Skip to main content

Implementation of Quantum Controlled-NOT Gates Using Asymmetric Semiconductor Quantum Dots

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

We propose an implementation of a quantum controlled-NOT gate on the basis of dipole-dipole interacting asymmetric quantum dots. Our implementation does not require application of an external electric field as the one proposed earlier [Barenco et. al, Phys. Rev. Lett., 74, 4083 (1995)]. Results of our numerical simulations show that owing to the dot asymmetricity, the coupling constant of the dipole-dipole interaction can be made as large as wd ≈ 50 meV while keeping the probability of the spontaneous emission low. This provides conditions for resolving different entangled quantum states experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74 (1995) 4091

    Article  Google Scholar 

  2. Gershenfeld, N.A., Chuang, I.: Bulk spin-resonance quantum computation. Science 275 (1997) 350

    Article  MathSciNet  Google Scholar 

  3. Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62 (1989) 2124

    Article  Google Scholar 

  4. Barenco, A., Deutsch, D., Eker, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74 (1995) 4083

    Article  Google Scholar 

  5. Jones, J.A., Mosca, M.: Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computer. LANL preprint quant-ph/980127, 1998

    Google Scholar 

  6. Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51 (1995) 992

    Article  MathSciNet  Google Scholar 

  7. Bandyopadhyay, S., Balandin, A., Roychowdhury, F., Vatan, F.: Nanoelectronic implementation of reversible and quantum logic gates. Superlattis. Microstruct. (Special issue in honor of Rolf Landauer) 23 (1998) 445

    Article  Google Scholar 

  8. Bandyopadhyay, S., Balandin, A.: Quantum dot version of the Toffoli-Fredkin gate and its application in quantum architectures. Proceed. of the March Meeting of The American Physical Society, Los Angeles, CA, USA, 1998

    Google Scholar 

  9. Lloyd, S.: A potentially realizable quantum computer. Science. Vol. 261 (1993) 1569

    Article  Google Scholar 

  10. Wang, K.L., Balandin, A.: (unpublished)

    Google Scholar 

  11. Yuh, P.F., Wang, K.L.: Large Stark effects for transitions from local states to global states in quantum well structures. IEEE J. Quantum Electr. Vol. 25 (1989) 1671

    Article  Google Scholar 

  12. Yuh, P.F., Wang, K.L.: Optical transitions in step quantum well. J. Appl. Phys. 65 (1989) 4377

    Article  Google Scholar 

  13. Yuh, P.F., Wang, K.L.: Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38 (1988) 8377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balandin, A.A., Wang, K.L. (1999). Implementation of Quantum Controlled-NOT Gates Using Asymmetric Semiconductor Quantum Dots. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics