Skip to main content

Topological Quantum Computation

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

Following a suggestion of A. Kitaev, we explore the connection between fault-tolerant quantum computation and nonabelian quantum statistics in two spatial dimensions. A suitably designed spin system can support localized excitations (quasiparticles) that exhibit long-range nonabelian Aharonov-Bohm interactions. Quantum information encoded in the charges of the quasiparticles is highly resistant to decoherence, and can be reliably processed by carrying one quasiparticle around another. If information is encoded in pairs of quasiparticles, then the Aharonov-Bohm interactions can be adequate for universal fault-tolerant quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982).

    Article  MathSciNet  Google Scholar 

  2. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. Lond. A 400, 96 (1985).

    Google Scholar 

  3. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposiumoon Fundamentals of Computer Science (Los Alamitos, CA, IEEE Press, 1994), pp. 124–134.

    Chapter  Google Scholar 

  4. R. Landauer, Is quantum mechanics useful? Phil. Tran. R. Soc. Lond. 353, 367 (1995).

    Article  MathSciNet  Google Scholar 

  5. R. Landauer, The physical nature of information, Phys. Lett. A 217, 188 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Landauer, Is quantum mechanically coherent computation useful? In Proc. Drexel-4 Symposium on Quantum Nonintegrability-Quantum-Classical Correspondence, Philadelphia, PA, 8 September 1994, ed. D. H. Feng and B.-L. Hu (Boston, International Press, 1997).

    Google Scholar 

  7. W. G. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A 51, 992 (1995).

    Article  MathSciNet  Google Scholar 

  8. S. Haroche and J. M. Raimond, Quantum computing: dream or nightmare? Phys. Today 49(8), 51 (1996).

    Article  Google Scholar 

  9. P. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev. A 52, 2493 (1995).

    Article  Google Scholar 

  10. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. M. Steane, Multiple particle interference and quantum error correction, Proc. Roy. Soc. Lond. A 452, 2551 (1996).

    MATH  MathSciNet  Google Scholar 

  12. P. Shor, Fault-tolerant quantum computation, in Proceedings of the Symposium on the Foundations of Computer Science (Los Alamitos, CA: IEEE Press, online preprint quant-ph/9605011, 1996).

    Google Scholar 

  13. A. Yu. Kitaev, Quantum error correction with imperfect gates, in Quantum Communication, Computing and Measurement ed. O. Hirota, A. S. Holevo, and C. M. Caves (New York, Plenum, 1997).

    Google Scholar 

  14. D. DiVincenzo and P. Shor, Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260 (1996).

    Article  Google Scholar 

  15. A. M. Steane, Active stabilization, quantum computation and quantum state synthesis, Phys. Rev. Lett. 78, 2252 (1997).

    Article  Google Scholar 

  16. D. Gottesman, A theory of fault-tolerant quantum computation, Phys. Rev. A (online preprint quant-ph/9702029, 1997).

    Google Scholar 

  17. E. Knill and R. Laflamme, Concatenated quantum codes (online preprint quant-ph/9608012, 1996).

    Google Scholar 

  18. E. Knill, R. Laflamme, and W, Zurek, Accuracy threshold for quantum computation, (online preprint quant-ph/9610011, 1996).

    Google Scholar 

  19. E. Knill, R. Laflamme, and W. Zurek, Resilient quantum computation: error models and thresholds Science 279, 342 (1998).

    Article  Google Scholar 

  20. D. Aharonov and M. Ben-Or, Fault tolerant quantum computation with constant error (online preprint quant-ph/9611025, 1996).

    Google Scholar 

  21. A. Yu. Kitaev, Quantum computing: algorithms and error correction, Russian Math. Surveys 6 (1997).

    Google Scholar 

  22. J. Preskill, Reliable quantum computers, Proc. R. Soc. Lond. A 454, 385 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Zalka, Threshold estimate for fault tolerant quantum computing (online preprint quant-ph/9612028, 1996).

    Google Scholar 

  24. A. Yu. Kitaev, Fault-tolerant quantum computation by anyons (online preprint quant-ph/9707021, 1997).

    Google Scholar 

  25. J. Preskill, Quantum computing: pro and con, Proc. Roy. Soc. Lond. A 454, 469(1998).

    MATH  MathSciNet  Google Scholar 

  26. R. Prange and S. Girvin, eds., The Quantum Hall Effect (New York, Springer-Verlag, 1987).

    Google Scholar 

  27. N. Read and E. Rezayi, Quasiholes and fermionic zero modes of paired fraction quantum Hall states: the mechanism for nonabelian statistics (online preprint condmat/9609079, 1996).

    Google Scholar 

  28. C. Nayak and F. Wilczek, 2n quasihole states realize 2n-1-dimensional spinor braiding statistics in paired quantum Hall states (online preprint cond-mat/9605145, 1996).

    Google Scholar 

  29. G. ’Hooft, On the phase transition toward permanent quark confinement, Nucl. Phys. B 138, 1 (1978).

    Article  Google Scholar 

  30. M. Alford, S. Coleman, and J. March-Russell, Disentangling nonabelian discrete quantum hair, Nucl. Phys.B 351, 735 (1991).

    Article  MathSciNet  Google Scholar 

  31. F. A. Bais, Flux metamorphosis, Nucl. Phys.B 170, 32 (1980).

    Article  MathSciNet  Google Scholar 

  32. H.-K. Lo and J. Preskill, Nonabelian vortices and nonabelian statistics, Phys. Rev. D 48, 4821 (1993)

    Article  MathSciNet  Google Scholar 

  33. G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360, 362 (1991).

    Article  MathSciNet  Google Scholar 

  34. M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek, Interactions and excitations of nonabelian vortices, Phys. Rev. Lett. 64, 1632 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Preskill and L. M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys. B 341, 50 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  36. D. A. Barrington, Bounded width polynomial size branching programs recognize exactly those languages in NC1, J. Comp. Sys. Sci. 38, 150–164 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Yu. Kitaev, Quantum measurements and the abelian stabilizer problem (online preprint quant-ph/9511026, 1995).

    Google Scholar 

  38. S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14, 2460 (1976).

    Article  MathSciNet  Google Scholar 

  39. D. Dieks, Communication by electron-paramagnetic-resonance devices. Phys. Lett. A 92, 271 (1982).

    Article  Google Scholar 

  40. W. K. Wootters, and W. H. Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982).

    Article  Google Scholar 

  41. T. Banks, M. E. Peskin, and L. Susskind, Difficulties for the evolution of pure states into mixed states, Nucl. Phys. B 244, 125 (1984).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walter Ogburn, R., Preskill, J. (1999). Topological Quantum Computation. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics