Skip to main content

Incremental FO( +, < ) Maintenance of All-Pairs Shortest Paths for Undirected Graphs after Insertions and Deletions

  • Conference paper
  • First Online:
Database Theory — ICDT’99 (ICDT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1540))

Included in the following conference series:

Abstract

We give incremental algorithms, which support both edge insertions and deletions, for the all-pairs shortest-distance problem (APSD) in weighted undirected graphs. Our algorithms use first-order queries, + (addition) and < (less-than); they store O(n 2) number of tuples, where n is the number of vertices, and have AC 0 data complexity for integer weights. Since FO(+,<) is supported by almost all current database systems, our maintenance algorithms are more appropriate for database applications than non-database query type of maintenance algorithms. Our algorithms can also be extended to duplicate semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Ausiello, G. F. Italiano, A. M. Spaccamela, and U. Nanni. On-line computation of minimal and maximal length path. Theor.Comput.Sci., Elsevier Science Publisher, 95,2:245–261, 1992.

    MATH  Google Scholar 

  2. J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 61–71, 1986.

    Google Scholar 

  3. A. L. Buchsbaum, P. C. Kanellakis, and J. S. Vitter. A data structure for arc insertion and regular path finding. In Proc. ACM-SIAM Symp. on Discrete Algorithms, 1990.

    Google Scholar 

  4. Hristo N. Djidjev, Grammati E. Pantziou, and Christos D. Zaroliagis. On-line and dynamic algorithms for shortest path problems. In STACS: Annual Symposium on Theoretical Aspects of Computer Science, 1995.

    Google Scholar 

  5. G. Dong and C. Pang. Maintaining transitive closure in first-order after node-set and edge-set deletions. Information Processing Letters, 62(3):193–199, 1997.

    Article  MathSciNet  Google Scholar 

  6. G. Dong and J. Su. Space bounded FOIES. In Proc. of the ACM Symposium on Principles of Database Systems, pages 139–150, mtMay 1995.

    Google Scholar 

  7. G. Dong and R. Topor. Incremental evaluation of datalog queries. In Proc. Int’l Conference on Database Theory, pages 282–296, Berlin, Germany, October 1992.

    Google Scholar 

  8. Guozhu Dong and Ramamohanarao Kotagiri. Incrementally evaluating constrained transitive closure by conjunctive querie. In International Conference on Deductive and Object-Oriented Databases, 1997.

    Google Scholar 

  9. S. Even and H. Gazit. Updating distances in dynamic graphs. Methods of Operations Research, 49:371–387, 1985.

    MATH  MathSciNet  Google Scholar 

  10. E. Feuerstein and A. Marchetti-Spaccamela. Dynamic algorithms for shortest paths in planar graphs. Theoretical Computer Science, 116(2):359–371, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Grumbach and J. Su. First-order definability over constraint databases. In Proceedings of Conference on Constraint Programming, 1995.

    Google Scholar 

  12. Philip N. Klein, Satish Rao, Monika H. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar graphs. In Proc. 26th Symp. Theory of Computing, pages 27–37. Assoc. for Computing Machinery, 1994.

    Google Scholar 

  13. Chaoyi Pang. Incremental Maintenance Reachability of Graph in First-order and Its extension. PhD thesis, The University of Melbourne, 1999.

    Google Scholar 

  14. Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel dynamic complexity class. In Proc. ACM Symp. on Principles of Database Systems, pages 210–221, 1994.

    Google Scholar 

  15. G. Ramalingam. Bounded Incremental Computation. LNCS 1089, 1996.

    MATH  Google Scholar 

  16. O. Shmueli and A. Itai. Maintenance of views. In Sigmod Record, volume 14(2), pages 240–255, 1984.

    Article  Google Scholar 

  17. P.M.N. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM Journal on Computing, 3(4):375–380, September 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pang, C., Kotagiri, R., Dong, G. (1999). Incremental FO( +, < ) Maintenance of All-Pairs Shortest Paths for Undirected Graphs after Insertions and Deletions. In: Beeri, C., Buneman, P. (eds) Database Theory — ICDT’99. ICDT 1999. Lecture Notes in Computer Science, vol 1540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49257-7_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-49257-7_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65452-0

  • Online ISBN: 978-3-540-49257-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics