Skip to main content

Formal Logics of Discovery and Hypothesis Formation by Machine

  • Conference paper
  • First Online:
Discovey Science (DS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1532))

Included in the following conference series:

Abstract

The following are the aims of the paper: (1) To call the attention of the community of Discovery Science to certain existing formal systems for DS developed in Prague in 60’s till 80’s suitable for DS and unfortunately largely unknown. (2) To illustrate the use of the calculi in question on the example of the GUHA method of hypothesis generation by computer, subjecting this method to a critical evaluation in the context of contemporary data mining. (3) To stress the importance of Fuzzy Logic for DS and inform on the present state of mathematical foundations of Fuzzy Logic. (4) Finally, to present a running research program of developing calculi of symbolic fuzzy logic for DS and for a fuzzy GUHA method

Partial support of the grant No. A1030601 of the Grant Agency of the Academy of Sciences of the Czech Republic is acknowledged. The authors thank to D. Harmancová for her help in preparing the text of this paper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, Menlo Park, 1996, pp. 307–328.

    Google Scholar 

  2. Agrawal, R., and Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases (1994).

    Google Scholar 

  3. Altrock C. VonFuzzy Logic and Neurofuzzy Applications Explained. Prentice Hall PTR UpperSaddle River, NJ 1995.

    Google Scholar 

  4. Buchanan, B.G. Logics of Scientific Discovery. Stanford AI Memo no. 47, Stanford University 1966.

    Google Scholar 

  5. Chatfield, C.Modelu ncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A 158 (1995), 419–466.

    Google Scholar 

  6. CODASYL Data Base Task Group. DBTG report. Tech. rep., ACM, 1971.

    Google Scholar 

  7. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, Menlo Park, 1996, pp. 1–36.

    Google Scholar 

  8. Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. Knowledge discovery in databases: An overview. In Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. Frawley, Eds. AAAI Press, Menlo Park, 1991, pp. 1–27.

    Google Scholar 

  9. Glymour, C., Madigan, D., Pregibon, D., and Smyth, P. Statistical inference and data mining. Communications of the ACM 39 (1996), 35–41.

    Article  Google Scholar 

  10. Hájek, P. On logics of discovery. In Math. Foundations of Computer Science; Lect. Notes in Comp. Sci. vol. 32 (1975), Springer, pp. 30–45.

    Google Scholar 

  11. Hájek, P. Decision problems of some statistically motivated monadic modal calculi. Int. J. for Man-Machine studies 15 (1981), 351–358.

    Article  MATH  Google Scholar 

  12. Hájek, P. The new version of the GUHA procedure ASSOC (generating hypotheses on associations)-mathematicalf oundations. In COMPSTAT 1984-Proceedings in Computational Statistics (1984), pp. 360–365.

    Google Scholar 

  13. Hájek, P. Metamathematics of fuzzy logic. Kluwer, 1998.

    Google Scholar 

  14. Hájek, P., Havel, I., and Chytil, M. The GUHA-method of automatic hypotheses determination. Computing 1 (1966), 293–308.

    Article  MATH  Google Scholar 

  15. Hájek, P., and Havránek, T. On generation of inductive hypotheses. Int. J. for Man-Machine studies 9 (1977), 415–438.

    Article  MATH  Google Scholar 

  16. Hájek, P., and Havránek, T. Mechanizing hypothesis formation (mathematical foundations for a general theory). Springer-Verlag, Berlin-Heidelberg-New York, 1978.

    Google Scholar 

  17. Hájek, P., Sochorová, A., and Zárová, J. GUHA for personal computers. Computational Statistics and Data Analysis 19 (1995), 149–153.

    Article  MATH  Google Scholar 

  18. Halova, J., Žák, P., Štrouf, O. QSAR of Catechol Analogs Against Malignant Melanoma by PC-GUHA and CATALYSTTM software systems, poster, VIII. Congress IUPAC, Geneve (Switzerland) 1997. Chimia 51 (1997), 5–12.

    Google Scholar 

  19. Hálová, J., Štrouf, O., Zák, P., Sochorová, A Uchida, N., Yuzuvi, T., Sakakibava, K., Hirota, M.: QSAR of Catechol Analogs Against Malignant Melanoma using fingerprint descriptors, Quant. Struct.-Act. Relat. 17 (1998), 37–39.

    Article  Google Scholar 

  20. Harmancová, D., Holeňa, M., and Sochorová, A. Overview of the GUHA method for automating knowledge discovery in statistical data sets. In Procedings of KESDA’98-International Conference on Knowledge Extraction from Statistical Data (1998), M. Noirhomme-Fraiture, Ed., pp. 39–52.

    Google Scholar 

  21. Havránek, T. The approximation problem in computational statistics. In Mathematical Foundations of Computer Science’ 75; Lect. Notes in Comp. Sci. vol. 32 (1975), J. Bečvář, Ed., pp. 258–265.

    Google Scholar 

  22. Havránek, T. Statistical quantfiers in observational calculi: an application in GUHA method. Theory and Decision 6 (1975), 213–230.

    Article  MATH  MathSciNet  Google Scholar 

  23. Havrá_nek, T. Towards a model theory of statistical theories. Synthese 36 (1977), 441–458.

    Article  MathSciNet  Google Scholar 

  24. HOLŇA, M. Exploratory data processing using a fuzzy generalization of the GUHA approach. In Fuzzy Logic, J. Baldwin, Ed. John Wiley and Sons, New York, 1996, pp. 213–229.

    Google Scholar 

  25. Holeňa, M. Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998), 101–125.

    Article  Google Scholar 

  26. Holsheimer, M., and Siebes, A. Data mining. The search for knowledge in databases. Tech. rep., CWI, Amsterdam, 1994.

    Google Scholar 

  27. Houtsma, M., and Swami, A. Set-oriented mining of association rules. Tech. rep., IBM Almaden Research Center, 1993.

    Google Scholar 

  28. Kamber, M., Han, J., and Chiang, J. Using data cubes for metarule-guided mining of multi-dimensional association rules. Tech. rep., Simon Fraser University, Database Systems Research Laboratory, 1997.

    Google Scholar 

  29. Kaušitz, J., Kulliffay, P., Puterová, B., and Pecen, L. Prognostic meaning of cystolic concentrations of ER, PS2, Cath-D, TPS, TK and cAMP in primary breast carcinomas for patient risk estimation and therapy selection. To appear in International Journal of Human Tumor Markers.

    Google Scholar 

  30. Keisler, U. J. Probability quantifiers. In Model-Theoretic Logics, J. Barwise and S. Feferman, Eds. Springer-Verlag, New York, 1985, pp. 539–556.

    Google Scholar 

  31. Klösgen, W. Efficient discovery of interesting statements in databases. Journal of Intelligent Information Systems 4 (1995), 53–69.

    Article  Google Scholar 

  32. Klösgen, W. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, Menlo Park, 1996, pp. 249–272.

    Google Scholar 

  33. Lin, D.I. and Kedem, Z. Pincer search: A new algorithm for discovering the maximum frequent set. In Proceedings of EDBT’98: 6th International Conference on Extending Database Technology (1998).

    Google Scholar 

  34. Mannila, H., and Räihä, K. Dependency inference. In Proceedings of the 13th International Conference on Very Large Data Bases (1987), pp. 155–158.

    Google Scholar 

  35. Mannila, H., Toivonen, H., and Verkamo, I. Efficient algorithms for discovering association rules. In Knowledge Discovery in Databases, U. Fayyad and R. Uthurusamy, Eds. AAAI Press, Menlo Park, 1994, pp. 181–192.

    Google Scholar 

  36. Mueller, A. Fast sequential an parallel algorithms for association rule mining: A comparison. Tech. rep., University of Maryland-College Park, Department of Computer Science, 1995.

    Google Scholar 

  37. Pecen, L., and Eben, K. Non-linear mathematical interpretation of the oncological data. Neural Network World, 6:683–690, 1996.

    Google Scholar 

  38. Pecen, L., Pelikán, E., Beran, H., and Pivka, D. Short-term fx market analysis and prediction. In Neural Networks in Financial Engeneering (1996), pp. 189–196.

    Google Scholar 

  39. Pecen, L., Ramešová, N., Pekián, E., and Beran, H. Application of the GUHA method on financial data. Neural Network World 5 (1995), 565–571.

    Google Scholar 

  40. Piatetsky-Shapiro, G. Analysis and presentation of strong rules. In Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. Frawley, Eds. AIAI Press, Menlo Park, 1991, pp. 229–248.

    Google Scholar 

  41. Plotkin, G. D. A further note on inductive generalization. Machine Intelligence 6 (1971), 101–124.

    MathSciNet  MATH  Google Scholar 

  42. Popper, K. R. The Logic of Scientific Discovery. Hutchinson Publ. Group Ltd., London, 1974.

    Google Scholar 

  43. Rauch, J. Logicalp roblems of statistical data analysis in data bases. In Proceedings of the Eleventh International Seminar on Data Base Management Systems (1988), pp. 53–63.

    Google Scholar 

  44. Rauch, J. Logical Calculi for knowledge discovery in databases, In: (Komarowski, Żytkov, ed.) Principles of Data Mining and Knowledge Discovery, Lect. Notes in AL, vol. 1263, Springer-Verlag 1997.

    Google Scholar 

  45. Rauch, J. Classes of four-fold table quantifiers, accepted for PKDD’98.

    Google Scholar 

  46. Rauch, J. Four-fold table predicate calculi for Discovery Science, poster, this volume.

    Google Scholar 

  47. Srikant, R., Vu, Q., and Agrawal, R. Mining association rules with item constraints. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining KDD-97 (1997).

    Google Scholar 

  48. Teller, A., and Veloso, M. Program evolution for data mining. International Journal of Expert Systems 8 (1995), 216–236.

    Google Scholar 

  49. Toivonen, H. Discovery of Frequent Patterns in Large Data Collections. PhD thesis, University of Helsinki, 1996.

    Google Scholar 

  50. Tukey, J. W. Exploratory Data Analysis. Addison-Wesley, Reading, 1977.

    Google Scholar 

  51. Yager, R. On a semantics for neural networks based on fuzzy quantifiers. International Journal of Intelligent Systems 7 (1992), 765–786.

    Article  MATH  MathSciNet  Google Scholar 

  52. Zadeh, L. A. What is soft computing? (Editorial). Soft Computing 1 (1997), 1.

    Google Scholar 

  53. Zaki, M., Parathasarathy, S., Li, W., and Ogihara, M. Evaluation of sampling for data mining of association rules. In Proceedings of the 7th International Workshop on Research Issues in Data Engineering (1997), pp. 42–50.

    Google Scholar 

  54. Zaki, M., Parathasarathy, S., Ogihara, M., and Li, W. New parallel algorithms for fast discovery of association rules. Data Mining and Knowledge Discovery 1 (1997), 343–373.

    Article  Google Scholar 

  55. Zembowicz, R., and Żytkov, J. From contingency tables to various forms of knowledge in databases. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AIAI Press, Menlo Park, 1996, pp. 329–352.

    Google Scholar 

  56. Żytkov, J., and Zembowicz, R. Contingency tables as the foundation for concepts, concept hierarchies and rules: The 49er system approach. Fundamenta Informaticae 30 (1997), 383–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hájek, P., Holeňa, M. (1998). Formal Logics of Discovery and Hypothesis Formation by Machine. In: Arikawa, S., Motoda, H. (eds) Discovey Science. DS 1998. Lecture Notes in Computer Science(), vol 1532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49292-5_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-49292-5_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65390-5

  • Online ISBN: 978-3-540-49292-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics