Skip to main content

The Locality Property in Topological Irregular Graph Hierarchies

  • Conference paper
  • First Online:
Parallel Computation (ACPC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1557))

  • 417 Accesses

Abstract

Graph contraction is applied in many areas of computer science, for instance, as a subprocess in parallel graph partitioning. Parallel graph partitioning is usually implemented as a poly-algorithm intended to speed up the solving of systems of linear equations. Image analysis is another field of application for graph contraction. There regular and irregular image hierarchies are built by coarsening images.

In this paper a general structure of (multilevel) graph contraction is given. The graphs of these coarsening processes are given a topological structure which allows to use concepts like the neighborhood, the interior and the boundary of sets in a well-defined manner. It is shown in this paper that the various coarsenings used in practice are continuous and therefore local processes. This fact enables the efficient parallelization of these algorithms. This paper also demonstrates that the efficient parallel implementations which already exist for multilevel partitioning algorithms can easily be applied to general image hierarchies.

This work was supported by the Austrian Science Fund (Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahronovitz, E., Aubert, J.-P., Fiorio, Chr.: The Star-Topology: A Topology for Image Analysis. 5th International Workshop, DGCI’95 (1995)

    Google Scholar 

  2. Alexandroff, P., Hopf, H.: Topologie, Erster Band. Springer-Verlag, Berlin (1935)

    Google Scholar 

  3. Eckhardt, U., Hundt, E.: Topological Approach to Mathematical Morphology. preprint (1997)

    Google Scholar 

  4. Gupta, A.: Fast and Effective Algorithms for Graph Partitioning and Sparse-Matrix Ordering. IBM, Journal of Research & Development (1997)

    Google Scholar 

  5. Heijmans, H.: Morphological Image Operators. Academic Press (1994)

    Google Scholar 

  6. Karypis, G., Kumar, V.: A Coarse-Grain Parallel Formulation of Multilevel k-Way Partitioning Algorithm. Proceedings of the 8th SIAM conf. on Parallel Processing for Scientific Computing (1997)

    Google Scholar 

  7. Karypis, G., Kumar, V.: METIS, a Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, version 3.0.3. METIS, Minnesota (1997)

    Google Scholar 

  8. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer Graphics and Connected Topologies on Finite Ordered Sets. Topology Appl. 36 (1980)

    Google Scholar 

  9. Kofler, H.: Irregular Graph Hierarchies Equipped with a Topological Structure. 14th Intern. Conference ICPR’98, Brisbane, Australia (1998)

    Google Scholar 

  10. Kofler, H.: The Topological Consistence of Path Connectedness in Regular and Irregular Structures. 7th Intern. Workshop, SSPR’89, Sydney (1998)

    Google Scholar 

  11. Kovalevsky, V.A.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics and Image Processing 46 (1989)

    Google Scholar 

  12. Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEE Proceedings Vis. Image Signal Process., Vol. 142 (1995)

    Google Scholar 

  13. Latecki, L.: Digitale und Allgemeine Topologie in der Bildhaften Wissensrepräsentation. Ph.D.-Thesis, Hamburg (1992)

    Google Scholar 

  14. Preis, R., Diekmann, R.: The Party Partitioning-Library. User Guide-Version 1.1. Univ. Paderborn, Germany (1996)

    Google Scholar 

  15. Ptak, P., Kofler, H., Kropatsch, W.: Digital Topologies Revisited. 7th International Workshop, DGCI’97, Montpellier, France, Springer series (1997)

    Google Scholar 

  16. Ueberhuber, C.W.: Numerical Computation 1 and 2. Methods, Software, and Analysis. Springer-Verlag, Heidelberg (1997)

    Google Scholar 

  17. Wyse, F., Marcus, D. et al.: Solution to Problem 5712. Am. Math. Monthly 77 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kofler, H., Haunschmid, E.J., Gansterer, W.N., Ueberhuber, C.W. (1999). The Locality Property in Topological Irregular Graph Hierarchies. In: Zinterhof, P., Vajteršic, M., Uhl, A. (eds) Parallel Computation. ACPC 1999. Lecture Notes in Computer Science, vol 1557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49164-3_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-49164-3_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65641-8

  • Online ISBN: 978-3-540-49164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics