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Abstract.   At Crypt‘97, Berson showed that the McEliece public-key
cryptosystem suffers from two weaknesses: (1) failure to protect any message
which is encrypted more than once, (2) failure to protect any messages which
have a known linear relation to one another.  In this paper, we propose some
variants of the McEliece scheme which can prevent from these attacks.  These
variants will not reduce the information rate in the original scheme.  In addition,
to improve the information rate, we also propose some variants of the McEliece
scheme which can prevent from Berson-like attacks.

1 Introduction

In 1978, McEliece [16] proposed a public-key cryptosystem (the McEliece scheme)
based on algebraic coding theory.  The idea of this cryptosystem is based on the fact
that the decoding problem of an arbitrary linear code is an NP-hard problem [4].
Compared with other public-key cryptosystems [8,21] which involve modular
exponentiation, the McEliece scheme has the advantage of high-speed encryption and
decryption.  In addition, the McEliece scheme is a probabilistic encryption [6,9] that
is better than other deterministic encryptions [19,21] in preventing from elimination
of any information leaked with public-key cryptography.  Up to now, the McEliece
scheme is still not widely used.  This is because the information rate of this scheme is
low (close to 0.5) and it requires large binary matrices as secret key and public key.
Some methods [15,18,23] were proposed to improve the information rate of the
McEliece scheme.  These methods use the added error vector to carry additional
information.  Some information bits are mapped into an error vector to be added to a
codeword.  Once the error vector can be identified, the additional information can be
recovered.  By using these methods, the information rate can be up to around 0.8 or
more.  For the large key problem, Sun and Hwang [24] proposed the use of a short
sequence of bits (called seed-key) to specify secret key.  Thus each user only needs to
keep a short key, e.g., 64-bit sequence.  However, the problem of large public key is
still unsolved.
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In the past, many researchers [1,2,7,13,14,25] attempted to break the McEliece
scheme.  None of these were successful in the general case.  Among them, Korzhik
and Turkin [13] claimed that they had broken the McEliece scheme.  However, most
cryptographers don’t believe their result to be effective because of lack of obvious
evidence to confirm the time bound they claimed.  At Crypt‘97, Berson [5] showed
that the McEliece scheme suffers from two weaknesses: (1) failure to protect any
message which is encrypted more than once, (2) failure to protect any messages
which have a known linear relation to one another.  Although these weaknesses don’t
lead the McEliece scheme to be broken immediately (i.e., the private key doesn‘t be
recovered), it is possible for an attacker to act on some behavior such that these
weaknesses happen.  For example, an attacker introduces some errors into the
ciphertext, which is sent from the sender to the receiver, such that the receiver cannot
decrypt the ciphertext correctly.  If the receiver thinks this cause comes from faults in
encryption phase, he will request the sender to resume again (encrypt the message
and send the ciphertext again).  Thus the weakness (1) will occur.

To overcome these weaknesses, Berson [5] suggested spreading randomness
through the plaintext in some complicated fashion.  Bellare and Rogaway’s OAEP [3]
et seq. which are commonly used to enhance the security of RSA are instructive.
Thus the linear relation between the messages will be unable be found by some action
of a cryptanalyst.  However, these improvements will also reduce the information rate
of this scheme.

In this paper we propose some variants of the McEliece public-key cryptosystem
which can prevent from the attacks proposed by Berson.  These variants will not
reduce the information rate in the original scheme.  In addition, to improve the
information rate, we also propose some variants of the McEliece scheme which can
prevent from Berson-like attacks.  This paper is organized as follows.  In section 2,
we provide some background information.  In section 3, we present some variants of
the McEliece public-key cryptosystem which can prevent from the attacks proposed
by Berson.  In section 4, we propose more variants of the McEliece public-key
cryptosystem which can prevent from Berson-like attacks and improve the
information rate.  Finally, we conclude this paper in section 5.

2 Preliminaries

2.1    The McEliece Public-Key Cryptosystem

Secret key:  S is a random (k×k) nonsingular matrix over GF(2), called the
scrambling matrix,
G is a (k×n) generator matrix of a binary Goppa code G with the
capability of correcting an n-bit random error vector of weight less than
or equal to t, and
P is a random (n×n  permutation matrix.

Public key: G’ = S G P
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Encryption: c = mG’ + e, where m is a k-bit message, c is an n-bit ciphertext, and e
is an n-bit random error vector of weight t.

Decryption:  The receiver first calculates c’ = c 1−P  = mSG + e 1−P , where 1−P  is the

inverse of P.  Because the weight of e 1−P  is the same as the weight of
e, the receiver uses the decoding algorithm of the original code G to
obtain m’ = mS.  At last, the receiver recovers m by computing m =

m’ 1−S , where 1−S  is the inverse of G.

In the original version of the McEliece scheme, the parameters k, n, and t were
suggested to be 524, 1024, and 50 respectively.  Many works [1,2,11,12] were to
study the optimal value of these parameters such that a cryptanalyst must take the
highest cost to break this system.  Optimizations were suggested that if n=1024, k
ranges from 524 to 654, and t ranges from 37 to 50.  In this paper we use the
parameter sizes of the original version without loss of generality.

An obvious attack on the McEliece scheme is to guess 524 positions of c that are
not distorted by e, and then find m from c* = mG* if G* is invertible, where c* and
G* are restrictions onto these positions of c and G’.  Because there exist 50 errors

embedded in 1024 positions, we need 1024
524C  / 974

524C  ≈ 1.37×1016 guesses to succeed.

2.2    Berson’s Attacks on the McEliece Scheme

Berson [5] proposed two attacks on the McEliece scheme, called message-resend
attack and related-message attack.  We restate these two attacks in the following.

Message-Resend Attack:

We assume a message m is encrypted twice because of some accident or the special
action of a cryptanalyst.  Then the cryptanalyst knows: 1c = mG’+ 1e , and 2c =

mG’+ 2e , where 1e ≠ 2e  (this is called the message-resend condition).  Therefore,

1c + 2c = 1e + 2e .  It is remarked that the weight of 1e + 2e  is even and at most 100

because the weight of each error vector added in the McEliece scheme is 50.
According to Berson’s analysis, the expected Hamming weight of 1e + 2e  is about

95.1 if a message-resend condition occurs.  If the underlying messages are different,
the excepted Hamming weight of 1c + 2c  is 512.  Therefore, it is easy to detect the

occurrence of a message-resend condition and the weight of 1e + 2e  by observing the

Hamming weight of 1c + 2c .  If the weight of 1e + 2e  is 94, we need to guess 524

positions of 1c  ( 2c ) that are not distorted by 1e  ( 2e ) from 930 possible positions

with 3 wrong positions.  The probability that we get a correct guess is 927
524C / 930

524C ≈
0.0828.  This means that the cryptanalyst needs only about 12 guesses to succeed.
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Similarly, if the weight of 1e + 2e  is 96, only about 5 guesses are required for the

cryptanalyst to succeed.
Note that the main cause that Berson’s attack succeeds is that by observing the

value 1c + 2c  we can obtain more information about the positions in which the errors

probably occur.  In the following, we show how much information for each bit in the
error vector goes through observing 1c + 2c .  Let )(1 ie , )(2 ie , )(1 ic , and )(2 ic denote

the i-th bit in 1e , 2e , 1c , and 2c  respectively.  Here we assume the value of each bit

in the ciphertext is a random variable with probability p( )(1 ic =0)= p( )(1 ic =1) = 0.5.

The entropy function [10] H( )(1 ie | )(1 ic )

= p( )(1 ic =0)⋅H( )(1 ie | )(1 ic =0)+p( )(1 ic =1)⋅H( )(1 ie | )(1 ic =1)

= 0.5⋅(
1024

974
log

974

1024
+

1024

50
log

50

1024
)+0.5⋅(

1024
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)

=0.2814
It is clear that H( )(1 ie ) = H( )(1 ie | )(1 ic ) and H( )(2 ie )=H( )(2 ie | )(2 ic ).  This means

that one cannot obtain more information on )(1 ie  (or )(2 ie ) through observing )(1 ic

(or )(2 ic ).  However, if the message-resend condition occurs and the weight of

1e + 2e  is 94, then

H( )(1 ie | )(1 ic + )(2 ic )

= p( )()( 21 icic + =0)H( )(1 ie | )()( 21 icic + =0)+

   p( )()( 21 icic + =1)H( )(1 ie | )()( 21 icic + =1)

=
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If the message-resend condition occurs and the weight of 1e + 2e  is 96,

then H( )(1 ie | )(1 ic + )(2 ic )

= p( )(1 ic + )(2 ic =0)H( )(1 ie | )(1 ic + )(2 ic =0)+

   p( )(1 ic + )(2 ic =1)H( )(1 ie | )(1 ic + )(2 ic =1)

=
1024
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2

1
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2
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= 0.1139

Related-Message Attack:

We assume two messages 1m  and 2m  are encrypted and a cryptanalyst knows a

linear relation, e.g., the value 1m + 2m , between these two messages.  Then the

cryptanalyst knows: 1c = 1m G’ + 1e , and 2c = 2m G’ + 2e , where 1m ≠ 2m , and 1e ≠ 2e .

Therefore, 1c + 2c = 1m G’ + 1e + 2m G’ + 2e =( 1m + 2m )G’ +( 1e + 2e ).  Because the

value 1m + 2m  is known previously, ( 1m + 2m )G’ can be computed.  Hence 1c + 2c  +
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( 1m + 2m )G’ = 1e + 2e .  As the analysis in the message-resend attack, the number of

guesses required to succeed is small.
Basically, the message-resend attack is the special case of the related-message

attack where the linear relation between the messages is 1m + 2m =0.  To overcome

these weaknesses, Berson [5] suggested spreading randomness through the plaintext
in some complicated fashion.  Bellare and Rogaway’s OAEP [3] et seq. which are
commonly used to enhance the security of RSA are instructive.  Thus the linear
relation between the messages will be unable be found by some action of a
cryptanalyst.  However, these improvements will also reduce the information rate of
this scheme.  In the following sections, we propose some variants of the McEliece
scheme, which can prevent from the attacks proposed by Berson.  Some of them have
the same information rate as the original McEliece scheme, and some of them have
higher information rate than the original scheme.

3 Some Variants of the McEliece Scheme

In this section, we propose some variants of the McEliece scheme.  These variants can
prevent the McEliece scheme from the message-resend attack and the related-message
attack.  In addition, these variants will not reduce the information rate.  The public
key and the secret key in these variants are the same as those in the original McEliece
scheme.

Variant I:

Encryption: c = (m+h(e))G’ + e, where e is an n-bit random error vector of weight t,
and h is a one-way hash function with an input e and an output of a k-
bit vector.  It is necessary to consider how to apply a well-known one-
way hash function, e.g., MD5 [20], to be the function h.  We omit the
details here.  

Decryption: First m+h(e) can be obtained by using the decryption algorithm in the
original scheme (the error vector can also be found in the decoding
process).  Secondly the receiver computes m =( m+h(e)) +h(e).

Security:  Let 1m  and 2m  be two messages.  If 1m = 2m , then

1c + 2c =(h( 1e )+h( 2e ))G’+ 1e + 2e .  The value (h( 1e )+h( 2e ))G’ is

unknown because of lacking the knowledge of h( 1e ) and h( 2e ).  We

cannot obtain more information about the positions in which the error
occurs.  Thus the message-resend attack fails.  If the value 1m + 2m  is

known, then 1c + 2c = ( 1m + 2m +h( 1e )+h( 2e ))G’ + 1e + 2e .  Although

the value 1m + 2m  is known, ( 1m + 2m +h( 1e )+h( 2e ))G’ will not be

known because of lacking the knowledge of h( 1e ) and h( 2e ).  We are

not able to obtain any information about the positions in which the error
occurs.  Thus the related-message attack cannot work.
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Variant II:

Encryption: c = f(m, e)G’ + e, where e is an n-bit random error vector of weight t,
and f is a trapdoor one-way function [21] with two inputs (m and e) and
an output of a k-bit vector.  Here f must have the property that given
f(m, e) it is computationally infeasible to find m and e, but it is easy to
compute m given f(m, e) and e.  For example, DES [17], which has two
inputs (message and key) and an output (ciphertext), can be one of
candidates.  If DES is applied, it is necessary to consider how to
implement it to be the function f because DES has a 56-bit key, a 64-bit
message, and a 64-bit ciphertext, while f needs an n-bit e, a k-bit m, and
a k-bit output.  We omit the details here.

Decryption: First f(m, e) can be recovered by using the decryption algorithm in the
original scheme (the receiver keeps the error vector in the decoding
process).  Secondly the receiver computes m by inverting the function f.

Security:  If 1m = 2m , then 1c + 2c =(f( 1m , 1e )+f( 2m , 2e ))G’ + 1e + 2e .  The value

(f( 1m , 1e )+f( 2m , 2e ))G’ is unknown because of lacking the knowledge

of f( 1m , 1e ) and f( 2m , 2e ).  We cannot obtain any information about the

positions in which the error occurs.  Thus the message-resend attack
fails.  If the value 1m + 2m  is known, we cannot still erase the item

(f( 1m , 1e )+f( 2m , 2e ))G’.  Therefore, this scheme is also secure against

the related-message attack.

4 More Variants on Improving the Information Rate

In the past, some researchers [15,18,23] studied how to improve the information rate
of the McEliece scheme.  They use the added error vector to carry additional
information.  Thus the information rate of the McEliece scheme can be increased.  In
this section, we first formally describe their ideas as Variant III.  We show that the
variant is not secure against Berson-like attacks.  And then, we propose some variants
which can prevent from Berson-like attacks and improve the information rate.

Variant III:

Encryption: Let m = ( am , bm ) be the message.  c = am G’ + e, where e = g( bm ), g

is an invertible function which maps bm  into an n-bit error vector of
weight t.  Some good candidates of the function g can be found in
[15,18,23].

Decryption: First am  can be recovered by using the decryption algorithm of the code

G.  In the meantime, the value g( bm ) can also be obtained.  Then the

receiver computes bm  = 1−g ( g( bm )), where 1−g  is the inverse of g.

Information rate:  By using this method, the information rate can be improved from
0.51 to 0.79 if k=524, n=1024, and t=50 (additional 284-bit information
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is carried), and from 0.63 to 0.87 if k=654, n=1024, and t=37
(additional 225-bit information is carried).

Security: Basically, the idea of this variant is the same as that of the original
McEliece scheme.  The main difference between both is the
randomness of the error vector.  The error vector of the former is not
truly random, but dependent on the probability distribution of bm .  To

provide better security, it is suggested that data compression technique
is applied before encryption.  Note that this variant is a deterministic
encryption.
Let 1m = ( am1 , bm1 ) and 2m =( am2 , bm2 ) be two messages encrypted.

Because each message in this variant contains two parts, we extend the
linear relation between two messages to many cases.  In Table 1, we
show the possible weaknesses of these cases.   We give some
explanations for these cases in the following.

CaseIII.A: If am1  is known previously, then g( bm1 )= 1c + am1 G’.  Thus

bm1 = 1−g ( g( bm )).

CaseIII.B: If bm1  is known previously, then we know am1 G’ = 1c + g( bm1 ).  It is

easy to compute am1  by finding am1 G* = ( 1c + g( bm1 ))*, where ( 1c +

g( bm1 ))* and G* are restrictions onto some positions of 1c + g( bm1 )
and G’ such that G* is invertible.

CaseIII.C: If am1 = am2  and bm1 = bm2  are known previously, then 1c = 2c .  That

is, 1c + 2c =0. We cannot obtain any information about the positions in

which the error occurs.
CaseIII.D: If am1 = am2  and bm1 ≠ bm2  are known previously, then 1e ≠ 2e .  Thus

1c + 2c = ( am1 + am2 )G’+ 1e + 2e = 1e + 2e .  Therefore, we can obtain any

information about the positions in which the errors occur.  Thus  am1 ,

bm1 , am2 , and bm2  can be known.

CaseIII.E: If am1 ≠ am2  and bm1 = bm2  are known previously, then ( am1 + am2 )G’

= 1c + 2c .  Similar to Case III.B, it is easy to compute am1 + am2 .

CaseIII.F: Similar to Case III.E except that am1 + am2  has been known

previously.
CaseIII.G: If the value am1 + am2  and bm1 ≠ bm2  are known previously, then

1c + 2c = ( am1 + am2 )G’ + 1e + 2e .  Because the value am1 + am2  is

known, ( am1 + am2 )G’ can be computed.  Hence 1c + 2c +

( am1 + am2 )G’ = 1e + 2e .  Therefore, we can obtain any information

about the positions in which the errors occur.  Thus  am1 , bm1 , am2 ,

and bm2  can be known.
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                                      Table 1.  The possible weaknesses in Variant III

Information Known Previously Information Leaked
Case III.A

am1  (or am2 ) bm1  (or bm2 )

Case III.B
bm1  (or bm2 ) am1  (or am2 )

Case III.C
am1 = am2 , bm1 = bm2

None

Case III.D
am1 = am2 , bm1 ≠ bm2 am1 , bm1 , am2 , bm2

Case III.E
am1 ≠ am2 , bm1 = bm2 am1 + am2

Case III.F
am1 + am2 , bm1 = bm2

None

Case III.G
am1 + am2 , bm1 ≠ bm2 am1 , bm1 , am2 , bm2

From Table 1, it is clear that there are still many weaknesses in Variant III.  To
overcome these weaknesses and improve the information rate of the McEliece
scheme, we propose two variants of the McEliece scheme in the following.

Variant VI:

Encryption: Let m = ( am , bm ) be the message.  c = ( am +h(e)) G’ + e, where e =

g(r|| bm ), r is a q-bit random vector, g is an invertible function which

maps bm  into an n-bit error vector of weight t, h is a one-way hash
function with an input e and an output of a k-bit vector.  Here we need

the function g to have the following property.  Let E be the set of n2
possible strings of n binary digits, 

bmE  be the set of all possible outputs

of g(r|| bm ) given bm , ix  be the i-th item in 
bmE  and

id = )),.({min
,

ji
ijj

xxdist
≠

.  If we regard E as an n-dimensional Hamming

space, we require that the 
bmE  is uniformly distributed (located) in E.

That is, we expect that the 
bmE  has an approximately maximal value of

q

id

2

∑
.  Those proposals in [15,18,23] may be the candidates of the

function g.
Decryption: First am ’ = am +h(e) and e can be found by using the decryption

algorithm of the code G.  Secondly the receiver computes

r|| bm = )(1 eg − , where )(1 eg −  is the inverse of g, and then discards the

part r.  Thus bm  is obtained.  Finally, am  can be computed by

am = am ’ + h(e).

Information rate:  By using this method, the information rate can be improved from
0.51 to 0.79 if k=524, n=1024, t=50, and q=0; from 0.51 to 0.73 if
k=524, n=1024, t=50, and q=64; from 0.63 to 0.87 if k=654, n=1024,
t=37, and q=0; and from 0.63 to 0.8 if k=654, n=1024, t=37, and q=64.
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Security: We discuss the security of this variant with parameter q=0 and q=64
respectively.

Parameter q=0:
In Table 2, we show the possible weaknesses in Variant IV with parameter q=0.
Some explanations for these cases are given in the following.

CaseIV.A: Assume am1  is known previously. ( am1 +h(g( bm1 ))G’ cannot be

removed from 1c  because h(g( bm1 )) is unknown.

CaseIV.B: If bm1  is known previously, then we know ( am1 +h(g( bm1 ))G’ = 1c +

g( bm1 ).  Similar to Case III.B, it is easy to compute am1 +h(g( bm1 ) and

hence am1 .

CaseIV.C: Similar to Case III.C.
CaseIV.D: If am1 = am2  and bm1 ≠ bm2  are known previously, then 1c + 2c =

(h(g( bm1 )+h(g( bm2 ))G’+ 1e + 2e . We cannot remove (h(g( bm1 )+

h(g( bm2 ))G’ from 1c + 2c . Therefore, we cannot obtain any

information about the positions in which the errors occur.
CaseIV.E: Similar to Case III.E.
CaseIV.F: Similar to Case III.F.
CaseIV.G: If the value am1 + am2  and bm1 ≠ bm2  are known previously, then

1c + 2c = ( am1 + am2 +h(g( bm1 )+h(g( bm2 ))G’ + 1e + 2e .  Because the

value am1 + am2  is known, ( am1 + am2 )G’ can be computed. Hence

1c + 2c +( am1 + am2 )G’= h(g( bm1 )+ h(g( bm2 ))G’+ 1e + 2e . However, we

cannot remove (h(g( bm1 )+h(g( bm2 ))G’ from 1c + 2c +( am1 + am2 )G’ .

                    Table 2. The possible weaknesses in Variant IV with parameter q=0

Information Known Previously Information Leaked
Case IV.A

am1  (or am2 )
None

Case IV.B
bm1  (or bm2 ) am1  (or am2 )

Case IV.C
am1 = am2 , bm1 = bm2

None

Case IV.D
am1 = am2 , bm1 ≠ bm2

None

Case IV.E
am1 ≠ am2 , bm1 = bm2 am1 + bm1

Case IV.F
am1 + am2 , bm1 = bm2

None

Case IV.G
am1 + am2 , bm1 ≠ bm2

None

Parameter q=64:
In Table 3, we show the possible weaknesses in Variant IV with parameter q=64.
Some explanations for these cases are given in the following.

CaseIV.R.A: Similar to Case IV.A.
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CaseIV.R.B: Assume bm1  is known previously.  Because 1r  is an unknown 64-

bit random vector, the probability that we get a correct guess of the

value g( 1r || bm1 ) is only 
642

1
.  Therefore, we cannot remove g( 1r || bm1 )

from 1c .  Another possible attack is to guess k positions of c that are

not distorted by e.  Because 
bmE

1
 is uniformly distributed in E, a

cryptanalyst cannot identify which positions have better chances.
CaseIV.R.C: If am1 = am2  and bm1 = bm2  are known previously, then

1c + 2c =(h(g( 1r || bm1 )+h(g( 2r || bm2 ))G’+g( 1r || bm1 )+g( 2r || bm2 ).  We

cannot remove (h(g( 1r || bm1 )+h(g( 2r || bm2 ))G’ from 1c + 2c  because

am1 , am2 , bm1 , and bm2  are unknown.

CaseIV.R.D: Similar to Case IV.D.
CaseIV.R.E:  If am1 ≠ am2  and bm1 = bm2  are known previously, then 1c + 2c =

( am1 + am2 +h(g( 1r || bm1 )+h(g( 2r || bm2 ))G’+g( 1r || bm1 )+g( 2r || bm2 ).

Because 1r  is a 64-bit random vector, the probability that 1r = 2r  (hence

g( 1r || bm1 )=g( 2r || bm2 )) is equal to 1/ 642  which is significantly small.

Therefore, neither ( am1 + am2 +h(g( 1r || bm1 )+ h(g( 2r || bm2 ))G’ nor

g( 1r || bm1 )+ g( 2r || bm2 ) can be removed from 1c + 2c .

CaseIV.R.F: If the value am1 + bm1  and am2 = bm2  are known previously, then

1c + 2c +( am1 + am2 )G’=(h(g( 1r || bm1 )+h(g( 2r || bm2 ))G’ + g( 1r || bm1 ) +

g( 2r || bm2 ). Neither (h(g( 1r || bm1 )+h(g( 2r || bm2 ))G’ nor g( 1r || bm1 )+

g( 2r || bm2 ) can be removed from 1c + 2c +( am1 + am2 )G’.

CaseIV.R.G: Similar to Case IV.G.

                Table 3. The possible weaknesses in Variant IV with parameter q=64

Information Known Previously Information Leaked
Case IV.R.A

am1  (or am2 ) None

Case IV.R.B
bm1  (or bm2 ) None

Case IV.R.C
am1 = am2 , bm1 = bm2

None

Case IV.R.D
am1 = am2 , bm1 ≠ bm2

None

Case IV.R.E
am1 ≠ am2 , bm1 = bm2

None

Case IV.R.F
am1 + am2 , bm1 = bm2

None

Case IV.R.G
am1 + am2 , bm1 ≠ bm2

None

Variant V:

Encryption: Let m = ( am , bm ) be the message.  c = f( am , e) G’ + e, where e =

g(r|| bm ), g is an invertible function which maps r|| bm  into an n-bit
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error vector of weight t, and f is a trapdoor one-way function with two
inputs ( am  and e) and an output of a k-bit vector.  Here the function f
and the function g should have the same property as that in Variant II
and that in Variant IV respectively.

Decryption: First am ’ = f( am , e) and e can be obtained by using the decryption

algorithm of the code G.  Secondly the receiver computes bm  = 1−g (e),

where 1−g  is the inverse of g.  Finally, am  can be computed by am  =
1−f ( am ’, e), where 1−f  is the inverse of f.

Information rate:  the same as Variant IV.
Security: We discuss the security of this variant with parameter q=0 and q=64

respectively.

Parameter q=0:
In Table 4, we show the possible weaknesses in Variant V with parameter q=0.
Some explanations for these cases are given in the following.

CaseV.A: Similar to Case IV.A.
CaseIV.B: If bm1  is known previously, we know f( am1 ,g( bm1 ))G’ = 1c + g( bm1 ).

Similar to Case III.B, it is easy to compute f( am1 , g( bm1 )) and hence

am1 = 1−f (f( am1 , g( bm1 )), g( bm1 )) .

CaseIV.C: Similar to Case III.C.
CaseIV.D: If am1 = am2  and bm1 ≠ bm2  are known previously, then

1c + 2c =(f( am1 , g( bm1 ))+f( am2 , g( bm2 )))G’+ 1e + 2e . We cannot erase

(f( am1 , g( bm1 ))+f( am2 , g( bm2 )))G’ from 1c + 2c .

CaseIV.E: If am1 ≠ bm1  and am2 = bm2  are known previously, then

1c + 2c =(f( am1 , g( bm1 ))+f( am2 , g( bm2 )))G’.  We can only obtain the

value f( am1 , g( bm1 ))+f( am2 , g( bm2 )).

CaseIV.F: Similar to Case IV.E.
CaseIV.G: Similar to Case IV.D.

                   Table 4. The possible weaknesses in Variant V with parameter q=0

Information Known Previously Information Leaked
Case V.A

am1  (or am2 ) None

Case V.B
bm1  (or bm2 ) am1  (or am2 )

Case V.C
am1 = am2 , bm1 = bm2

None

Case V.D
am1 = am2 , bm1 ≠ bm2

None

Case V.E
am1 ≠ am2 , bm1 = bm2

None

Case V.F
am1 + am2 , bm1 = bm2

None

Case V.G
am1 + am2 , bm1 ≠ bm2

None
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Parameter q=64:
In Table 5, we show the possible weaknesses in Variant V with parameter q=64.
Some explanations for these cases are given in the following.

CaseV.R.A: Similar to Case IV.R.A.
CaseV.R.B: Similar to Case IV.R.B.
CaseV.R.C: If am1 = am2  and bm1 = bm2  are known previously, then

1c + 2c =(f( am1 , g( 1r || bm1 ))+f( am2 , g( 2r || bm2 )))G’+ g( 1r || bm1 )

+g( 2r || bm2 ).  We cannot remove neither (f( am1 , g( 1r || bm1 ))+f( am2 ,

g( 2r || bm2 )))G’ nor g( 1r || bm1 )+g( 2r || bm2 ) from 1c + 2c .

CaseV.R.D: Similar to Case V.D.
CaseV.R.E: Similar to Case IV.R.E.
CaseV.R.F: Similar to Case V.R.C.
CaseV.R.G: Similar to Case V.G.

                 Table 5. The possible weaknesses in Variant V with parameter q=64

Information Known Previously Information Leaked
Case V.R.A

am1  (or am2 ) None

Case V.R.B
bm1  (or bm2 ) None

Case V.R.C
am1 = am2 , bm1 = bm2

None

Case V.R.D
am1 = am2 , bm1 ≠ bm2

None

Case V.R.E
am1 ≠ am2 , bm1 = bm2

None

Case V.R.F
am1 + am2 , bm1 = bm2

None

Case V.R.G
am1 + am2 , bm1 ≠ bm2

None

5 Conclusions

In this paper, we first propose two variants, Variant I and Variant II, of the McEliece
scheme, which can prevent from both the message-resend attack and the related-
message attack.  These two variants are probabilistic encryptions, and have the same
information rate as that of the original McEliece scheme.  To improve the information
rate and to prevent from Berson-like attacks, we also propose two variants, Variant IV
and Variant V, of the McEliece scheme.  In these two variants, if the parameter q is
equal to 0, then they are deterministic encryptions and can improve the information
rate from 0.51 to 0.79 if k=524, n=1024, t=50, or from 0.63 to 0.87 if k=654, n=1024,
t=37.  If the parameter q is equal to 64, then they are probabilistic encryptions and can
improve the information rate from 0.51 to 0.73 if k=524, n=1024, t=50, or from 0.63
to 0.8 if k=654, n=1024, t=37.   
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