Abstract
In this chapter we present SPONGIA, a knowledge based system implemented using the Milord II programming environment. SPONGIA deals with the identification of sponges from the Atlanto-Mediterranean biogeographical province. It covers the identification of more than 100 taxa of the phylum Porifera from class to species. The effective handling of uncertainty has been critical to display an efficient performance in SPONGIA. This problem has been managed taking advantage of the multiple techniques provided by Milord II. The use of fuzzy logic makes it possible to accurately represent the imprecise knowledge which constitutes the classificatory theory of Porifera to a large extent. It also provides the user with some means of expressing his state of knowledge with accuracy. Easy design and incremental development of the knowledge base are possible thanks to modularity. Taxonomic knowledge is represented by means of plain modules hierarchically interconnected via submodule declarations and refinement operations. To emulate the reasoning strategies we use generic modules, which can take other modules as parameters. Thanks to the uncertainty handling and reflective deduction mechanisms it has been possible to emulate complex reasoning strategies displayed by experts in sponge systematics. Finally, the strict compartmentation of domain knowledge and knowledge concerning reasoning strategies into modules allows the reusability of pieces of knowledge.
Preview
Unable to display preview. Download preview PDF.
References
J. Agustí, F. Esteva, P. Garcia, L. Godo, R. Lopez de Mantaras, and C. Sierra. Local multi-valued logics in modular expert systems. Journal of Experimental and Theoretical Artificial Intelligence, 6:303–321, 1994.
G. Attardi and M. Simi. A formalisation of viewpoints. Fundamenta Informaticae, 23(2,3,4):149–174, 1995.
J. Balder, F. Van Harmelen, and M. Aben. A KADS=(ML) 2 model of a scheduling task. In Jan Treur and Thomas Wetter, editors, Formal Specification of Complex Resoning Systems. Ellis Horwood, 1993.
S. J. Barlett and P. Suber, editors. Self-reference: Reflections on reflexivity. Martinus Nijhoff, Dordrecht, 1987.
P.R. Bergquist. Poriferan relationships. In S. Conway-Morris, J.D. George, R. Gibson, and H.M. Platt, editors, The origins and relationships of lower invertebrates, volume 28 of Systematics Association, pages 15–27. 1985. Special Volume.
P.R. Bergquist and P.J. Fromont. The marine Fauna of New Zealand: Porifera demospongiae, part 4 (poecilosclerida). pages 1–21, 1988.
P. Bonissone. Summarizing and propagating uncertain information with triangular norms. International Journal of Approximate Reasoning, 1(1):71–101, 1987.
N. Boury-Esnault, M.T. Lopes, and M.J. Uriz. Spongiaires bathyaux de la mer d’alboran et du golfe ibero-marocain. Memoires du Museum National d’Histoire Naturelle, 160:174, 1994.
N. Boury-Esnault and K. Rützler, editors. Thesaurus of Terms for Sponges. Smithsonian Institution Press, Washington D.C., USA. In press.
W. J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):289–350, 1985.
R. López de Mántaras. Approximate Reasoning Models. Ellis Horwood series on Artificial Intelligence, UK, 1990.
R. López de Mántaras (ed.). Special issue on Reflection and Meta-level AI Architectures. Future Generation Computer Systems Journal, 12, 1996.
M. Domingo and C. Sierra. A knowledge level analysis of taxonomic domains. International Journal of Intelligent Systems, 12(2):105–135, 1997.
Marta Domingo. An Expert System Architecture for Identification in Biology, volume 4 of Monografies de l’IIIA. IIIA — CSIC, Bellaterra (Barcelona), Spain, 1995.
Marta Domingo. Models of practical taxonomic reasoning in knowledge-based systems: an application to Porifera. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique — Biologie, 66suppl.:27–35, 1996.
M. Edwards and D.R. Morse. The potential for computer-aided identification in biodiversity research. TREE, 10(4):153–158, 1995.
R. Fortuner, editor. Advances in Computer Methods for Systematic Biology: Artificial Intelligence, Databases, Computer Vision. The Johns Hopkins University Press, Baltimore. London, 1993.
P.J. Fromont and P.R. Bergquist. Structural characters and their use in sponge taxonomy: When is a sigma not a sigma. In K. Rützler, editor, New perspectives in sponge biology, pages 273–278. Smithsonian Institution Press, Washington D.C., USA, 1990.
F. Giunchiglia and P. Traverso. Reflective reasoning with and between a declarative metatheory. In IJCAI-91, pages 111–117, 1991.
F. Giunchiglia, P. Traverso, and E. Giunchiglia. Multi-context systems as a specification framework for complex reasoning systems. In Jan Treur and Thomas Wetter, editors, Formal Specification of Complex Resoning Systems. Ellis Horwood, 1993.
L. Godo and C. Sierra. Knowledge base refinement in Milord. In Proceedings of 14th IMACS World Congress, Atlanta, USA, 1994.
P. Hajek, L. Godo, and F. Esteva. Fuzzy logic and probability. In P. Besnard and S. Hanks, editors, Proceedings of the Uncertainty in Artificial Intelligence Conference, UAI-95, pages 237–244, San Francisco, USA, 1995. Morgan Kaufmann.
R. Harper, D. MacQueen, and R. Millner. The Definition of Standard ML. Technical Report ECS-LFCS-86-2, Dept. Computer Science, Univ. of Edinburgh, 1986.
A. Hunter and S. Parsons, editors. Uncertainty in Information Systems, volume This volume. Springer.
J. Puyol, L. Godo, and C. Sierra. Specialisation calculus and communication. International Journal of Approximate Reasoning, 1998.
N. Knowtoln, E. Weil, L.A. Weigt, and H.M. Guzman. Sibling species in montastraea annularis, coral bleaching and the coral climate record. Science, 255:330–333, 1992.
C. Lévi. Nouveau spongiaires lithistides bathyaux affinites cretacees de la nouvellecaledonie. Bull. Mus. nat. Hist. nat. Paris, 10(2):241–263, 1988.
P. Maes and N. Nardi, editors. Meta-level Architectures and Reflection. Academic Press, Amsterdam, 1988.
R. Martin-Clouaire and H. Prade. SPII-1, a simple inference engine capable of accommodating both imprecision and uncertainty in expert systems. In G. Mitra, editor, Computer-Assisted Decision Making, LNCS, pages 117–131. North Holland, 1986.
R. J. Pankhurst. Practical Taxonomic Computing. Cambridge University Press, Cambridge, 1991.
S. Parsons. Qualitative approaches to reasoning under uncertainty. MIT Press, Cambridge, USA, (in press), 1997.
J. Pavelka. On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math., 25:45–52, 119–134, 447–464, 1979.
J. Puyol and C. Sierra. Milord ii: Language description. Mathware & Soft Computing, 4:299–338, 1997.
Josep Puyol. Modularization, Uncertainty, Reflective Control and Deduction by Specialization in Milord II, a Language for Knowledge-Based Systems. PhD thesis, Universitat Autònoma de Barcelona, Barcelona, 1994.
Josep Puyol, Lluís Godo, and Carles Sierra. A specialization calculus to improve expert system communication. In ECAI’92, pages 144–148, Viena, 1992.
D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal Program Development. Cambridge University Press, Cambridge, (in press) edition, 1997.
D. T. Sannella and L. A. Wallen. A Calculus for the Construction of Modular Prolog Programs. The Journal of Logic Programming, pages 147–177, 1992.
A.M. Sole-Cava and J.P. Thorpe. High levels of genetic variation in marine sponges. In K. Rutzler, editor, New perspectives in sponge biology, pages 322–337. Smithsonian Institution Press, Washington D.C., USA, 1990.
Y. H. Tan and J. Treur. A bi-modular approach to non-monotonic reasoning. In Proc. First World Congress on the Fundamentals of AI, WOCFAI-91, pages 461–475, Paris, 1991.
J. Treur. On the use of reflection principles in modelling complex reasoning. International Journal of Intelligent Systems, 6:277–294, 1992.
M.J. Uriz, D. Martin, and D. Rosell. Relationships between taxonomical and biological characteristics and chemically mediated bioactivity in mediterranean sponges. Marine Biology, 113:287–297, 1992.
L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28, 1978.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Domingo, M., Godo, L., Sierra, C. (1998). Handling imperfect knowledge in Milord II for the identification of marine sponges. In: Hunter, A., Parsons, S. (eds) Applications of Uncertainty Formalisms. Lecture Notes in Computer Science(), vol 1455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49426-X_6
Download citation
DOI: https://doi.org/10.1007/3-540-49426-X_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65312-7
Online ISBN: 978-3-540-49426-3
eBook Packages: Springer Book Archive