Skip to main content

Fractal Video Compression on Shared Memory Systems

  • Conference paper
  • First Online:
Parallel Computation (ACPC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1557))

Abstract

Fractal image compression is known to be very demanding with respect to CPU-power, and demands are higher again for fractal video compression. Methods to speed up the encoding process can be divided into two groups: one contains sequential speedup-methods like classification, transformation into other search spaces,...The other possibility is the use of parallel systems. Here we like to show the possibilities and experiences with shared memory MIMD machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Andonova. Parallel Fractal-Based Predictive Coding of Moving Images. PhD thesis, Institute of Automation Technology, University of Bremen, Düsseldorf, Germany, 1995.

    Google Scholar 

  2. B. Bani-Eqbal. Speeding up fractal image compression. In Proceedings from IS&T/SPIE 1995 Symposium on Electronic Imaging: Science & Technology, volume 2418: Still-Image Compression, pages 67–74, 1995.

    Google Scholar 

  3. M. Barakat and J.L. Dugelay. Image sequence coding using 3-D IFS. In Proceedings of the IEEE International Conference on Image Processing (ICIP’96), Lausanne, September1996. IEEE Signal Processing Society.

    Google Scholar 

  4. Barr E. Bauer. Practical Parallel Programming. Academic Press, New York, NY, USA, 1992.

    Google Scholar 

  5. Y. Fisher, editor. Fractal Image Compression: Theory and Application. Springer-Verlag, New York, 1995.

    Google Scholar 

  6. Y. Fisher, T.P. Shen, and D. Rogovin. Fractal (self-VQ) encoding of video sequences. In A.K. Katsaggelos, editor, Visual Communications and Image Processing’ 94, volume 2308 of SPIE Proceedings, Chicago, IL, USA, September 1994.

    Google Scholar 

  7. D.J. Le Gall. The MPEG video compression algorithm. Signal Processing: Image Communications, 4(4):129–140, 1992.

    Article  Google Scholar 

  8. M. Gharavi-Alkhansari. Fractal-Based Image and Video Coding Using Matching Pursuit PhD thesis, University of Illinois, 1997.

    Google Scholar 

  9. S. Giordano, M. Pagano, F. Russo, and D. Sparano. A novel multiscale fractal image coding algorithm based on SIMD parallel hardware. In Proceedings of the International Picture Coding Symposium (PCS’96), pages 525–530, Melbourne, March 1996.

    Google Scholar 

  10. J. Hämmerle and A. Uhl. Approaching real-time processing for fractal compression. In J. Biemond and E.J. Delp, editors, Visual Communications and Image Processing’ 97, volume 3024 of SPIE Proceedings, pages 514–525, San Jose, February 1997.

    Google Scholar 

  11. H. Hartenstein and D. Saupe. Lossless acceleration of fractal image encoding via the fast fourier transform. submitted to Signal Processing, 1998.

    Google Scholar 

  12. C. Hufnagl, J. Hämmerle, A. Pommer, A. Uhl, and M. Vajtersic. Fractal image compression on massively parallel arrays. In Proceedings of the International Picture Coding Symposium (PCS’97), volume 143 of ITG-Fachberichte, pages 77–80. VDE-Verlag, Berlin, Offenbach, September 1997.

    Google Scholar 

  13. ITU-T recommendation H.261, March 1993.

    Google Scholar 

  14. D.J. Jackson and W. Mahmoud. Parallel pipelined fractal image compression using quadtree recomposition. The Computer Journal, 39(1):1–13, 1996.

    Article  Google Scholar 

  15. A.E. Jacquin. Fractal image coding: A review. Proceedings of the IEEE, 81(10):1451–1465, October 1993.

    Google Scholar 

  16. C-S. Kim and S-U. Lee. Fractal coding of video sequence by circular prediction mapping. Fractals, 5 (Supplementary Issue):75–88, April 1997.

    Google Scholar 

  17. M.S. Lazar and L.T. Bruton. Fractal block coding of digital video. IEEE Transactions on Circuits and Systems for Video Technology, 4(3):297–308, June 1994.

    Google Scholar 

  18. H. Li, M. Novak, and R. Forchheimer. Fractal-based image sequence compression scheme. Optical Engineering, 32(7):1588–1595, July 1993.

    Google Scholar 

  19. N. Lu, editor. Fractal Imaging. Academic Press, San Diego,CA, 1997.

    MATH  Google Scholar 

  20. B. Marchand. Introduction to Parallel Programming European Super Computing Team, Silicon Graphics, February 1997.

    Google Scholar 

  21. J.A. Nicholls and D.M. Monro. Scalable video by software. In Proceedings of the 1996 International Conference on Acoustics, Speech and Signal Processing (ICASSP’96), Atlanta, May 1996.

    Google Scholar 

  22. A. Pommer. A survey of fractal video coding. In B. Zovko-Cihlar, S. Grgi’c, and M. Grgi’c, editors, International Workshop on Systems, Signals and Image Processing, pages 55–58, Zagreb, Croatia, June 1998. online version follows.

    Google Scholar 

  23. D. Saupe and R. Hamzaoui. Complexity reduction methods for fractal image compression. In J.M. Blackledge, editor, Proc. IMA Conf. on Image Processing; Mathematical Methods and Applications (1994), pages 211–229. Oxford University Press, September1995.

    Google Scholar 

  24. D. Saupe, R. Hamzaoui, and H. Hartenstein. Fractal image compression-an introductory overview. In D. Saupe and J. Hart, editors, Fractal Models for Image Synthesis, Compression and Analysis ACM SIGGRAPH’96 Course Notes 27, New Orleans, Louisiana, August 1996.

    Google Scholar 

  25. A. Uhl and J. Hämmerle. Fractal image compression on MIMD architectures I: Basic algorithms. Parallel Algorithms and Applications, 11(3–4):187–204, 1997.

    MathSciNet  Google Scholar 

  26. G.D. Veccia, R. Distasi, M. Nappi, and M. Pepe. Fractal image compresson on a MIMD architecture. In H. Liddel, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High Performance Computing and Networking. Proceedings of HPCN Europe 1996, volume 1067 of Lecture Notes on Computer Science, pages 961–963. Springer, 1996.

    Google Scholar 

  27. G.K. Wallace. The JPEG still picture compression standard. Communications of the ACM, 34(4):30–44, 1991.

    Article  Google Scholar 

  28. M.V. Wickerhauser. Adapted wavelet analysis from theory to software. A.K. Peters, Wellesley, Mass., 1994.

    MATH  Google Scholar 

  29. P. Zinterhof and P. Zinterhof jun. A parallel version of an algorithm for fractal image compression. In Workshop Paragraph 1994, number 94–17 in RISC-Linz Report Series, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pommer, A. (1999). Fractal Video Compression on Shared Memory Systems. In: Zinterhof, P., Vajteršic, M., Uhl, A. (eds) Parallel Computation. ACPC 1999. Lecture Notes in Computer Science, vol 1557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49164-3_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-49164-3_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65641-8

  • Online ISBN: 978-3-540-49164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics