Skip to main content

Cryptographic Limitations on Parallelizing Membership and Equivalence Queries with Applications to Random Self-Reductions

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1501))

Included in the following conference series:

  • 376 Accesses

Abstract

We assume wlog. that every learning algorithm with membership and equivalence queries proceeds in rounds. In each round it puts in parallel a polynomial number of queries and after receiving the answers, it performs internal computations before starting the next round. The query depth is defined by the number of rounds. In this paper we show that, assuming the existence of cryptographic one-way functions, for any fixed polynomial d (n) there exists a concept class that is efficiently and exactly learnable with membership queries in query depth d(n) +1, but cannot be weakly predicted with membership and equivalence queries in depth d(n). Hence, concerning the query depth, efficient learning algorithms for this concept class cannot be parallelized at all. We also discuss some applications to random self-reductions and coherent sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angluin: Learning Regular Sets from Queries and Counterexamples, Informa-tion and Computation, vol. 75, pp. 87–106, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Angluin: Queries and Concept Learning, Machine Learning, vol. 2, pp. 319–342, 1988.

    Google Scholar 

  3. D. Angluin, M. Kharitonov: When Won’t Membership Queries Help?, 23rd ACM Symposium on Theory of Computing, pp. 444–454, 1991.

    Google Scholar 

  4. J. Balcázar, J. Díaz, R. Gavaldà, O. Watanabe: An Optimal Parallel Algorithm for Learning DFA, 7th ACM Conference on Computational Learning Theory 1994.

    Google Scholar 

  5. R. Beigel, J. Feigenbaum: Improved Bounds on Coherence and Checkability, Yale University Technical Report, YALEU/DCS/TR-819, 1990.

    Google Scholar 

  6. R. Beigel, J. Feigenbaum: On Being Incoherent Without Being very Hard, Com-putational Complexity, vol. 2, pp. 1–17, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Bellare, S. Goldwasser: The Complexity of Decision Versus Search, SIAM Journal on Computing, vol. 23, no. 1, 1994.

    Google Scholar 

  8. M. Blum, S. Micali: How to Generate Cryptographically Strong Sequences of Pseudorandom Bits, SIAM Journal on Computation, vol. 13, pp. 850–864, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Bshouty: Exact Learning of Formulas in Parallel, Machine Learning, vol. 26, pp. 25–42, 1997.

    Article  MATH  Google Scholar 

  10. N. Bshouty, R. Cleve: On the Exact Learning of Formulas in Parallel, 33rd IEEE Symposium on the Foundations of Computer Science, pp. 513–522, 1992.

    Google Scholar 

  11. N. Bshouty, S. Goldman, H. Mathias: Noise-Tolerant Parallel Learning of Geometric Concepts, 8th ACM Conference on Computational Learning Theory, 1995.

    Google Scholar 

  12. B. Berger, J. Rompel, P. Shor: Efficient NC Algorithms for Set Cover with Application to Learning and Geometry, 30th IEEE Symposium on the Foundations of Computer Science, pp. 54–59, 1989.

    Google Scholar 

  13. R. Canetti, D. Micciancio, O. Reingold: Perfectly One-Way Probabilistic Hash Functions, 30th ACM Symposium on Theory of Computing, 1998.

    Google Scholar 

  14. J. Feigenbaum, L. Fortnow: On the Random-Self-Reducibility of Complete Sets, 6th Annual IEEE Structure in Complexity Theory Conference, 1991.

    Google Scholar 

  15. J. Feigenbaum, L. Fortnow, C. Lund, D. Spielman: The Power of Adaptiveness and Additional Queries in Random-Self-Reductions, Computational Complexity, vol. 4, pp. 158–174, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Goldwasser, O. Goldreich, S. Micali: How to Construct Random Functions, Journal of ACM, vol. 33, pp. 792–807, 1986.

    Article  MathSciNet  Google Scholar 

  17. J. Håstad, R. Impagliazzo, L. Levin, M. Luby: Construction of Pseudorandom Generator from any One-Way Function, to appear in SIAM Journal on Computing, preliminary versions in STOC’89 and STOC’90, 1989/1990.

    Google Scholar 

  18. E. Hemaspaandra, A. Naik, M. Ogihara, A. Selman: P-Selective Sets, and Reducing Search to Decision vs.Self-Reducibility, Journal of Computer and System Sciences, vol. 53, pp. 194–209, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Impagliazzo, M. Luby: One-Way Functions are Essential for Complexity Based Cryptography, 30th IEEE Symposium on Foundations of Computer Science, pp. 230–235, 1989.

    Google Scholar 

  20. M. Kearns, L. Valiant: Cryptographic Limitations on Learning Boolean Formulae and Finite Automata, Journal of ACM, vol. 41, pp. 67–95, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Kharitonov: Cryptographic Hardness of Distribution-Specific Learning, 25th ACM Symposium on the Theory of Computing, pp. 372–381, 1993.

    Google Scholar 

  22. R. Ostrovsky, A. Wigderson: One-Way Functions are Essential for Non-Trivial Zero-Knowledge, Second IEEE Israel Symposium on Theory and Computing Sys-tems, 1993.

    Google Scholar 

  23. L. Pitt, L. Valiant: Computational Limitations on Learning from Examples, Journal of ACM, vol. 35, pp. 965–984, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Pitt, M. Warmuth: Prediction-Preserving Reducibility, Journal of Computer and System Science, vol. 41, pp. 430–467, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Rivest, Y.L. Lin: Being Taught can be Faster than Asking Questions, 8th ACM Conference on Computational Learning Theory, 1995.

    Google Scholar 

  26. C.P. Schnorr: Optimal Algorithms for Self-Reducible Problems, 3rd International Colloqium on Automata, Languages, and Programming, pp. 322–347, Edingburgh University Press, 1976.

    Google Scholar 

  27. L. Valiant: A Theory of the Learnable, Communications of ACM, vol. 27, pp. 1134–1142, 1984.

    Article  MATH  Google Scholar 

  28. J. Vitter, J. Lin: Learning in Parallel, Information and Computation, vol. 92, pp. 179–202, 1992.

    Article  MathSciNet  Google Scholar 

  29. A. Yao: Coherent Functions and Program Checkers, 22nd ACM Symposium on Theory of Computing, pp. 84–94, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischlin, M. (1998). Cryptographic Limitations on Parallelizing Membership and Equivalence Queries with Applications to Random Self-Reductions. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 1998. Lecture Notes in Computer Science(), vol 1501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49730-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-49730-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65013-3

  • Online ISBN: 978-3-540-49730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics