Skip to main content

Learning Algebraic Structures from Text Using Semantical Knowledge

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1501))

Included in the following conference series:

  • 382 Accesses

Abstract

The present work investigates to which extent semantical knowledge can support the learning of basic mathematical concepts. The considered learning criteria are learning characteristic or enumerable indices for languages from positive data where the learner has to converge either syntactically (Ex) or semantically (BC). The considered classes are the classes of all monoids of a given group, all ideals of a given ring or all subspaces of a given vector space. The following is shown:

  1. (a)

    Learnability depends much on the amount of semantic knowledge given at the synthesis of the learner where this knowledge is represented by programs for the algebraic operations, codes for prominent elements of the algebraic structure (like 0 and 1 in fields) and certain parameters (like the dimension of finite dimensional vector spaces). For several natural examples good knowledge of the semantics may enable to keep ordinal mind change bounds while restricted knowledge may either allow only BC-convergence or even not permit learnability at all.

  2. (b)

    A recursive commutative ring is Noetherian iff the class of its ideals is BC-learnable. Such a BC-learner can be synthesized from programs for addition and multiplication. In many Noetherian rings, one can Ex-learn characteristic indices for the ideals with an ordinal bound on the number of mind changes. But there are also some Noetherian rings where it is impossible to Ex-learn the ideals or to learn characteristic indices for them.

A more comprehensive version of this paper is available as Forschungsbericht Mathematische Logik 34 of the Mathematisches Insitut at the UniversitÄt Heidelberg (same authors and title). This paper was written when Frank Stephan was visiting Arun Sharma at the School of Computer Science and Engineering, UNSW. The first author is supported by the Deutsche Forschungsgemeinschaft (DFG) grant Am 60/9-2. The second author is supported by the Australian Research Council grant A49600456 to Arun Sharma. The latter grant also supported the first author’s visit to UNSW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard Adleman and Manuel Blum: Inductive Inference and Unsolvability. Journal of Symbolic Logic, 56:891–900, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. Andris Ambainis, Sanjay Jain and Arun Sharma: Ordinal mind change complexity of language identification. Submitted for publication.

    Google Scholar 

  3. Dana Angluin: Inductive Inference of Formal Languages from Positive Data. Information and Control, 45:117–135, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ganesh Baliga and John Case: Learning with Higher Order Additional Information. Proceedings of the Fifth International Workshop on Algorithmic Learning Theory, Reinhardsbrunn, 64–75, 1994.

    Google Scholar 

  5. Walter Baur: Rekursive Algebren mit Kettenbedingungen. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 20:37–46, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  6. Lenore Blum and Manuel Blum: Toward a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. Leonore Blum, Micheal Shub and Steve Smale: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21:1–46, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. Henri Cohen: A Course in Computational Algebraic Number Theory. Springer, Heidelberg, 1993.

    MATH  Google Scholar 

  9. David Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry. Springer, Heidelberg, 1995.

    MATH  Google Scholar 

  10. RŪsiņš Freivalds and Carl H. Smith: On the Role of Procrastination for Machine Learning. Information and Computation, 107:237–271, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. Mark A. Fulk: Saving the Phenomena: Requirements that Inductive Inference Machines Not Contradict Known Data. Information and Computation, 79:193–209, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Mark Gold: Language Identification in the Limit. Information and Control, 10:447–474, 1967.

    Article  MATH  Google Scholar 

  13. Grete Hermann: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Mathematische Annalen, 95:736–788, 1926.

    Article  MathSciNet  MATH  Google Scholar 

  14. Klaus Peter Jantke: Automatic synthesis of programs and inductive inference of functions. Proceedings of the International Conference on Fundamentals of Computations Theory, 219–225, 1979.

    Google Scholar 

  15. Irving Kaplansky: Commutative Rings. Allyn and Bacon, Inc., Boston, 1970.

    MATH  Google Scholar 

  16. Shyam Kapur and Gianfranco Bilardi: On uniform learnability of language families. Information Processing Letters, 44:35–38, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Kh. Kasymov: Logical programming without equality and constructive representations. Vychisl. Sist. 122:3–18, 1987.

    MATH  MathSciNet  Google Scholar 

  18. Susanne Kaufmann and Frank Stephan: Robust Learning with Infinite Additional Information. Proceedings of the Third European Conference on Computational Learning Theory-EuroCOLT’97, Springer LNCS 1208, 316–330, 1997.

    Google Scholar 

  19. Satoshi Kobayashi and Takashi Yokomori: On approximately identifying concept classes in the limit. Proceedings of the Sixth International Workshop on Algorithmic Learning Theory-ALT’95, Springer LNCS 997, 298–312, 1995.

    Google Scholar 

  20. Satoshi Kobayashi: Approximate identification, finite elasticity and lattice structure of hypothesis space. Technical Report CSIM 96-04, Department of Computer Science and Information Mathematics, University of Electro-Communications, 1996.

    Google Scholar 

  21. Satoshi Kobayashi and Takashi Yokomori: Identifiability of subspaces and homomorphic images of zero-reversible languages. Proceedings of the Eighth International Workshop on Algorithmic Learning Theory-ALT’97, Springer LNCS 1316, 48–61, 1997.

    Google Scholar 

  22. Emmy Noether: Idealtheorie in Ringbereichen. Mathematische Annalen, 83:24–66, 1921.

    Article  MathSciNet  MATH  Google Scholar 

  23. Piergiorgio Odifreddi: Classical recursion theory. North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  24. Daniel N. Osherson, Michael Stob and Scott Weinstein: Systems that learn. Bradford / MIT Press, London, 1986.

    Google Scholar 

  25. Daniel N. Osherson, Michael Stob and Scott Weinstein: Synthesizing inductive expertise. Information and Computation, 77:138–161, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  26. Robert Soare: Recursively enumerable sets and degrees. Springer-Verlag, Heidelberg, 1987.

    Google Scholar 

  27. Frank Stephan and Sebastiaan Terwijn: The complexity of universal text-learners. Proceedings of the Eleventh International Symposium on Fundamentals of Computation Theory-FCT’ 97, Springer LNCS 1279, 441–451, 1997.

    Google Scholar 

  28. Thomas Zeugmann and Steffen Lange: A Guided Tour Across the Boundaries of Learning Recursive Languages. Algorithmic Learning for Knowledge-Based Systems, Springer LNCS 961, 193–262, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stephan, F., Ventsov, Y. (1998). Learning Algebraic Structures from Text Using Semantical Knowledge. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 1998. Lecture Notes in Computer Science(), vol 1501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49730-7_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-49730-7_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65013-3

  • Online ISBN: 978-3-540-49730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics