nv(x) ∩ X
where X is a set of surfels.

1.3 Surfels paths

Let n ∈ {e, v}.

Definition 2 An n-path c with a length l in a digital surface Σ is a sequence
(sk)0≤k≤l of l+1 surfels for which sk is n-adjacent or equal to sk+1 for 0 ≤ k < l.
A closed n-path is a path such that sl = s0.

Notation 1 For a sequence s = (si)0≤i≤n of surfels, we denote s∗ = {si| 0 ≤
i ≤ n}.

Definition 3 (Concatenation of paths) If a = (a0, . . . , an) and b = (b0, . . . , bn)
are two n−paths such that an is n−adjacent or equal to b0 then we denote a.b =
(a0, . . . , an, bo, . . . , bm), which is called the concatenation of the two paths a and
b.

1.4 Homotopy of paths, Fundamental Group

The fundamental group in digital topology, as defined by Kong in [3], has shown
to be a very useful tool for studying topology of digital sets. Here, we define an
analogue to the fundamental group for digital surfaces. First, we must define a re-
lation of elementary deformation between paths, the elementary H-deformation
relation.
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Definition 4 (elementary H−deformation and homotopy of paths) Let X ⊂ Σ.
Let c = (xi)i=0,... ,q and c′ = (x′

i)i=0,... ,q′ be two v−paths in X. The path c is
said to be an elementary H-deformation of c′ in X if c = π1.α.π2, c′ = π1.α

′.π2.
Where α and α′ have the same extremities and are both contained in a common
loop of the surface Σ (note that the path π1 or π2 can be empty).
We define the n-homotopy relation between paths as the transitive closure of the
elementary H-deformation: two n-paths c and c′ are called n-homotopic (which
we denote by c 'n c′) if there exists a sequence of H-deformations which allows
us to obtain one from the other.

Remark 1 If a path c is not closed, then any path c′ which is n−homotopic to
c must have the same extremities as c.

Now, the set of equivalence classes of closed n−paths from a surfel b (called
the base point) to b in Σ, given an operation on classes induced by concatenation
of paths, has a group structure. It is called the fundamental group of Σ with base
point b and denoted by Πn(b, Σ). This (generally non-abelian) group structure is
very useful for studying the topology of objects in the digital spaces Z2 and Z3 or
surfaces. It is used for example for the characterization of topology preservation
([1] and [5]).

This first and simple definition of elementary deformation of paths will be
too “large” in our context and proofs in the sequel will need to consider a more
restrictive transformation for v−paths with simpler conditions, which leads to
the same notion of homotopy.

Definition 5 Let X ⊂ Σ, c = (xi)i=0,... ,q and c′ = (x′
i)i=0,... ,q′ be two v−paths

in X. Then, c is said to be an elementary L-deformation of c′ in X if c =
π1.(s1, s2, s3).π2 and c′ = π1.(s1, s2).π2. Where the three surfels s1, s2 and s3
belong to a common loop of Σ. We define the L-deformation as the symmetric
and transitive closure of the elementary L−deformation.

In other words, the elementary L−relation links two v-paths which are almost
the same except that one is obtained by deletion in the other of a surfel which
belongs to the same loop as its predecessor and successor. Now, we can state the
following property :

Proposition 1 Two v−paths c and c′ are v−homotopic in a surface X ⊂ Σ if
and only if one is an L−deformation of each other in X.

2 The intersection number : Definition

In the following, paths all lie on a digital surface Σ. If a path is closed, the
subscripts of surfels must be read modulo l where l is the length of the path.

Notation 2 (Vertices and oriented edges) Since a surfel has four vertices, we
can order these vertices as in [6] by distinguishing one vertex for each type
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of surfel (we distinguish 6 types of surfels according to the outward normal
vector) and impose a turning order for vertices around the outward normal to
the surfel. Each vertex of a given surfel is associated with a number in {0, 1, 2, 3}.
With this parameterization of vertices we can define oriented edges as couples of
consecutive vertices according to the cyclic order. So, for each surfel, we have the
four following oriented edges : (0, 1), (1, 2), (2, 3) and (3, 0). If {a, b} ⊂ {0, 1, 2, 3},
we denote as an interval [a, b] the set of vertices met when looking after vertices
from a to b in the cyclic order defined before. So, we can write c ∈ [a, b] if
the vertex c is met when looking for vertices from a to b. For an e−path π =
(yk)k=0,... ,p and for k ∈ {0, . . . , p}, we define frontπ(k) (resp. backπ(k)) as the
oriented edge (a, b) with a, b ∈ {0, 1, 2, 3} of the surfel yk shared as an edge by
yk and yk+1 (resp. yk and yk−1). Remark that backπ(0) and frontπ(p) are not
defined if π is not closed.

