Skip to main content

An Ordinal Approach to the Processing of Fuzzy Queries with Flexible Quantifiers

  • Chapter
  • First Online:
Applications of Uncertainty Formalisms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1455))

Abstract

This paper studies queries to a database, involving expressions of the form ‘Q A-x’s are B’s’ where A and B are properties which may be fuzzy and with respect to which objects x’s are evaluated, and where Q is a quantifier which may stand for ‘all’, or may leave room for exceptions (‘at least q%’, ‘(at least) most’, etc.). An example of such a query is ‘Find the departments where most young employees are well-paid’. Such queries are discussed from a modeling and evaluation point of view, taking also into consideration what the user intends to ask when (s)he addresses this type of queries to a database system. Clarifying what has to be evaluated is specially important in the case where A is fuzzy, since then the boundaries of A are ill-defined and A may be somewhat empty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bandler, L.J. Kohout, Fuzzy power sets and fuzzy implication operators. Fuzzy Sets and Systems, 4, 1980, 13–30.

    Article  MathSciNet  Google Scholar 

  2. P. Bosc, O. Pivert, SQLf: A relational database language for fuzzy querying. IEEE Trans. on Fuzzy Systems, 3, 1995, 1–17.

    Article  Google Scholar 

  3. P. Bosc, H. Prade, An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain or imprecise databases. In: Uncertainty Management in Information Systems: From Needs to Solutions (Ph. Smets, A. Motro, eds.), Kluwer Academic Publ., 1997, Chapter 10, 285–324

    Google Scholar 

  4. P. Bosc, L. Liétard, Une interprétation pour ‘Q B X sont A’. BUSEFAL (IRIT, Univ. P. Sabatier, Toulouse, France), 68, 1996, 9–19.

    Google Scholar 

  5. D. Dubois, H. Fargier, H. Prade, Refinements of the maximin approach to decision-making in fuzzy environment. Fuzzy Sets and Systems, 81, 1996, 103–122.

    Article  MathSciNet  Google Scholar 

  6. D. Dubois, H. Prade, Fuzzy Set and Systems: Theory and Applications. Academic Press, New York, 1980.

    MATH  Google Scholar 

  7. D. Dubois, H. Prade, Evidence measures based on fuzzy information. Automatica, 21, 1985, 547–562.

    Article  MathSciNet  Google Scholar 

  8. D. Dubois, H. Prade, Fuzzy cardinality and the modeling of imprecise quantification. Fuzzy Sets and Systems, 16, 1985, 199–230.

    Article  MathSciNet  Google Scholar 

  9. D. Dubois, H. Prade, Weighted minimum and maximum operations. Information Sciences, 39, 1986, 205–210.

    Article  MathSciNet  Google Scholar 

  10. D. Dubois, H. Prade, Measuring properties of fuzzy sets: A general technique and its use in fuzzy query evaluation. Fuzzy Sets and Systems, 38(2), 1990, 137–152.

    Article  MathSciNet  Google Scholar 

  11. D. Dubois, H. Prade, Semantics of quotient operators in fuzzy relational databases. Fuzzy Sets and Systems, 78, 1996, 89–93.

    Article  MathSciNet  Google Scholar 

  12. L. Liétard, Contribution à l’interrogation flexible de bases de données: Etude des propositions quantifiées floues. Thesis, Université de Rennes I, France, 1995.

    Google Scholar 

  13. H. Prade, Modal semantics and fuzzy set theory. In: Fuzzy Set and Possibility Theory — Recent Developments (R.R. Yager, ed.), Pergamon Press, New York, 1982, 232–246.

    Google Scholar 

  14. M. Wygralak, Vaguely Defined Objects. Kluwer Academic Publ., Dordrecht, 1996.

    Book  Google Scholar 

  15. R.R. Yager, An approach to inference in approximate reasoning. Int. J. of Man-Machine Studies, 13, 1980, 323–328.

    Article  MathSciNet  Google Scholar 

  16. R.R. Yager, General multiple-objective decision functions and linguistically quantified statements. Int. J. of Man-Machine Studies, 21, 1984, 389–400.

    Article  Google Scholar 

  17. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making. Trans. on Systems, Man and Cybernetics, 18, 1988, 183–190.

    Article  MathSciNet  Google Scholar 

  18. L.A. Zadeh, Fuzzy sets, Information and Control, 8, 1965, 338–353.

    Article  Google Scholar 

  19. L.A Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 1978, 3–28.

    Article  MathSciNet  Google Scholar 

  20. L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages. Computer Mathematics with Applications, 9, 1983, 149–183.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bosc, P., Liétard, L., Prade, H. (1998). An Ordinal Approach to the Processing of Fuzzy Queries with Flexible Quantifiers. In: Hunter, A., Parsons, S. (eds) Applications of Uncertainty Formalisms. Lecture Notes in Computer Science(), vol 1455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49426-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-49426-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65312-7

  • Online ISBN: 978-3-540-49426-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics