Abstract
Many different formal techniques, both numerical and symbolic, have been developed over the past two decades for dealing with incomplete and uncertain information. In this paper we review some of the most important of these formalisms, describing how they work, and in what ways they differ from one another. We also consider heterogeneous approaches which incorporate two or more approximate reasoning mechanisms within a single reasoning system. These have been proposed to address limitations in the use of individual formalisms.
Preview
Unable to display preview. Download preview PDF.
References
S. K. Andersen, F. V. Jensen, K. G. Olesen, and F. Jensen. HUGIN—a shell for building Bayesian belief universes for expert systems. In Proceedings of the 11th International Joint Conference on Artificial Intelligence, pages 783–791, San Mateo, CA, 1989. Morgan Kaufmann.
J. A. Barnett. Computational methods for a mathematical theory of evidence. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages 868–875, Los Altos, CA, 1981. William Kaufmann.
S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent knowledge bases. In Proceedings of the 9th Uncertainty in Artificial Intelligence, pages 411–419. Morgan Kaufmann, 1993.
S. Benferhat and L. Garcia. A local handling of inconsistent knowledge and default bases. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
J. Bigham. Computing beliefs according to Dempster-Shafer and possibilistic logic. In Proceedings of the 3rd International Conference on Information Processing and Management of Uncertainty, Paris, pages 59–61, 1990.
J. Bigham. Exploiting uncertain and temporal information in correlation. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
P. Bosc, L. Lietard, and H. Prade. An ordinal approach to the processing of fuzzy queries with exible quantifiers. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
F. Brazier, J. Engelfreit, and J. Truer. Analysis of multi-interpretable ecological monitoring information. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998
T. Chard. Qualitative probability versus quantitative probability in clinical diagnosis: a study using a computer simulation. Medical Decision Making, 11:38–41, 1991.
P. Cheeseman. Probabilistic vs. fuzzy reasoning. In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 85–102. Elsevier Science Publishers, Amsterdam, The Netherlands, 1986.
P. Cheeseman. Discussion of the paper by Lauritzen and Spiegelhalter. Journal of the Royal Statistical Society, B, 50:203, 1988.
P. Cheeseman. An inquiry into computer understanding. Computational Intelligence, 4:58–142, 1988.
D. A. Clark. Numerical and symbolic approaches to uncertainty management in AI. Artificial Intelligence Review, 4:109–146, 1990.
P. R. Cohen. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach. Pitman, London, UK, 1985.
J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162, 1986.
J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32:97–130, 1987.
A. P. Dempster. Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics, 38:325–339, 1967.
A. P. Dempster. A generalisation of Bayesian inference (with discussion). Journal of the Royal Statistical Society B, 30:205–232, 1968.
A. P. Dempster. Comments on ‘An inquiry into computer understanding’ by Peter Cheeseman. Computational Intelligence, 4:72–73, 1988.
J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
D. Driankov. A calculus for belief-intervals representation of uncertainty. In B. Bouchon-Meunier and R. R. Yager, editors, Uncertainty in Knowledge-Based Systems, pages 205–216. Springer-Verlag, Berlin, Germany, 1986.
D. Dubois, J. Lang, and H. Prade. A possibilistic assumption-based truth maintenance system with uncertain justifications, and its application to belief revision. In J. P. Martins and M. Reinfrank, editors, Truth Maintenance Systems, pages 87–106, Berlin, Germany, 1990. Springer Verlag.
D. Dubois, J. Lang, and H. Prade. Fuzzy sets in approximate reasoning, Part 2: Logical approaches. Fuzzy Sets and Systems, 40:203–244, 1991.
D. Dubois and H. Prade. Necessity measures and the resolution principle. IEEE Transactions on Systems, Man and Cybernetics, 17:474–478, 1987.
D. Dubois and H. Prade. Modelling uncertainty and inductive inference: a survey of recent non-additive probability systems. Acta Psychologica, 68:53–78, 1988.
D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York, NY, 1988.
D. Dubois and H. Prade. Processing of imprecision and uncertainty in expert system reasoning models. In C. Ernst, editor, Management Expert Systems, pages 67–88. Addison Wesley, 1988.
R. O. Duda, P. E. Hart, and N. J. Nilsson. Subjective Bayesian methods for a rule-based inference system. In Proceedings of the National Computer Conference, pages 1075–1082, 1976.
M. Elvang-Gøransson and A. Hunter. Argumentative logics: Reasoning from classically inconsistent information. Data and Knowledge Engineering Journal, 16:125–145, 1995.
D. W. Etherington. Reasoning with Incomplete Information. Pitman, London, UK, 1988.
K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT Press, Cambridge, MA, 1993.
J. Fox. Three arguments for extending the framework of probability. In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 447–458. Elsevier Science Publishers, Amsterdam, The Netherlands, 1986.
J. Fox and S. Parsons. Arguing about beliefs and actions. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
P. Gärdenfors. Knowledge in flux: Modelling the Dynamics of Epistemic States. MIT Press, Cambridge, MA, 1988.
J. Gebhardt and R. Kruse. Background to and perspectives on possibilistic graphical models. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
M. Ginsberg. Non-monotonic reasoning using Dempster’s rule. In Proceedings of the 4th National Conference on Artificial Intelligence, pages 112–119, Los Altos, CA, 1984. William Kaufmann.
J. Gordon and E. H. Shortliffe. A method for managing evidential reasoning in a hierarchical hypothesis space. Artificial Intelligence, 26:323–357, 1985.
R. Haenni. Modelling uncertainty in propositional assumption-based systems. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
D. Heckerman and M. Wellman. Bayesian networks. Communications of the ACM, 38:27–30, 1995.
D. E. Heckerman. Probability interpretation for MYCIN’s certainty factors. In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 167–196. Elsevier Science Publishers, Amsterdam, The Netherlands, 1986.
M. Henrion, G. Provan, B. Del Favero, and G. Sanders. An experimental comparison of numerical and qualitative probabilistic reasoning. In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, pages 319–326, San Francisco, CA, 1994. Morgan Kaufmann.
E. J. Horvitz, D. E. Heckerman, and C. P. Langlotz. A framework for comparing alternative formalisms for plausible reasoning. In Proceedings of the 5th National Conference on Artificial Intelligence, pages 210–214, Los Altos, CA, 1986. Morgan Kaufmann.
A. Hunter. Uncertainty in Information Systems. McGraw-Hill, London, UK, 1996.
D. J. Israel. Some remarks on the place of logic in knowledge representation. In N. Cercone and G. McCalla, editors, The Knowledge Frontier: Essays in the Representation of Knowledge, pages 80–91. Springer Verlag, New York, NY, 1987.
G. J. Klir. Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? Fuzzy Sets and Systems, 24:141–160, 1987.
P. Krause, S. Ambler, M. Elvang-Gøransson, and J. Fox. A logic of argumentation for reasoning under uncertainty. Computational Intelligence, 11:113–131, 1995.
P. Krause, J. Fox, P. Judson, and M. Patel. Qualitative risk assessment fulfills a need. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
P. J. Krause and D. A. Clark. Representing Uncertain Knowledge: An Artificial Intelligence Approach. Intellect, Oxford, UK, 1993.
P. J. Krause and J. Fox. Combining symbolic and numerical methods for reasoning under uncertainty. In D. J. Hand, editor, AI and Computer Power; The Impact on Statistics, pages 99–114. Chapman and Hall, London, UK, 1994.
M. Lalmas. Modelling information retrieval with Dempster-Shafer’s theory of evidence. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
K. B. Laskey and P. E. Lehner. Assumptions, beliefs and probabilities. Artificial Intelligence, 32:65–77, 1990.
S. L. Lauritzen and D. J. Spiegelhalter. Local computations on graphical structures, and their application to expert systems. Journal of the Royal Statistical Society, B, 50:157–224, 1988.
D. V. Lindley. Making Decisions. John Wiley & Sons, Chichester, UK, 1975.
W. Łukaszewicz. Two results on default logic. In Proceedings of the 9th International Joint Conference on Arti_cial Intelligence, pages 459–461, Los Altos, CA, 1985. Morgan Kaufmann.
W. Łukaszewicz. Considerations on default logic: an alternative approach. Computational Intelligence, 4:1–16, 1988.
P. Magni, R. Bellazi, and F. Locatelli. Using uncertainty management techniques in medical therapy planning: a decision theoretic approach. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
P. Magrez and Ph. Smets. Fuzzy modus ponens: A new model suitable for applications in knowledge-based systems. International Journal of Intelligent Systems, 4:181–200, 1975.
J. Martins and S. Shapiro. A model of belief revision. Artificial Intelligence, 35:25–79, 1988.
D. A. McAllester. An outlook on truth maintenance. AI Memo 551, AI Laboratory, MIT, 1980.
J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, 1980.
S. Moral and N. Wilson. Importance sampling Monte-Carlo algorithms for the calculation of Dempster-Shafer belief. In Proceedings of the 6th International Conference on Information Processing and the Management of Uncertainty, pages 1337–1344, 1996.
P. Nicolas and T. Schaub. The XRay system: an implementation platform for local query-answering in default logics. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
S. Parsons. Qualitative approaches to reasoning under uncertainty. MIT Press, Cambridge, MA, 1998.
S. Parsons and J. Fox. Argumentation and decision making: a position paper. In Formal and Applied Practical Reasoning, pages 705–709, Berlin, Germany, 1996. Springer Verlag.
J. Pearl. How to do with probabilities what people say you can’t. Technical Report CSD-850031, Cognitive Systems Laboratory, Computer Science Department UCLA, 1985.
J. Pearl. Fusion, propagation and structuring belief networks. Artificial Intelligence, 29:241–288, 1986.
J. Pearl. Bayesian decision methods. In Encyclopedia of Artificial Intelligence, pages 48–56. John Wiley, 1987.
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.
G. Pinkas and R. Loui. Reasoning from inconsistency: A taxonomy of principles for resolving conict. In Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference. Morgan Kaufmann, 1992.
M. Pradhan, M. Henrion, G. Provan, B. Del Favero, and K. Huang. The sensitivity of belief networks to imprecise probabilities: an experiemntal investigation. Artificial Intelligence, 85:363–397, 1996.
H. Prakken. An argumentation framework for default reasoning. Annals of Mathematics and Artificial Intelligence, 9, 1993.
G. M. Provan. Solving diagnostic problems using extended assumption-based truth maintenance systems: foundations. Technical Report 88-10, Department of Computer Science, University of British Columbia, 1988.
J. R. Quinlan. INFERNO: a cautious approach to uncertain inference. Computer Journal, 26:255–269, 1983.
M. Ramalho. Uncertainty measures associated with fuzzy rules for connection admission control in ATM networks. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
E. Rich. Default reasoning as likelihood reasoning. In Proceedings of the 3rd National Conference on Artificial Intelligence, pages 348–351, Los Altos, CA, 1983. William Kaufmann.
A. Saffiotti. An AI view of the treatment of uncertainty. The Knowledge Engineering Review, 2:75–97, 1987.
A. Saffiotti. Handling uncertainty in control of autonomous robots. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
B. Schweitzer and A. Sklar. Associative functions and abstract semigroups. Publicationes Mathematicae Debrecen, 10:69–81, 1963.
G. L. S. Shackle. Decision, order and time in human affairs. Cambridge University Press, Cambridge, UK, 1961.
G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.
G. Shafer. Comments on ‘An inquiry into computer understanding’ by Peter Cheeseman. Computational Intelligence, 4:121–124, 1988.
G. Shafer and R. Logan. Implementing Dempster’s rule for hierarchical evidence. Artificial Intelligence, 33:271–298, 1987.
P. P. Shenoy and G. Shafer. Axioms for probability and belief function propagation. In R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 4, pages 169–198. North-Holland, Amsterdam, The Netherlands, 1990.
E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN. Elsevier, New York, NY, 1976.
Ph. Smets. Belief functions. In Ph. Smets, E. H. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for Automated Reasoning, pages 253–275. Academic Press, London, UK, 1988.
Ph. Smets. Belief functions versus probability functions. In B Bouchon-Meunier, L. Saitta, and R. R. Yager, editors, Uncertainty and Intelligent Systems, pages 17–24. Springer Verlag, Berlin, Germany, 1988.
Ph. Smets and Y-T. Hsia. Default reasoning and the transferable belief model. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 6, pages 495–504. Elsevier Science Publishers, Amsterdam, The Netherlands, 1991.
Ph. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66:191–234, 1994.
M. Smithson. Ignorance and Uncertainty: Emerging Paradigms. Springer Verlag, New York, NY, 1989.
L. E. Sucar, D. F. Gillies, and D. A. Gillies. Objective probabilities in expert systems. Artificial Intelligence, 61:187–208, 1993.
A. Tawfik and E. Neufeld. Model-based diagnosis: a probabilistic extension. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
S. Toulmin. The uses of argument. Cambridge University Press, Cambridge, UK., 1957.
A. Tversky and D. Kahneman. Judgement under uncertainty: Heuristics and biases. Science, 185:1124–1131, 1974.
K. van Dam. Using uncertainty techniques in radio communication systems. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
G. Vreeswijk. Abstract argumentation systems. In M de Glas and D Gabbay, editors, Proceedings of the First World Conference on Fundamentals of Artificial Intelligence. Angkor, 1991.
D. Wilson, A. Greig, John Gilby, and Robert Smith. Some problems in trying to implement uncertainty techniques in automated inspection. In A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms (this volume). Springer Verlag, Berlin, 1998.
N. Wilson. Rules, belief functions, and default logic. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence, pages 443–449, Mountain View, CA, 1990. Association for Uncertainty in AI.
N. Wilson. Some theoretical aspects of the Dempster-Shafer theory. PhD thesis, Oxford Polytechnic, 1992.
N. Wilson and S. Moral. Fast Markov chain algorithms for calculating Dempster-Shafer belief. In Proceedings of the 12th European Conference on Artificial Intelligence, pages 672–676, Chichester, UK, 1996. John Wiley & Sons.
L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:1–28, 1978.
L. A. Zadeh. A theory of approximate reasoning. In J. Hayes, D. Michie, and L. Mikulich, editors, Machine Intelligence 9, pages 149–194. Ellis Horwood, 1979.
L. A. Zadeh. Is probability theory sufficient for dealing with uncertainty in AI? a negative view. In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 103–116. Elsevier Science Publishers, Amsterdam, The Netherlands, 1986.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Parsons, S., Hunter, A. (1998). A Review of Uncertainty Handling Formalisms. In: Hunter, A., Parsons, S. (eds) Applications of Uncertainty Formalisms. Lecture Notes in Computer Science(), vol 1455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49426-X_2
Download citation
DOI: https://doi.org/10.1007/3-540-49426-X_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65312-7
Online ISBN: 978-3-540-49426-3
eBook Packages: Springer Book Archive