Definition 6 Let π = (yk)k=0,... ,p be an n−path. We say that π has a local back
and forth at the surfel yk if yk−1 = yk+1.

Remark 2 Suppose that π has no local back and forth. Then, if (a, b) =
backπ(k) and (c, d) = frontπ(k) then a 6= c and b 6= d. Indeed, since the edges
are oriented, a = c implies that b = d; this would mean that the front and back
edges of yk are equal, so that we would have yk−1 = yk+1.

We want to define locally, at each point of an e−path the right side and
the left side on the surface, taking into account the orientation of the surface
(Definition 8 below).

Definition 7 Let π = (yk)k=0,... ,p be an e−path. For k ∈ {1, . . . , p − 1} (k ∈
{0, . . . , p} if π is closed), we define the sets Lπ(k) and Rπ(k) both included in
{0, 1, 2, 3}. Let (a, b) = backπ(k) and (c, d) = frontπ(k). If yk−1 6= yk+1 then we
define Lπ(k) = [d, a] and Rπ(k) = [b, c] (see Figure 3). If yk−1 = yk+1 we define
Lπ(k) = Rπ(k) = ∅. Note that Lπ(k) and Rπ(k) are also defined for k = 0 or
k = p in the case when π is a closed e−path.

p
yk

p

p

L (k)

R (k)

Fig. 3. A surfel yk of π,
and the two sets Lπ(k)
and Rπ(k).

yk
p

p
Right (k)

Left (k)

p

Fig. 4. A surfel yk of π,
and the two sets Leftπ(k)
and Rightπ(k).

k

y
k+1

y
y
k-1

Fig. 5. An example for
which Rightπ(k) = ∅.



110 Sébastien Fourey and Rémy Malgouyres

Notation 3 For a surfel x and a given vertex number w ∈ {0, 1, 2, 3} we denote
by Lw(x) the unique loop associated to the vertex w of x which contains the
surfel x.

Definition 8 Let π = (yk)k=0,... ,p be an e−path. For 0 < k < p (0 ≤ k ≤ p if π
is closed) we define the set of surfels Leftπ(k) and Rightπ(k) by:

Leftπ(k) = [
⋃

w∈Lπ(k)

Lw(yk)] \ {yk−1, yk, yk+1} and

Rightπ(k) = [
⋃

w∈Rπ(k)

Lw(yk)] \ {yk−1, yk, yk+1}.

Note that one of these two sets can be empty if {yk−1, yk, yk+1} constitute a
loop with a length 3 (i.e. yk−1 is e−adjacent to yk+1). Such a case is depicted by
Figure 5. In the case when yk−1 = yk+1, both sets Leftπ(k) and Rightπ(k) will
be empty since Lπ(k) and Rπ(k) have been defined as empty in this case. See
Figure 4 for an example of such sets.

Remark 3 Due to our assumption that loops are topological disks, we have:

Leftπ(k) ∩ Rightπ(k) = ∅.

If yk−1 is not e−adjacent to yk+1 then Nv(yk) \ {yk−1, yk+1} has exactly two
eyk

−connected components (see Definition 1): Rightπ(k) and Leftπ(k).

In the sequel of this paper we have set some restrictions on the paths studied.
In this goal, we define a property P.

Notation 4 Let c = (xi)i=0,... ,q be a v−path and π = (yk)k=0,... ,p be an e−path
in Σ. We say that the property P(π, c) is satisfied if when c is not closed then
c0, cq /∈ π∗ and when π is not closed then y0, yp /∈ c∗.

Definition 9 Given a v-path c = (xi)i=0,... ,q and an e-path π = (yk)k=0,... ,p

such that P(π, c) holds, we introduce the contribution to the intersection number
of a couple (k, i) with k ∈ {1, . . . , p − 1} ({0, . . . , p} if π is closed) and i ∈
{1, . . . , q − 1} ({0, . . . , q} if c is closed) by Iπ,c(k, i) = I−

π,c(k, i) + I+
π,c(k, i)

where:

I−
π,c(k, i) = 1

2 if xi = yk, xi−1 ∈ Rightπ(k). I+
π,c(k, i) = − 1

2 if xi = yk, xi+1 ∈ Rightπ(k).
I−

π,c(k, i) = − 1
2 if xi = yk, xi−1 ∈ Leftπ(k). I+

π,c(k, i) = 1
2 if xi = yk, xi+1 ∈ Leftπ(k).

I−
π,c(k, i) = 0 in all other cases. I+

π,c(k, i) = 0 in all other cases.

Note that I−
π,c(k, i) = 0 (resp. I+

π,c(k, i) = 0) if xi 6= yk or yk−1 = yk+1 or
xi−1 ∈ {yk−1, yk, yk+1} (resp. xi+1 ∈ {yk−1, yk, yk+1}). If yk−1 = yk+1, we have
I−

π,c(k, i) = I+
π,c(k, i) = 0 since Leftπ(k) = Rightπ(k) = ∅.

In other words, I−
π,c(k, i) depends on the position of xi−1 relative to the e-path

π at the surfel yk. And I+
π,c(k, i) depends on the position of xi+1.
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Fig. 6. A v−path c (light grey) and
an e−path π (in dark grey) such that
Iπ,c = 0.

Fig. 7. A v−path c and an e−path π
such that Iπ,c = ±1.

Definition 10 Let c = (xi)i=0,... ,q be a v−path and let π = (yk)k=0,... ,p be an
e-path satisfying the property P(π, c). The intersection number of the v−path c
and the e−path π, denoted by Iπ,c is defined by:

Iπ,c =
p−1∑

k=0

q−1∑

i=0

Iπ,c(k, i) =
p−1∑

k=0

∑

i|xi=yk

Iπ,c(k, i) =
q−1∑

i=0

∑

k|xi=yk

Iπ,c(k, i).

Figure 6 and Figure 7 show two examples of intersection numbers.

Notation 5 We denote:

Iπ
π,c(i) =

p−1∑

k=0

Iπ,c(k, i) and Ic
π,c(k) =

q−1∑

i=0

Iπ,c(k, i)

3 Independence up to homotopy

The purpose of this section is to state and sketch the proof of the two following
theorems:

Theorem 1 Let π = (yk)k=0,... ,p be an e−path, c = (xi)i=0,... ,q and c′ =
(x′

i)i=0,... ,q′ be two v−paths on a digital surface Σ such that P(π, c) and P(π, c′)
hold. If c′ is v−homotopic to c in Σ (in Σ \ {y0, yp} if π is not closed), then
Iπ,c = Iπ,c′ .

Theorem 2 Let c = (xi)i=0,... ,q be a v−path of a digital surface Σ , π =
(yk)k=0,... ,p and π′ = (y′

k)k=0,... ,p′ be two e−paths such that P(π, c) and P(π′, c)
hold. If π′ and π are e−homotopic in Σ (in Σ \ {x0, xq} if c is not closed), then
Iπ,c = Iπ′,c.
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We first prove Theorem 1, and Theorem 2 will appear as a corollary of Theorem 1.
Since v−homotopy and L−deformation are equivalent relations, then we can

prove the equality when considering the latter relation between the paths c
and c′. Furthermore, to prove these properties for any L−deformation, it is
sufficient to prove it for an elementary L−deformation. Now, in order to prove
this equality, we consider the contribution of intersection intervals between the
two paths π and c on a first hand, π and c′ on the other hand. But these intervals
can have very bad properties when considering the general case, especially when
π has local back an forths (see Definition 6). So, to avoid this special cases, we
first suppose that the path π has no local back and forth and prove Theorem 1
in this case. In a second step, we prove that the intersection number between
a v−path c and an e−path π is left unchanged when one removes all back and
forths in π.

First we state some technical lemmas.

3.1 Important lemmas

Let π = (yk)k=0,... ,p be an e−path with no local back and forth on Σ, then we
have the three following lemmas:

Lemma 2 Let k ∈ [1, p − 1] if π is not closed and k ∈ [0, p] otherwise. If
x1 and x2 are two surfels of a given loop containing the surfel yk such that
{x1, x2} ∩ {yk−1, yk, yk+1} = ∅, then we have either {x1, x2} ⊂ Leftπ(k) or
{x1, x2} ⊂ Rightπ(k).

Lemma 3 Let k ∈ [1, p − 2] if π is not closed and k ∈ [0, p − 1] otherwise.
If x is a surfel such that x /∈ {yk−1, yk, yk+1, yk+2} and x, yk and yk+1 are
included in a common loop, then: x ∈ Rightπ(k) (resp. Leftπ(k)) if and only if
x ∈ Rightπ(k + 1) (resp. Leftπ(k + 1)).

Lemma 4 Let k ∈ [1, p − 3] if π is not closed and k ∈ [0, p − 2] otherwise. If
k is such that yk, yk+1 and yk+2 are included in a common loop, yk−1 6= yk+2
and yk+3 6= yk, then yk+2 ∈ Rightπ(k) (resp. Leftπ(k)) if and only if yk ∈
Rightπ(k + 2) (resp. Leftπ(k + 2)).

3.2 Independence when π has no local back and forth

In order to prove the Theorem 1, we use the following proposition:

Proposition 5 Let c = (xi)i=0,... ,q and c′ = (x′
i)i=0,... ,q′ be two v−paths on a

digital surface Σ, let π = (yk)k=0,... ,p be an e−path with no local back and forth
such that P(π, c) and P(π, c′) hold. If c′ is an elementary L−deformation of c
in Σ (in Σ \ {y0, yp} if π is not closed) then Iπ,c′ = Iπ,c.

In the sequel of this subsection, c and c′ are v−paths satisfying the hypothesis
of Proposition 5. From the very definition of the elementary L−deformation, c′

is obtained by the removal in c of the surfel xl (0 < l < q if c is not closed,
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and 0 ≤ l ≤ q otherwise). This means that c′ = (x′
0, . . . , x′

q−1) where x′
i = xi if

0 ≤ i < l and x′
i = xi+1 if l ≤ i < q.

We have to prove that Iπ,c = Iπ,c′ with Iπ,c =
q−1∑

i=0

Iπ
π,c(i) and Iπ,c′ =

q−2∑

i=0

Iπ
π,c′(i).

For i = 0, . . . , l − 2 if c is closed and for i = 1, . . . , l − 2 otherwise, we have
xi−1 = x′

i−1, xi = x′
i and xi+1 = x′

i+1, so that Iπ
π,c′(i) = Iπ

π,c(i). If c is not closed
then Iπ

π,c′(0) = Iπ
π,c(0) = 0 since x0 = x′

0 /∈ π∗. Similarly, for i = l + 1, . . . , q − 2
we have x′

i−1 = xi, x′
i = xi+1 and x′

i+1 = xi+2, so that Iπ
π,c′(i) = Iπ

π,c(i + 1).
Finally we have to evaluate the difference :

Iπ,c − Iπ,c′ =
[Iπ

π,c(l − 1) + Iπ
π,c(l) + Iπ

π,c(l + 1)
] − [Iπ

π,c′(l − 1) + Iπ
π,c′(l)

]

(1)

In order to prove that this difference is zero, we sum the contributions of inter-
section intervals between π and the three surfels {xl−1, xl, xl+1} of c on a first
hand, and between π and the two surfels {x′

l−1, x
′
l} of c′ on the other hand.

Definition 11 Let b = (z0, . . . , zr) be an e-path, and d = (t0, . . . , ts) be a
v−path. Let X be a set of integers in [0, s] (X will be either {l − 1, l, l + 1} or
{l − 1, l}). We define the set of intersection intervals between the path b and d
in X by:

Λb,d(X) = {[k1, k2]| ∀k ∈ [k1, k2], ∃h ∈ X, zk = th and ∀i ∈ X, ti /∈ {zk1−1, zk2+1}}
When applying this definition, we shall use b = π and d = c or d = c′.

In other words, an interval [k1, k2] is a maximal sequence of subscripts of
surfels of π which belong to a certain subset of c∗. The idea of the following is
that the deletion of a surfel in c will either suppress, reduce or disconnect such
intersection intervals but the sum of the contributions of the resulting intervals
will be equal to the contribution of the initial interval. More precisely, we shall
prove:

Proposition 6 Denoting Λ = Λπ,c({l − 1, l, l + 1}) and Λ′ = Λπ,c′({l − 1, l}),
then ∀λ ∈ Λ:

∑

k∈λ

Iπ,c(k, l − 1) + Iπ,c(k, l) + Iπ,c(k, l + 1) =
∑

λ′∈Λ′
λ′⊂λ

∑

k∈λ′
Iπ,c′(k, l − 1) + Iπ,c′(k, l)

Sketch of proof: To prove this proposition, we first note that the intersection
intervals in Λ must have a length l ≤ 3 or the three surfels xl−1, xl and xl+1
must be pairwise e−adjacent as in the only two possible configurations depicted
in Figure 8. The equality of Proposition 6 is shown by using Lemma 2 for intervals
whith a length 1, Lemma 3 for intervals with a length 2 and Lemma 4 for intervals
with a length 3. For intervals with a length greater then 3, the proof uses these
three lemmas and considerations about periodicity of π in this special case. 2
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Fig. 8. Two cases when 3 surfels are pairwise e−adjacent.

Sketch of proof of Proposition 5:
Since {k ∈ [0, p] | yk ∈ {xl−1, xl, xl+1}} =

⋃

λ∈Λ

λ and the λ ∈ Λ are pairwise

disjoint, and similarly for Λ′, due to equation (1) and Proposition 6, we have:

Iπ,c − Iπ,c′ =∑

λ∈Λ

∑

k∈λ

Iπ,c(k, l−1)+Iπ,c(k, l)+Iπ,c(k, l+1)−
∑

λ∈Λ

∑

λ′∈Λ′
λ′⊂λ

∑

k∈λ′
Iπ,c′(k, l−1)+Iπ,c′(k, l)

= 0. 2

3.3 Independence under Shrunk operation

Given an e−path π = (yk)k=0,... ,p, we define the operations shrunk(π) and
Shrunk(π):

Definition 12 Let π = (yk)k=0,... ,p be an e−path such that that there exists l,
0 < l < p (0 ≤ l ≤ p if π is closed) such that yl−1 = yl+1 and for all l′ such
that yl′−1 = yl′+1, then l < l′. We define shrunk(π) as the path obtained by the
deletion in π of the two surfels yl and yl+1. Remark that shrunk(π) is still an
e−path since yl−1(= yl+1) is e−adjacent to yl+2.

Shrunk(π) is the path obtained after sequential applications of shrunk on π
until the resulting path has no local back and forth.

The following lemma means that removing all back and forths in the e−path
leaves the intersection number unchanged.

Lemma 7 Let π = (yk)k=0,... ,p be an e−path on Σ and c = (xi)i=0,... ,q a v−path
on Σ such that P(π, c) holds then Iπ,c = IShrunk(π),c.

In order to prove this lemma, it is sufficient to prove that Iπ,c = Ishrunk(π),c.
To to this, we first observe that if π has its first local back and forth at yl

(l ∈ [0, p] if π is closed, l ∈ [1, p − 1] otherwise) then Iπ,c − IShrunk(π),c =
Ic

π,c(l − 1) + Ic
π,c(l) + Ic

π,c(l + 1) − Ic
shrunk(π),c(l − 1). Then, we can prove for

i = 0, . . . , q−1 that Iπ,c(l−1, i)+Iπ,c(l, i)+Iπ,c(l+1, i)−Ishrunk(π),c(l−1, i) = 0.
Several cases must be examined depending on the position of surfels xi, xi−1
and xi+1 relative to the surfels yl−2, yl−1 = yl+1, yl and yl+2. Each case is
straightforward.
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3.4 Proofs of the main results

Proof of Theorem 1: By induction, it is sufficient to prove Theorem 1 in
the case when c′ is an elementary L−deformation of c. If π′ = Shrunk(π), then
lemma 7 shows that Iπ,c = Iπ′,c. Since π′ has no local back and forth, and since
c′ is an elementary L−deformation of c′ in Σ (in Σ \ {y0, yp} if π is not closed),
then from Proposition 5 we have : Iπ′,c = Iπ′,c′ . Now, Lemma 7 implies that
IShrunk(π),c′ = Iπ,c′ . Finally, Iπ,c = Iπ,c′ . 2

Sketch of proof of Theorem 2: It is sufficient to prove Theorem 2 in the case
when π′ is an elementary H−deformation of π. Hence we assume π = π1.α.π2
and π′ = π1.α

′.π2 with α and α′ being two e−paths with same extremities and
being contained in a loop L.

Then, we prove that c is v−homotopic to a v−path c′ which contains no
surfel of the loop L so that Iπ,c′ = Iπ′,c′ . From Theorem 1, we have Iπ,c =
Iπ,c′ = Iπ′,c′ = Iπ′,c. 2

4 A new Jordan theorem

Definition 13 A simple closed n−curve of surfels in Σ is an n−connected set
C of surfels such that for any x ∈ C, the surfel x has exactly two n−neighbors
in C.

Definition 14 For a simple closed n−curve C there exists a sequence c =
(xi)i=0,... ,q with q = Card(C) such that for i, j ∈ [0, q] we have xi, xj ∈ C,
and such that xi is n−adjacent to xj if and only if i = j + 1[q] or i = j − 1[q].
Such a closed path c is called a parametrization of C.

We shall use the following theorem:

Theorem 3 (see [7]) A digital surface is an e−connected set of surfel.

Using the notion of the intersection number, we prove:

Theorem 4 Let (n, n) ∈ {(e, v), (v, e)}. If π = (yk)k=0,... ,p is a parametrization
of a simple closed n−curve of surfels on a digital surface Σ, not included in a
loop, such that π 'n π0 = (y, y) (π is n−homotopic to a path reduced to a single
surfel y), then Σ \ π∗ has exactly two n−connected components.

In the sequel of this section, π = (yk)k=0,... ,p satisfies the hypothesis of
Theorem 4. Moreover, to improve the readability, we assume that n = e. The
idea of the proof is the same in the case n = v. We need the two following
lemmas :

Lemma 8 For any surfel yk of π there exists two surfels α and β such that
α ∈ Rightπ(k) and β ∈ Leftπ(k).

Lemma 8 is a consequence of the fact that π is not contained in a loop.
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Lemma 9 There exists two surfels α and β in Σ \ π∗ which are v−adjacent to
a surfel yk of π and which are not v−connected in Σ \ π∗.

Proof: Let α and β be the two surfels defined in Lemma 8. Now, we suppose
by contraposition the existence of a v-path c = (xi)i=0,... ,q in Σ \π∗ between the
surfels α and β, v−neighbors of the surfel yk in π and which does not intersect
π∗. We denote c′ = (x0 = α, . . . , xq = β, yk, α) which is a closed v−path. Then,
from the definition of α and β, Iπ,c′ = ±1. Now, since π is e−homotopic to a
single surfel and from Theorem 2 we should have Iπ,c′ = 0. This contradicts the
existence of π. 2

Lemma 10 Let yk and yk+1 be two consecutive surfels of π. For any surfel
s /∈ π∗, which is v−adjacent to yk, there exists a surfel t /∈ π∗, v−adjacent to
yk+1, and a v−path from s to t in Σ \ π∗.

This lemma can be proved by local considerations.
Proof of theorem 4: From lemma 9 there exists two surfels α and β which are
v−adjacent to a surfel yk and not v−connected in Σ \ π∗. In particular, Σ \ π∗

has at least two v−connected components.
Furthermore, for any surfel x ∈ Σ \ π∗, since Σ is e−connected, then there

exists a v−path c′ in Σ \ π∗ from x to a surfel which is v−adjacent to a surfel
of π∗.

Using inductively lemma 10, we see that we can prolong the v−path c′ to a
v−path in Σ \ π∗ from x to α or from x to β. This implies that Σ \ π∗ has at
most two v−connected components. 2

Conclusion

We have defined the intersection number between a v−path and an e−path lying
on a digital surface, and we have proved that this number of “real” intersections
between two surfels paths is invariant under homotopic deformations of the two
paths. The intersection number is a new “topological invariant” in the context
of digital surfaces. Thus, the intersection number has been used to easily prove
a new Jordan theorem for surfels curves. It appears to be a useful tool for digital
topology. In further work, we shall use the intersection number to study topology
preservation in digital surfaces, following the work of [5].

References

1. G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in
cubics grids. Patterns Recognition Letters, 15:1003–1011, 1994.

2. T.J. Fan, G. Medioni, and R. Nevata. Recognising 3d objects using surface descrip-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1111:1140–
1157, 1989.

3. T. Y. Kong. A Digital Fundamental Group, volume 13. 1989.



Intersection Number of Paths Lying on a Digital Surface 117

4. A. Lenoir. Fast estimation of mean curvature on the surface of a 3d discrete object.
In Proceedings of DGCI’97, Lecture Notes in Computer Science, volume 1347, pages
213–222, 1997.

5. R. Malgouyres and A. Lenoir. Topology preservation within digital surfaces. Ma-
chine Graphics and Vision, 7(1/2):417–426, 1998. Proceeding of the Computer
Graphics and Image Processing.

6. A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. CVGIP: Graphical Models
and Image Processing, 53(4):305–312, 1991.

7. J. K. Udupa. Multidimensional digital boundaries. CVGIP: Graphical Models and
Image Processing, 56:311–323, 1994.


	Basic notions and definitions
	Digital surface
	Surfels Neighborhood
	Surfels paths
	Homotopy of paths, Fundamental Group

	The intersection number : Definition
	Independence up to homotopy
	Important lemmas
	Independence when $pi $ has no local back and forth
	Independence under $@mathit {Shrunk}$ operation
	Proofs of the main results

	A new Jordan theorem

