
INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI
A ccess in g the World's Information s in c e 1938

3 00 North Z eeb Road, Ann Arbor, Ml 48106-1346 USA

O rd e r N u m b e r 8820276

R esponsive sequential processes

Costello, Roger Lee, Ph.D.

The Ohio State University, 1988

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

RESPONSIVE SEQUENTIAL PROCESSES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor Of Philosophy in the Graduate

School of the Ohio State University

By

Roger Lee Costello, B.S., M.S.

The Ohio State University

1988

Dissertation Committee:

N. Soundararajan

P. Sadayappan

T. Lai

Approved by

Adviser

Department of Computer and

Information Science

ACKNOWLEDGEMENTS

I w ould like to express m y sincerest thanks to my adviser, Prof.

Neelam Soundararajan for his guidance, advice and friendship through the

years. Thanks also go to the other members of m y advisory committee, Drs.

P. Sadayappan, and R. Parent, for their suggestions and comments. To my

wife, Patricia, I offer sincere thanks for her support and encouragement.

November 6,1957

VITA

Bom - Davenport, Iowa

1980... B.S. (Chemistry),

St. Ambose College,

Davenport, Iowa

1983... M.S. (Computer Science),

The Ohio State University,

Columbus, Ohio

PUBLICATIONS

"Modeling Switch-Level Sim ulation using Dataflow", Proceedings of the

22nd Design Autom ation Conference, June 1985, pp. 637-644.

"Distributed Discrete Event Simulation using Dataflow", Proceedings of the

1985 International Conference on Parallel Processing, pp. 503-510.

"Responsive Sequential Processes", SIGPLAN Notices, March, pp. 53-63.

"Responsive Sequential Processes", W orkshop on Form al Techniques in

Real-Time and Fault-Tolerant Systems.

FIELDS OF STUDY

Major Field: Programming Languages

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

VITA... iii

LIST OF FIGURES... vi

CHAPTER PAGE

I. INTRODUCTION... 1

M otivation.. 1

Other Languages.. 5
RSP versus Real-Time................................ 8
N otation ... 12
C SP... 13
Organization of T hesis................................ 15

H. RESPONSIVE SEQUENTIAL PROCESSES. . . 16

m . SYSTEM MODEL... 36

IV. EXAMPLES... 43

Example 1. Prime Num ber Exam ple 44
Example 2. Line Printer Spooler Exam ple. 49
Example 3. Line Printer Spooler Example,

version 2 55
Example 4. Alarm C lock................................ 65
Example 5. Alarm Clock, version 2 67

V. DISCUSSION ... 6 8

iv

VL CONCLUSION 81

M odula vs RSP.. . . . 81
Distributed Programming System vs R SP. . . 83
CSP vs RSP... 8 6

Motivating Concepts for RSP........................... 8 8

Summary and Further Research..................... 95

LIST OF REFERENCES.. 98

v

LIST OF FIGURES

FIGURES PAGE

1. Achieving Efficient State Roll-back
and U p d a te .. 3 9

2. Communication Protocol State D iagram 42

vi

CHAPTER I

INTRODUCTION

M otivation

Responsive Sequential Processes (RSP) is a program m ing language for

distributed real-time systems. RSP provides the program m er w ith a natural

view of distributed real-time problems and a powerful set of constructs for

expressing his program .

This chapter is organized as follows: In this first section I describe

RSP's intended application area and suggest the type of constructs that are

needed in a program m ing language to satisfy the needs of the area. In the

next two sections I consider other languages which attem pt to satisfy the

areas' requirem ents and explain w hy these languages fall short in th e ir

attem pt. Before introducing RSP it will be useful to introduce the notation

that will be used throughout the dissertation. This notation is presented in

the next two sections. In the last section I describe the organization of the

rem aining chapters of the dissertation.

Consider a system that contains not only "com putational" activities

bu t also a num ber of "physical devices". Examples of such devices m ight

1

2

include robot arms, rocket engines, cameras, etc. In view of the complexity of

such systems, the m ost natural way to organize such a system would be as a

set of (nearly) independent processes interacting w ith each other by means of

explicit com m unication. The comm unication m echanism in such systems

m ust satisfy som e special requirem ents. Consider an example: a process P

requires a robot arm, that is under the control of process Q, to move a certain

distance and return some data within, say, two seconds. Suppose P sends the

request to Q, the two seconds elapse, and Q does not reply w ith the needed

data. W hat can P do?

One approach that is often used is for P to activate some emergency

routine w hen the two seconds expire. Typically, however, there is very little

that can be done by the emergency routine. The data (from Q) was needed

w ithin two seconds and that time has passed.

I believe a better solution to the problem w ould be to have a com­

m unication m echanism that is 'responsive'; in the above situation, as soon

as P sends (or tries to send) its request to Q, Q m ust either reject it (since it

cannot m eet the constraints specified in the request, perhaps because it is

already com m itted to processing too m any other requests), or accept it for

later processing. If Q accepts the request, P can proceed w ith its other

activities, confident that Q will perform the required service; if Q rejects the

request, P will have plenty of time to try other alternatives such as trying to

see if some other process, Q', would accept the request.

3
But w hat if Q is already busy w ith some other (internal) activities?

How will it respond quickly to P's messages and accept it or reject it? I will

postpone the answer to these questions to chapter II.

Also needed in this area of programming is the ability for a process to

react quickly to certain messages it receives. To continue w ith the above

exam ple - suppose Q accepts P 's request. Q will then try to perform the

requested service within the specified time. But w hat if the robot arm that Q

controls jams? Clearly Q cannot then meet its commitment to P (to move the

arm the required distance and send back data w ithin 2 seconds). In this

situation, the very least Q should do is to inform P (as well as any other

processes that it has accepted requests from) that it will not be able to honor

its earlier commitment. It is, of course, quite simple to send such a message,

bu t that is not enough. Recall that P is proceeding on the assum ption that Q

will indeed perform the required service. Hence the message from Q reniging

u p o n its previous com m itm ent m ight lead to serious consequences for P

unless it reacts quickly and takes appropriate corrective action (possibly

abandoning w hatever com putations it is currently engaged in). Note that the

'reaction' I am talking about here is very different from the 'response' I spoke

of in the last paragraph. A quick response from the (intended) recipient of a

message allows die sender to proceed appropriately depending upon whether

the message w as accepted or rejected by the recipient. O n the other hand, a

process needs to be able to react quickly to certain messages it m ight receive

4

and take approp ria te corrective action since otherw ise it (the receiving

process) m ight get into serious difficulties. Quite possibly, as is the case in the

exam ple of the process controlling the robot arm , the sending process Q

doesn 't care w hether the receiving process even accepts or rejects the

message. Thus the ability on the part of the receiving process to react quickly

to certain messages is needed not so m uch in order to allow the sender to

p roceed appropriately, as to allow the receiver to act quickly to handle the

em ergency that the message signifies. I will not explain here how a process

will identify the set of m essages that it wishes to consider as "emergencies"

nor how it will react to the receipt of such a message, postponing these to

chapter n.
These tw o ideas - tha t a recipient process m ust accept or reject

messages as soon as they are sent and that it should be able to react quickly to

certain mesages w hen they arrive and take appropriate corrective action -

will, I believe, be useful in building systems that include physical devices in

addition to com putational activities and are the basic ideas underlying the

w ork reported in this proposal.

5

Other Languages

This section introduces other languages which have been designed for

the same application area. A detailed comparison of RSP and these languages

may be found in Chapter VI.

Systems that are com prised of physical as w ell as com putational

activities and have tim e constraints associated w ith the activities are

commonly referred to as real-time systems. A real-tim e program is one in

w hich the code is designed to m eet as m any of the time constraints as

possible. Typically, in real-time systems there is an operating sytem which

schedules the processes to run on the processors, and the operating system's

scheduling algorithm tries to ensure that all time constraints are met.

The overw helm ing focus (as m ay be seen by a cursory view of the

literature) in real-time systems is on scheduling algorithm s. That is, w hat

algorithms will best ensure that time constraints of each process will be met?

I believe that this is not the appropriate focus. In the model for RSP it

will be seen that there is no operating system. Instead, each process schedules

its own activities. Hence there is no need for an operating system and its

associated scheduling algorithms. Since RSP takes a view totally orthogonal

to existing schemes, I do not present a complete survey of existing real-time

languages. Instead, a brief overview of such languages is presented below. A

complete survey may be found in the references [3 ,11 ,12 ,13 ,18 ,19 ,20 , 21, 27,

29].

6

(a) Modula

M odula [27] was designed especially for applications such as embedded

industrial and scientific real-time com puter systems [29]. The language has

no built-in high level I /O facilities bu t instead provides constructs for writing

device handlers directly in the language. In [28] W irth describes a discipline

to be followed w hen w riting real-time programs. The program , he states, is

to be w ritten first to ensure that it is logically correct and then another pass is

m ade to check that any time constraints are met.

W hen reading a real-tim e M odula program it is not apparent that

there are any time constraints. It is difficult, then, to determ ine w hat, if any,

tim e constraints are being m et. This inability to d istinguish real-tim e

program s from non-real-tim e program s is very typical of early real-tim e

system s. Early languages for real-tim e systems were also responsible for

introducing the notion of interrupts and processor sharing.

(b) Distributed Programming System

In 1985 Lee and Gehlot proposed a language that was designed

especially for distributed, real-tim e system s [18]. Their language includes

constructs (called tem poral scope) for specifying time constraints of code

execution and of interprocess communication. These constructs facilitated a

run-tim e system (i.e. operating system) in scheduling processes for execution

7

on the processors. They have argued that this eliminates a lot of work and

complexity for the program m er, since now the run-tim e system does the

scheduling. In addition, the inclusion of time constraints makes it obvious to

the reader of the program w here and w hat the constraints are, which was

missing from earlier languages such as Modula. Another feature missing in

earlier languages but incorporated in DPS is exception handling. W ith DPS if

a time constraint is violated then control is transferred to the end of the

temporal scope, where an exception handler processes the error.

(c) CSP (and extensions)

CSP [28] is the first language to actually model distributed systems.

Unlike other systems, each process has its own processor - thus elim inating

the need for an operating system. All interactions betw een processes take

place by m eans of explicit, synchronized communications. As a consequence,

a process m ay w ait at an input or output for an arbitrarily long time for the

o ther process to synchronize. O bviously, for applications w ith tim e

constraints this is unsuitable. OCCAM [24] proposed an extension to CSP

w hereby I /O statem ents and guards w ould have an associated tim e-out

m echanism . N ow a process rem ains at an I /O com m and until the other

process executes a m atching I /O , or, the tim e-out occurs. If the tim e-out

occurs then some emergency action is attempted.

8

In sum m ary, early real-time languages, such as M odula, were written

w ithout constructs to show w hat constraints w ere being met. Hence, a

real-time program could not be distinguished from a non-real-time program.

Later languages saw the inclusion of constructs to show w hat constraints are

present in the program . Typically, processors were shared to save on the high

cost of processors. This, of course, necessitated the use of an operating system

to schedule the processes on the processors. Also, to acheive rapid response

an in te rru p t m echanism w as frequently em ployed. Processor sharing,

scheduling, and interrupts are common to almost all real-time systems today.

Extended CSP is the exception. Each process has its ow n processor. Processes

in teract by m eans of explicit com m unications. A tim e-out m echanism

prevents a prcess from w aiting at a communication point for an arbitrarily

long time.

The next section contains a com parison betw een systems designed

using RSP and other real-time systems.

RSP versus Real-Time

As described above, real-tim e system s are systems w here "time" is

im portant, and one cannot w ait indefinitely for certain events to take place.

We already saw one reason for this in the first section: if a system consists of

physical devices (as well as computational activities), then the nature of these

devices requires the program m er to ensure that certain actions are performed

9

w ithin specified time lim its and, if they cannot, the appropriate process

should be informed quickly so it has time to pursue other alternatives. As I

explained in the first section, RSP was designed for dealing w ith this type of

constraint.

The system m odel underlying RSP is m uch like that underlying CSP:

I assume that every "part" of a system has its ow n processor that performs all

the computations required by that part of the system. Thus, for instance, in

the exam ple considered in the first section, all com putations required to

m anipulate the robot arm are perform ed by a separate processor (executing

the process Q). This is not true of m any current real-time systems [22,23]; in

these systems all computations required by the various parts of the system are

carried out on a central pool of (one or more) processors, w ith an operating

system responsible for scheduling the various computations. M any of these

com putations w ill have tim e constrain ts associated w ith them since,

considering the exam ple of the robot arm again, if the robot arm is to be

m oved w ithin 2 seconds then the computations to decide the exact sequence

of instructions to be sent to the robot arm to effect this m ovem ent should be

com pleted long before then. The operating system tries to schedule the

various computations such that their time constraints are met; in general it

w on 't be able to m eet all the constraints and w hen a constraint is violated

then an appropriate "emergency handling routine" will have to be executed.

1 0

Obviously, because of such things as emergencies, an operating system

cannot guarantee that a request's constraint will be met, and the same is true

of a RSP process. So, both schemes m ust program for such events. Existing

real-time systems, however, have an added level of complexity: A process in

one of these systems m ust also program for the event that a computation

scheduled by the operating system is not completed within the required time,

not because of an em ergency w ith in the process, bu t because all of the

com puting resources are being used. Originally the operating system may

have been able to schedule the request bu t later, perhaps due to emergencies

in other processes, the com puting resources are all being utilized to handle

these emergencies and the com putations of the first process cannot be

completed now. This cannot happen in RSP since each process has its own

processor. Thus, operating system used in existing real-tim e systems will

force the program m er of each process to have a global view of the system.

Emergencies present o ther problem s for existing real-tim e systems

that are not found in RSP. W ith both schemes an emergency in one process

m ay result in reniging on requests which result in generating an emergency

for those processes, thus creating a "ripple effect". While this is undesirable,

there is consolation in that the effect is localized to processes that are related

(by interaction). The ripple effect in current real-time systems, however, may

extend beyond, to totally unrelated processes. Consider a process P in a

11

real-time system which receives an emergency. P sends renig messages to

those processes which m ade requests of it. Suppose Q is such a process and Q

currently does no t have a com puting resource, and further, this renig

message is an emergency for Q. If there are no computing resources free then

the operating system m ust preem pt another process R. However, this may

cause an emergency for R. This, in turn, m ay create other emergencies, etc.

The emergency induced in Q is common to both RSP and existing real-time

systems. This is the localized ripple effect. The emergency induced in R is not

found in RSP, and is an example of how, in current real-time systems, the

ripple effect m ay extend over totally unrelated processes.

By assum ing that there is a separate processor for each part of the

system which will perform all of the computations required by that part of

the system I elim inate all of these problem s (including the need for a

complex operating system), and gain a w hole host of advantages. In

particular, each process has flexibility in its scheduling, there is greater

au tonom y of processes and each process is less complex. G iven the

advantages of m y approach and the current performance, size and price of

microprocessors, m y approach seems reasonable.

1 2

N otation

Before looking at RSP some notation needs to be introduced. The

syntax for selection and alternative statements used in RSP are based upon

CSP's notation [16]. The selection statement's syntax is:

[G| —> S|

D G2 —̂ S2

0 Gn -* Sn
]

The semantics of this statem ent is that a statem ent Sj is executed whose

guard Gj "succeeds", 1 <. i <, n. If two or more guards succeed a choice is m ade

nondeterministically . If none succeed, the statem ent aborts.

A guard m ay be either (1) a boolean expression (boolean guard), or (2)

a boolean expression followed by an I /O statem ent (then the guard is known

as an I /O guard). A boolean guard succeeds if the boolean expression

evaluates to true. An I /O guard succeeds if its boolean portion is true and the

I /O portion succeeds. The box, Q , denotes alternative.

The syntax for the loop statement is:

*[G | - > Si

□ G2 -»S2

Q Gn -> Sn
]

13

The * symbol comes from the Kleene star in form al language theory and

denotes repetition. This loop is repeated until all of the guards fail.

CSP

R esponsive Sequen tia l Processes (RSP) w as d esig n ed w ith

Communicating Sequential Processes (CSP) as a m odel and CSP is frequently

referred to th roughout this dissertation. It w ill be instructive, then, to

describe CSP in a little greater depth than in the previous section.

A CSP program consists of a set of independently executing processes

[P i / / ... / / Pn J. Processes in teract by m eans of explicit, synchronized

communication: P j :: [Pj!x] means that process Pj outputs (shrieks) the value

of x to process Pj. The comm unication does not actually take place until Pj

executes a m atching inpu t statement. W hen Pj executes the m atching input

statement: P j :: [Pj?y] then the value is transferred and is assigned to y. The

I /O statem ents m ay also be used as an I /O guard in selection and loop

statements. W hen used in a selection statement: P j :: [Pj!x Si 0 Pfc?y -» S2]

the system random ly selects one of the guards that succeeds, perform s the

I /O , and then executes the statement following the arrow. If both guards fail

then the process aborts. An I /O guard fails w hen the m atching process has

14

terminated. 1 / O guards m ay also be employed in loops:

*[Pj!x Sj 0 Pk?y -> S2].

The loop is repeated until both guards fail.

H ere is an exam ple of a CSP program which has three processes.

Process P | receives a value from each of processes P2 and P3 and then finds

the m axim um value of the two.

P | :: [cnt := 1 ;

*[cnt £ 2 [P2 ?x -» cnt := cnt + 1 0 P j?y -» cnt := cnt + 1];

[x £ y -> max := y D y < x -> max := x]

1

P 2 :: [value := 1 2 ; P | lvalue]

P3 :: [value := 8 ; P j lvalue]

Process P j has a loop which it repeatedly executes until it has received two

values. On each iteration a counter, cnt, is incremented. W hen the counter

exceeds a value of two then the loop is term inated and it is determ ined

w hether x or y has the m axim um value using a selection statement. In this

example Max will be assigned the value of 12. Process P2 simply assigns the

variable "value" a value and then sends the value to P j. Note here that the

ou tpu t com m and is being used as an ordinary statement, whereas in P j the

1 5

I /O com m and is being used as an I /O guard. Control will rem ain at the

o u tpu t statem ent un til P | executes a m atching inpu t statem ent. Similar

comments m ay be m ade about process

Organization of the Thesis

The rest of the dissertation is organized as follows. In Chapter n is an

in-depth discussion of RSP, including both the semantics and syntax of the

language. In Chapter HI I show how to implement some of the key facets of

RSP. Chapter IV dem onstrates the usefulness of RSP with several examples.

Chapter V is organized as a series of questions and answers about RSP. And

lastly, in C hapter VI, I provide a comparison of RSP w ith other real-tim e

languages, sum m arize the principles which underlie and m otivate RSP, and

discuss w hat further research needs to be done.

CHAPTER H

RESPONSIVE SEQUENTIAL PROCESSES

A RSP program consists of a set of n responsive sequential processes

l P l / / . . . / / P n]. Each process Pj is like a CSP process, independent of the

others and interacts w ith them by I /O commands. The difference from CSP

is in the nature of the I /O commands.

Consider first the ou tpu t commands. Suppose in Pj, we wish to send

a message x to Pj. (What a message means is entirely up to the programmer:

it m ight be a request for a service, a piece of data, or anything else. In my

discussion I w ill use both w ords 'message' and 'request' .) There are two

commands that m ay be used to send x:

1. Pjttx : ("Try x on Pj") This is typically used as a guard in selection

statem ents and alternative statements; it w ill succeed if Pj ac­

cepts x and fail if it rejects x. Note: To "try" x on Pj does n o t

m ean that Pj com m unicates w ith Pj to see if it is willing to

accept x and if it is willing to accept x then Pj actually sends x.

Instead, it means that Pj sends x to Pj and if Pj accepts x then the

communication is complete, i.e. x has been sent to and receiv-

16

17

ed by Pj. If Pj does not accept x then x was refused by Pj and there

is no trace of this communication in Pj.

2. Pj$x : ("Dump x on Pj") This will succeed irrespective of w hether Pj

accepts or rejects x. To execute Pjftx, Pj sends x to Pj and the

communication is complete, irrespective of w hether Pj accepts

or rejects it. Pj will no t have any knowledge of w hether Pj

accepted or rejected x.

Here is a simple example:

Pjftx; Sx

If Pj accepts x then Si will be executed. If Pj rejects x then this process will

abort.

Pjftx; Sj

This will send x to Pj and, irrespective of whether Pj accepts or rejects x, go

on to do Si- Pj will not know whether Pj accepted or rejected x. Pj might use

this for sending information to Pj about which Pj does no t care whether it

is accepted or rejected by Pj.

Here's an example of an output guard

[Pjftx S j]

This is equivalent to the first example. If Pj accepts x then Si is executed,

otherwise the process aborts.

18

W hat if we w ant to do S j if Pj accepts x and S2 if Pj rejects it? Note that

[Pjftx -+ S1

□ true -» So

]

is not the answer; it w ill indeed do S2 if Pj rejects x (since the first guard

will then fail), bu t it m ight choose the second guard w ithout even trying

the first guard. To deal w ith this problem, I introduce a "not-done path" (in

addition to the usual "done path") following an I /O guard. Thus in

[Pjfix

■+* S2

1

if Pj accepts x, the done path will be followed and S | executed; if Pj rejects x,

the not-done path will be followed and S2 executed.

Consider a som ewhat m ore general example:

[b; Pjftx -+ S1

■•*■» S2

0 b'; Pktfy -» S3

1

Suppose b' evaluates to true, we may pick the second guard and try y on Pj.;

if P^ accepts y then S3 w ill be executed, if P^ rejects y then we have to try

the other guard since there is no not-done path. Suppose b evaluates to

19

true , w e m ay pick the first guard and try x on Pj; if Pj accepts x then the

done path will be followed and Sj executed, if Pj rejects x then the not-done

path will be followed and S2 executed. If both b and b ' evaluate to false then

P j will abort. If b evaluates to false and b ’ evaluates to tru e then Pj will

again abort if P^ rejects y. If b evaluates to true then Pj cannot abort.

Note that it doesn't make sense to use -^w ith ft; thus in

[Pjftx -» S j

-*> S 2

]

S1 will necessarily be executed, irrespective of w hether Pj accepts or rejects

x, since in either case Pjftx is considered to have been done.

A final example:

b := true:

* [b; Pjftx —> b := false

Skip

]

This will keep looping until Pj accepts x, and then b will be set to false and

the loop terminates.

N ote that the ou tpu t commands will not cause any w ait in Pj since

the process Pj, to which Pj sends the message, responds quickly and either

accepts or rejects the message. But how does Pj provide this quick response?

The answer lies in the system model: in addition to the norm al processor

20

Mj i that executes Pj, I assum e that there is a second processor |ij 2 that

responds to messages sent to Pj. If |ij 2 accepts a message then it adds the

m essage to a buffer it m aintains. If Hj 2 rejects the m essage then the

contents of the buffer rem ain unchanged. In either case, the sender of the

message is notified of the acceptance or rejection of the message. W hen Pj

(or rather, ^ j) executes the next inpu t it reads in the entire contents of

|ij 2's buffer, i.e. the sequence of messages that |ij 2 has accepted since Pj's

last input, and |ij 2's buffer is cleared.

Clearly then, an inpu t command will no t specify a source process,

and will read in a sequence of messages rather than a single message. Now

for the syntax of input commands:

1 . ?h : ("read non-em pty sequence of messages" or "read non-em pty h")

As a guard, this will be "done" if the sequence of messages in the

buffer is non-empty.

2. 9h : ("read any sequence of messages" o r "read any h") This w ill

always be "done".

Note: "h" is any user-defined sequence variable.

21
A simple example:

b := true:

* [b; ?h -» b := false

-*»Skip

]

This will keep looping until there is som e input, at which tim e the done path

is follow ed and- the contents of the buffer are read in to h and the lo o p

terminates. As long as there is no input, the not-done path is followed and the

skip statement is executed.

This could be equivalently program m ed using ?:

b := true:

* [b; Jh [h = e —» Skip

D h * e —> b := false

]

1

So, the 9 command is redundant. However, it does add convenience to the

notation and it does provide a sym m etry betw een the inpu t and output

comm ands. N ote that the 1t com m and is n o t redundan t and canno t be

replaced by the $ command, because if we use the $ to send a message the

sender has no way of know ing w hether the m essage was accepted o r

rejected.

22

H ow does jij 2 decide w hether to accept or reject a particular

m essage? I require, as p a rt of Pj, the specification of an 'acceptance'

condition Aj - a Boolean function of the message. W hen Pj 2 receives a

message m, it will accept m if m causes Aj to evaluate to true, and reject m

if it causes Aj to evaluate to false. Thus it is Pj 2 that provides the quick

response to requests from other processes, either accepting or rejecting

them, and it is Pj ^ that actually processes the accepted requests as it

executes the body of Pj. In general, the question of w hether to accept or

reject m will depend on m, on the messages that have already been accepted

(and are in Pj 2’s buffer), and on the state of Pj. W hat I m ean by the state of

Pj is not its current state - that is constantly changing as Pj j perform s Pj's

local computations and Pj 2 has no access to that state. Instead, the state that

Aj refers to is the state of Pj imm ediately following Pj's m ost recent input

or ou tpu t command. Thus, w hen Pi executes an I /O command, p: retains)] !*•

the state of Pj following die I /O command until Pj's next I /O command,

and uses it to decide w hether to accept or reject m essages from other

processes (adding messages that it does accept to its buffer to be handed over

to Pj a t its next input). Underlying RSP is the assum ption that a message

can be accepted or rejected based upon the message iteslf, the messages

accepted since the last input, and the state of the process at the last I /O

com m and.

23
Consider a simple example: suppose we w ish to program a 'Spooler'

process, S, for a line printer to which other processes can send their requests

for printing files. A request will be of the form (f, s, t), f being the file to be

printed, s its size, and t the (absolute) time by which the output is required.

The acceptance condition for the Spooler process is (informally):

Ag = [{ time to process this request (i.e. time to prin t a file

of size s)

+ time to process requests accepted since last input

(i.e. the requests in jig 2 's buffer)

+ time to process the requests that have already been read

in by îg j but have not yet been processed (this

information will be available in the state of S at the time

of its m ost recent inpu t/ou tpu t)

+ current time } < t

].

This condition w ill be easy to evaluate since each request contains an

indication of the size of the file to be printed. Thus the Spooler process will

accept a request only if it can process this request in the specified time,

given its earlier commitments and the state of the process at the last I/O .

Suppose S accepts som e requests from som e other processes.

Suppose that before S is able to process the requests the printer jams and it

takes a while for it to be fixed (suppose that there is a process dedicated to

m on ito ring the printer for malfunction and w hen one is detected then it

in fo rm s the Spooler process). C learly som e of the requests that were

24

previously accepted are not going to be processed on time. In this situation,

the Spooler process will send a message to each affected process. Suppose

that Pj is one of these processes. The message from the Spooler m ight well

constitute an "emergency" for Pj, since Pj is proceeding on the assum ption

that the Spooler will process its request w ithin the specified time, and the

em ergency m ight require im m ediate corrective action on Pj's part. So, in

addition to responding quickly to requests (messages in general), a process

needs to be able to react quickly to those m essages that constitute an

emergency for the process. Note that the "reaction" I am talking about is

m uch m ore than the response that Pj, or rather |ij 2 the second processor

associated w ith Pj, provides when another process sends a message to it. To

respond to a message we simply need to check w hether or not the message

satisfies Pj's acceptance condition and accept or reject the message on the

basis of that check. The quick response is needed to allow the sender of the

m essage to continue w ith its own activities. O n the other hand, a message

from S (the Spooler) indicating that it is reniging on a com m itm ent it

previously m ade to Pj m ay have serious consequences for Pj unless it takes

appropria te action im m ediately. Thus, Pj needs to react quickly to S's

message, not so m uch to let S continue, as to deal w ith the emergency that

it (Pj) faces.

The next m echanism in RSP is used to specify the 'em ergency'

m essages that Pj m ust react imm ediately to, abandoning w hatever local

25
actions it m ight be performing. As part of Pj, the program m er is required to

specify an 'em ergency condition' Ej. This condition, like the acceptance

condition , is a function of the incoming message m, the state of Pj (at its

m ost recent I/O), and the current contents of the buffer. If m causes Ej to

evaluate to true, we have an 'emergency'; Pj 2 will add m to its buffer, and

the sending process will see m as having been accepted by Pj. To see what

happens next, consider a particular situation:

?h; S |; S2 ; S3 ; . . . (Si, . . . are "local actions" and contain no I /O

commands)

Suppose before the m essage m (that m ade Ej evaluate to true) arrived, Pj

has executed J h , and then S j, and is in the m iddle of S2 w hen m is

received. Pj j stops execution, control in Pj is backed up to the input

comm and, the state is restored to w hat it was at this inpu t comm and and

the inpu t command is reexecuted. So, Pj receives, in h, a sequence that is

the co nca tena tion of the m essages it received w hen the in p u t was

prev iously executed, and the m essages that Pj 2 has since accepted,

including m. Pj ^ now starts again from im m ediately after the inpu t

com m and. Pj's state at this point is the same as it was w hen control was

here previously , except that in h we have a longer sequence. To the

program m er, it looks as if Pj is just starting to execute H ow do we know

that there is an emergency message in h? Only by examining the individual

elem ents (particularly the last element) of h.

26
Consider the Spooler process again. Its em ergency condition Eg

w ould essentially be [m = "printer-jammed"]. Thus, if the Spooler received

the m essage "printer-jammed" from the p rin ter (which itself is an RSP

process bu t is im plem ented in hardw are), w e w ould have an emergency.

(Some useful functions on sequences:

#h : num ber of Elements in h.

h [k] : k **1 element of h.

So, h[#h] is the last element in h.) .

Suppose now that control is in a portion of S which has the form:

* [?h -» [h[#h] 'printer-jammed' —» S^

Q h[#h] = 'printer-jammed' —> S2

]

Skip

]

9h is first executed, resulting in the contents of the buffer being read into h.

Let us assum e that this reads a non-em pty sequence of messages into h. Let

us also assum e that the printer-jam m ed m essage has n o t yet arrived. S |

begins execution, presum ably processing the requests in h. Suppose that as

S | is being executed, and before the next I /O com m and is reached, a

printer-jam m ed m essage arrives. Since this m essage w ill cause E g to

evaluate to true, the Spooler has an emergency. Control in S will be backed

up to the point of 9h, the state restored to w hat it was at that point, h now

27
will have a sequence which is the concatenation of the previous h and the

sequence of messages (including the printer-jam m ed message) accepted

since the earlier execution of ?h, and then S2 starts executing (since now

h[#h] = "printer-jammed"). No trace is left of the fact that a portion of S |

was previously executed before the emergency message arrived.

W hat if another printer-jam m ed message arrives as S2 is executing

(and before the next I /O command)? Again control is backed up to ?h, the

state is restored, h now has an even longer sequence containing, in addition

to w hat h had the last time, the m essages (including the m ost r e c e n t

* prin ter-jam m ed m essage) that have been accepted since the last time

control w as here, and again S2 is executed (since the last element in h will

again be a printer-jam m ed message). Note that the earlier printer-jam med

m essag e w ill also be in h. But w hat is the point of doing that w hen we

already know tha t the p rin te r is jam m ed? H ow do w e ignore the

subsequent printer-jam m ed messages? The answer is that we sim ply need

to rew rite Eg. If Eg is w ritten as [m = "printer-jammed"] then e v e ry

printer-jam m ed message will indeed be treated as an emergency message

even if S already knows that the printer is jammed. Thus to ignore further

printer-jam med messages Eg should probably be written as

[m = "printer-jammed" a h does not contain a "printer-jammed" message]

so that a printer-jammed message will be treated as an emergency only if a

printer jam m ed message has not been input by S (i.e. |ig j) as an element of

28
h. (We will see the precise form of Eg in the next chapter.) Eg can also be

fu r th e r m o d ified to a llow o ther em ergencies w hile screening ou t

prin ter-jam m ed m essages; thus we can easily p rog ram " p r io r it iz e d

emergencies".

W hat does the Spooler do once the printer-jam m ed m essage is

received? In other w ords, w hat is S2 ? Essentially w hat S2 should do is to

inform , for every request in h , the process that sent the request that its

request, although previously accepted by S, will not be processed. W e will

see the details of how to do this in the next chapter. The im portant point to

note here, however, is that the language imposes no conditions on w hat S2

should be. If the program m er so choses, he could write S2 to be just "Skip".

That w ould be a rather unreliable Spooler, however, since it w ould not

process some of the requests it accepts and not inform the sending process

of the fact.

Let us assum e that S does inform the affected processes that their

requests, despite having been accepted earlier, are not going to be processed.

Suppose that Pj is a process that is informed. W hat does Pj do w hen it

receives the m essage from S? That depends on how Pj has been coded. If

the message causes Ej to evaluate to true then we have an emergency and

Pj will be backed up to its previous I /O command; etc.. If the message causes

Ej to evaluate to false, but causes Aj to evaluate to true, the message will be

added to Hj 2 's buffer to be read in the next time Pj executes an input. If

neither Ej nor Aj evaluates to true, the message will, of course, be rejected

29
by Pj (presum ably Pj's program m er felt that it does not really m atter

w hether S processes Pj's request or not).

One final note about the Spooler: how do we ensure that it does not

accept further requests for printing files while the printer is still jammed?

E ssen tia lly u sing the sam e approach w e used for screening o u t

prin ter-jam m ed m essages once it is know n that the prin ter has been

jammed; we rew rite Ag^ adding a clause to it saying that in addition to the

time constraint being satisfied (as we specified earlier), it m ust be true that

w e do not have, in h, a printer-jam m ed message. In fact, Ag should be

m odified so that once there is a printer-jam m ed message in h, the only

m essage that S accepts is a "printer-ok" message. A process sending a

request to S will not know w hether its request was rejected because S could

not m eet its constraints or because the printer is jammed.

So far I have assum ed that when an emergency message arrived, the

m ost recent I /O comm and w as an input. W hat if it was instead an output

com m and? To see the answ er, I have to introduce the full form of the

ou tpu t comm ands (what w e have seen earlier being a simplified version).

S u p p o se Pj w ants to 'dum p 1 y on P^ and then proceed to do the local

actions (i.e. no I /O commands) S j, S2 , and S3 . The syntax for this is

Pk|y (h); Sa; S2 ; S3

This will send y off to P^, set h to e, and proceed to do S | , Suppose m

(that causes Ej to evaluate to true) arrives when Pj ̂ is executing S2 - W hat

30
happens is that Pj is backed up to the point im m ediately following the

output, the new value of h is the concatenation of its old value (e) w ith the

contents of Mj^'s buffer, and then w e start the execution of S j. To the

program m er it looks like Pj is just starting to execute S |. H ow do we know

there was an emergency? Again, only by examining h. But this time, if h is

non-em pty we can conclude that there was an emergency, whereas in the

earlier case we had to actually look at the (last) element of h before reaching

such a conclusion. Thus, the example above would typically be written as

Pk$y(h); [h= e -» Sj; S2 ; S3

D h * e —> . . . deal with emergency

]

A nother example:

[Pfctbdh) -»[h = e - » S iO h * e -» S2]

■»*>[h = e —>S3 0 h # e —̂ S4]

1

If Pfc accepts x, h will be set to e (assuming that there is no emergency), and

S i will start executing. If, before the next I /O com m and is reached, an

emergency message arrives then control will be backed up to immediately

after the ou tpu t, the contents of the buffer, including the e m e rg e n c y

message, will be transferred into h, and then S2 will be executed (since h *

e). Similarly, if Pj, rejects x and an emergency message arrives when S3 is

31
executing, control will be backed up, the buffer contents will be transferred

into h and S4 will begin execution.

In summary, an RSP process Pj consists of:

1. An emergency condition Ej that specifies the condition that a message

sent to Pj m ust satisfy in order to be (accepted and) considered an

emergency message by Pj.

2. An acceptance condition Aj that specifies the condition that a message

sent to Pj has to satisfy in order to be accepted by Pj.

3. The body of Pj consists of standard local comm ands (such as Skip,

assignment, etc.) and the following I/O :

a. Output:

i. Pk$x(h) : "Dump x on Pk": Sends x to Pk and, irrespective of

w hether Pk accepts or rejects, Pj continues (and Pj has no

knowledge of whether Pk accepted or rejected x); as a guard,

Pk$x(h) can always be "done", and so we will take the done

p a th fo l lo w in g the guard , h w ill be set to e. If

after w e do this output, and before we reach the next I /O

com m and, Pj receives an emergency message then we back

up to this point, concatenate the contents of the buffer to h

and then start execution again.

- ii. Pkftx(h) : "Try x on Pk ": Similar to (i) bu t can be "done" only

if Pk accepts x. If Pk rejects x, we will take the "not-done"

32
path following the guard. If there is no not-done path , this

guard fails and h w ill rem ain unchanged. If used as a

c o m m a n d , P k tlx (h) w ill cause Pj to abort if P^

rejects x.

b. Input:

i. ?h : "Read any h": Transfers the contents of the buffer into

h; as a guard , this can always be done.

ii. 9h : "Read non-em pty h": Similar to (i) bu t can be done only

if the buffer is non-empty. If the buffer is em pty and J h is

used as a command, Pj will abort. If the buffer is empty, ?h is

a guard, and there is a not-done path then h will be set to e

and we will take the not-done path. If there is no no t-done

p a th th e n h rem a in s u n ch an g ed an d the g u a rd

fails.

c. G u a rd s: A guard is either a Boolean expression or a Boolean

exp ress ion fo llo w ed by an I /O . Follow ing a guard w e can

either have a single path (the "done" path), or two paths (the "done"

pa th and the "not-done" path). The guard fails if the Boolean

portion of the guard evaluates to false, or if the I /O portion cannot

be done and there is no not-done path. Otherwise (i.e. the Boolean

portion evaluates to true and either the I /O can be done or there is a

n o t-d o n e p a th) th e g u a rd succeeds, an d w e take the

done path if the I /O can be done, and the not-done path if the I /O

cannot be done. (If the Boolean portion is false then the guard fails

3 3

irrespective of whether or not there is a not-done path.)

Pj 2 executes the body of Pj and Pj 2 responds to incoming messages.

Following every I /O comm and p: 9 saves the state of P;; p= 9 will use this

state in evaluating Ej and Aj to decide w hat to do w ith an incoming

message, and in backing up Pj w hen an emergency message arrives. If an

incoming message m satisfies E: then p- 9 accepts it, adds it to its buffer, p.
J J ! * •) / -I

stops execution, Pj is backed up to the point of its last I /O command, the

state is restored to w hat it was at that point, and the contents of p.- 9 's buffer

are concatenated to the appropriate variable, say h, of Pj (as specified in that

last I /O command) and then Pj j starts again im m ediately after the I /O

command. If m does not satisfy Ej but does satisfy Aj then Pj 2 accepts it and

adds it to its buffer (to be read in at Pj's next input). If m satisfies neither Ej

nor Aj then pj 2 rejects it.

The program m er can completely ignore the 'backing up ' that takes

place when an emergency message is received. H e can't do anything else,

since, for all he can tell, the emergency m essage arrived just as Pj w as

executing the I /O command, resulting in the appropriate value appearing

in h.

I /O commands are atomic. If Pj were to try to send a message to Pj

just as Pj was about to send a message to P^, the system will let one of them

go before the other one.

34
Finally, the BNF for RSP:

<program> [<process> / / . . . / / <process>]

<process> ::= <emergency condition> <acceptance condition> <body>

<body> ::= <command>

<com m and> ::= <skip> I <assignment> I <command> ; <command> I

<selection> I <repetition> I <input> I <output>

<selection> ::= [<altemative> 0 <alternative> 0 . . . n<alternative>]

<repetition> * [<altemative> Q <altemative> Q . . . Q <altemative>]

<alternative> <guard> -» <command> I

<guard> -» <command>
-•» <command>

{ An alternative that has two paths following the guard has

the following meaning. If the Boolean portion of the guard

is false then the guard fails. If the Boolean portion is true

and the I /O portion can be done then the first path ("done

path") is taken. If the Boolean portion is true and the I /O

portion cannot be done then the second path ("not-done

path") is taken. }

<guard> ::= cboolean expression> I <input guard> I <output guard>

c inpu t guard> ::= <boolean expression> ; <input>

cou tpu t guard> ::= <boolean expression> ; <output>

{If in an < input guard> or < ou tpu t guard> the

cboolean expression> is identically true then it m ay

35
be om itted .}

<input> ::= 9 <sequence variable> I 9 <sequence variable>

{When a process executes an input command it

reads in the entire sequence of messages that have

been accepted since the last input.}

<output> ::= <process name> ft <message> (<sequence variable>) I

<process name> $ <message> (<sequence variable>)

<emergency condition> ::= [?E (<message>, <process name>,

<sequence variable>) = <boolean expression>]

{ The <process name> is the name of the sending

process. It is useful to be able to decide w hether a

message is an emergency based upon w hat process

sent the m essage.}

<acceptance condition> ::= [?A (< message>, <process name>,

< sequence variable>) s <boolean expression>]

{ Again, <process name> is the name of the process

that sent the message. Often it is desirable to accept

or reject a message based upon which process sent

the m essage.}

<sequence variable> <variable>

CHAPTER m

SYSTEM MODEL

In the previous chapter I m ade several references to the system

model. In this chapter I propose a possible implementation of two key facets

of RSP: (1) whenever an emergency message is received the state is restored

to that which existed following the last 1 /O. How can this be done efficiently

and quickly? A nd, (2) how is the com m unication m echanism to be

im plem ented? In the situation where two processes w ish to com m unicate

w ith each other a t the sam e tim e how does the system ensure that one

p ro cess com m unicates before another? More specifically, if a process P

receives a message while it is waiting for a reponse from a message it sent out

earlier, w hat should be done w ith the message it received?

Let us start w ith the first problem. Recall that in process Pj, it is |ij j

which executes the code in Pj, and it is fij 2 which interfaces w ith the other

processes - accepting or rejecting input messages and restoring the state to

that w hich existed a t the last I /O , if an inpu t satisfies the e m e rg e n c y

condition. H ow is the state to be saved? Is there an efficient method for

36

37

storing and later restoring the state?

In the following discussion I show how we can quickly and efficiently

restore the state, at the expense of doubling the m em ory size. (Note: w ith the

rap id ly d im inishing cost of memory, this does no t seem to be an onerous

expense.) Suppose that w e have a dual memory, w here each w ord of memory

has a "partner word". Also, let me distinguish betw een the left side (of the

dual memory) and the right side. The left side of m em ory will be the "active

side". This is the side of the m em ory that |ij j has access to, and which it

modifies. The right side of memory is the "passive side". It is used to store

the state w hich existed a t the last I/O . Recall tha t Pj 2 bases (in part) its

decision to accept or reject an input based upon the state of the process, i.e.

the state which existed at the last I/O . So, Pj 2 w ill use this right side in its

decision of whether or not to aceept an input.

C onsider the following program segment: I /O ; SI; S2; S3; .-.' .

Suppose that S I , ... are local statements. Suppose that control is in one of the

local statem ents, w hen a m essage arrives w hich satisfies the p ro c e ss '

emergency condition. The state needs to be quickly restored to that which

existed at the I /O statement. W ith respect to the dual m em ory, this means

that the left side m ust be set to equal to right side. W e can quickly and

efficiently accomplish this by copying the right side of m em ory into the left

side. In Figure 1 (pg 39), I have shown the configuration of the dual memory.

Each w ord in the left m em ory is connected to its partner w ord in the right

3 8

memory. W hen an emergency is detected, a signal is sent on the Regenerate

State line, and this results in loading, in parallel, the w ords from the right

side to the left side, i.e. we have, in one instruction, restored the state.

W hat happens w hen control finally reaches the next I /O statement?

We need to get the right side to reflect the new state, which is in the left side.

So, w hen control reaches the next I /O statem ent a signal is sent on the

U pdate State line, w hich results in loading, in parallel, the new state (in the

left side), into the right side.

It is im portant to note that the restoring and updating of the state as

described above is to be done in parallel, independent of the size of the

memory. It is not a block move, w here a block of memory is m oved to an

arbitrary location. Each w ord in the left memory is moved to its partner word

in the right m em ory, or vice versa. The time required for this operation is

depends on the length of the memory word, not on the num ber of words in

m em ory.

The com m unication m echanism m ay be im plem ented as follows.

Consider some process P. If P is doing local com putations w hen an inpu t

from process Q arrives then P (more specifically, Pp 2) can im m ediately

respond. Of course, if the input satisfies the emergency condition then the

state will be restored to the state which existed at the last I /O statement.

Suppose P outputs to S. While P awaits a response from S, if Pp 2 receives an

39

Regenerate
State > < ■ Update

State

Load

Left
Memory

Load

Right
Memory

Figure 1

Achieving Efficient State Roll-back and Update

4 0

input from Q then jjp 2 replies im m ediately to Q w ith a "try-again-later"

(TAL) message. This m essage m eans that P is in a transition state and is

unable to acceptor reject a Q's message since it is unclear whether the

em ergency and acceptance conditions should be evaluated based upon the

state which existed at the previous I /O or, based upon the state which would

exist if the ou tpu t m essage is accepted. Let m e refer to this state as th e

O utputting state, and the previous state as the N ot O utputting state. If (!_ 9
P /

receives an accept or reject response from S then it goes back to the N ot

O utputting state. If it receives a TAL m essage from S then it moves to a

Stalled state. W hile in the Stalled state we m ay consider control to be just

prior to the ou tpu t statem ent. After a time P will ou tpu t to S again, thus

taking Pp 2 back to the O utputting state. While in the Stalled state, if an input

from Q is received and the input satisfies the em ergency condition, based

upon the state which existed at the last I /O statement, then P will accept the

input, restore the state, and go back to the N ot O utputting state. If the input

does not satisfy the emergency condition then P will respond based upon the

state w hich existed at the last I /O and rem ain in the Stalled state, until it

outputs to S again.

In the above example, if P and Q w ait the sam e am ount of time in

their Stalled state then they m ay oscillate back and forth betw een the

O utputting state and the Stalled state. To prevent this, each process needs to

spend a different am ount of time in their respective Stalled states. This may

41

be accomplished by num bering each process and each process remains in its

Stalled state for a time proportional to its process number. On the next page is

a state diagram which shows pictorially what has been described above.

42

Q/accept or reject Q/accept or rejectrestore
state

restore
state emergency

message
f not
OUtputtill; stalled

emergency
message accept o>

reject fro:
S /-

/output
to S

-/Olltpu
to S

TAL from S/ -

outputtin]

Q/TAL

Figure 2

Communication Protocol State Diagram

Notation: input / output

CHAPTER IV

EXAMPLES

This chapter is com prised of five examples. The purpose of these

examples is to illustrate how RSP may be used to program typical problems

of the type m entioned in C hapter I. The first example, although not a

real-tim e example, is especially appropriate for showing the usefulness of

the emergency mechanism. The next two examples illustrates the response

m echanism . A nd the last two examples nicely dem onstrate some of the

program m ing features of RSP programs.

Recall m y notation: #h is the num ber of elements in h. h[k] is the

elem ent of h. Often, I have to refer to the last element of h; I can, of

course, write this as h[#h]; for convenience I will allow this to be w ritten as

h[-l]. In general, if k is negative, h[k] refers to the I k I ^ elem ent from the

right end of h.

I will use 'p' to refer to the buffer of a process and tc to refer to the

process w hich sent the m essage. Thus the acceptance and em ergency

co n d itio n s of a process w ill refer to the message (usually denoted "m")

under consideration, P, it, and the variables (i.e. the state) of the process.

43

44
Example 1. Prime N um ber Example

This exam ple show s how a set of RSP processes m ay be used to

determ ine w hether or not a num ber is prime. It dem onstrates the general

applicability of RSP's emergency mechanism. The emergency mechanism is

used in stopping processes from perform ing useless com putations, and

these m ight arise in real-time as well as non-real-time programs.

Suppose that w e w ish to determine all of the prim e num bers from

three to infinity. Let us assum e that there are r+1 processes, P[0] ... P[r].

Given some num ber N w e can decide if N is prim e by seeing if any num ber

between 2 and VbT evenly divides N. Suppose we partition this job over

the r processes, P[l] ... P[r]. Process P[i] will check all of the num bers from

((i - l) /N / r) + 2 to (i> /N /r)+ l to see if any of them evenly divides N.

Obviously, if any of the processes finds a num ber which evenly divides N

then N is not prime. In addition, if one of the processes detects that N is not

prim e then it is pointless for any of the processes to continue w ith their

computations. This is an instance where the emergency mechanism comes

in very handy. Suppose that P[0] is the controlling process and each process

P[i] (i = l..r) receives from P[0] the value N which is to be checked and

returns to P[0] a Boolean indication of whether or not it found, based upon

the subset of num bers that it checked, that N is prime. If a process finds a

num ber that evenly divides N then it will send a false to P[0] to inform it

that the num ber is not prime. Once P[0] receives a false from any P[i] then it

knows that this is no t a prim e, and it does not have to wait for messages

45
from other P[i]. In fact, it can send these other P[i] a 'stop' message so that

they can also discontinue their check for prim ality of N. I will do this by

treating the receipt of a 'false ' message by P[0] as an emergency for it. P[0]

will react by sending a 'stop' to the various P[i]. Each P[i] will in turn treat a

'stop ' m essage as an em ergency and react by abandoning the check for

primality of N and wait for the next N from P[0].

Processes P[i] (i = l...r) m ay be coded thus:

P[i]:: [[?E (m,Jt,p) s (tc = P[0] a m = 'stop')]

[?A (m,Jt,p) s n = P[0]]

* [£h [h[-l]= 'stop' -> Skip

Q h[-l]* 'stop' -> N :=h[-1];

k := Lr/Nj;

[k £ r lo := 2 ; hi := k

0 k > r -> lo := ((i-l)'k div r)+2;

hi := (r k d iv r)+l

1

p := true:

j := lo;

* [(j^hi)Ap p := (N m od j = 0); j := j + 1]

P[0]$p(h)
]
Skip]]

46
The emergency condition states that a 'stop' message from P[0] is an

emergency message for P[i]; and the acceptance condition states that P[i] will

accept all messages from P[0]. The num ber to be checked for primality is

read into h and then placed into a local variable, N. The range of values to

be tested are computed and then for each value, j, in the range, test to see if

j evenly divides N. If j evenly divides N then send a false (not prime) to

PEO]. If none of the values evenly divides N then send P[0] a true (as far as

this process can tell N is prime). While the values are being tested by P[i] a

'stop' m essage m ay arrive from P[0], indicating that the num ber is not

prime (one of the other processes detected this and informed P[0], and P[0]

relays this fact to the processes). This message is an emergency for this

process and will result in the state being backed up to the input guard and

the process will start all over w ith the next N.

Note that I could have written N := h[-l] as N := h[l] since if the last

element in h (i.e. h[-l]) is not 'stop', then there m ust be only one element

in h, so I can refer to it as either h [l] or h[-l], and it m ust be the next number

to be checked for primality. However, h[-l] = 'stop' cannot be replaced by

h[l] = 'stop' since w e m ight have two elements in h, the first message being

N, the second being 'stop'.

47
Next consider P[0]:

P[0]:: [[?E (m,JC,P) = (m = false)!

[TAim^P) s true!

N :=3;

* ftrue -> i := 1;

p := true;

* [î TA p; P[i]ftN(h) —> [h=e -4 i := i + 1 D h?*e —> p := false]

-4 [h=e -4 Skip Oh?s€ —» p := false]

];

*[i>lAp;9h - 4 f hf-l!=false —> p := false

0 hf-11=true -4 i := i - #h

1

-4 Skip

1;

[p -4 Skip

Q ->p -4 i := 1; * [i i r -4 P[i]$'stop'(h); i:=i+l]; ?h

];

Q$(N,p)(h);
N := N + 2

4 8

P[0] sends N to P[l],...,P[r] so that each can check for primality of N in the

appropriate range. (It w ould have been sim pler and correct to use the $ to

send N to P[i] since P[i] accepts all messages from P[0]; in general, however,

as a m atter of program m ing methodology, a process that wants to be sure

that the receiver really accepts the message, should use It.) If, before this

sending is complete, one of the processes finds that N is not prim e then it

will send back a false to P[0] which will treat the message as an emergency,

and set p to false; the sending loop will term inate and P[0] will send the

message (N, false) to Q, informing the process Q that N is not prime.

If P[0] sends N to P[l],...,P[r], it will then wait for a message from each

of them. If P[0] receives r true messages then it can be sure that N is prime

since each of the P[i] (i = l,...,r) failed to find a factor for N in the range that

it was responsible for. P[Q] keeps track of how m any true messages it has

received by counting i dow n to 1. (If h[-l] = true then we can be sure that all

the earlier messages, if any, m ust be tru e since if any of them were false

then as soon as it was received P[0] w ould have backed up and taken the

h[-l] = false path since it w ould have been an emergency message.) If P[0]

receives a false from any of them, it stops w aiting for further messages,

sends (N, false) to Q, and a 'stop' to P[l],...,P[r] so that any of them that is still

checking for prim ality of N can abandon the check. (P[0] sends the 'stop'

m essage to P[l],...,P[r] also in the case that it receives a false during its

sending loop.) The last inpu t com m and flushes the buffer before I start

consideration of the next N.

49
Example 2. Line Printer Spooler Example

In this example I w rite a process which serves in spooling files to a

line printer. This example was discussed briefly in chapter II, when RSP was

being introduced. It is a simple example w ith non-trivial acceptance and

emergency conditions to show how such conditions might be written.

The Spooler process S receives requests of the form (f, s, t), f being

the file to be printed, s the size of the file, and t the time by which the file is

required to be printed. S m ight also receive "p_j" (printer-jam m ed) and

"p_f" (printer-fixed) messages from the line printer. S keeps track of the

printer status in a Boolean variable p_up (printer-up), which is true if the

printer is working and false otherwise.

The acceptance condition for S accepts a print request (f,s,t) if a file of

size s can be printed within the required time t, given whatever other prin t

requests S has already accepted (these requests will be in p (|ig 2 s buffer)

and the variable h); of course if a "p_j" message has been received, or p_up

is false, then S will not accept any prin t requests.

A "p_j" message is an emergency message unless such a message

has already been received and is in h or h', or unless p_up is already false.

W hen the em ergency message is received, p_up will be set to false (after

which the only message that S will accept is "p_f")/ and renig on its earlier

com m itm ents (i.e. it w ill retu rn all of the p rin t requests it previously

accepted to the respective processes along w ith an indication that it is

reniging on the com m itm ent to process that request that it had m ade

50

earlier). Note that S has to do this not only for the requests that it (i.e. jig j)

has already input/ i.e. the requests in h, but also those it has accepted since

its last input; these will be in the buffer w hen the em ergency is received

and will be read into h or h ’ (along with the emergency message).

51

[[?E (m,7C, p) = {m="p_j" a "p_j"« hoh' a p_up = true)] % see note 1

below

[?A (m,7t,P) s { [m="p_f" a "p_f"<£ hoh1 a p_up = false]

v [m*"p_j" a m *"p_f" a p_up = tru e

a " p J 'V h o h ’

a m .t > (x + g(m) + f(hop))]}] % see

note 2 below

h := e;

p_up := jrug;

h 1 := e;

* [p_up; 9h -» [h [-l] = " p j" -> p_up := false

0 h [-l]* "p_j" -> ... process requests in h ... % see

below

];
[p_up -> Skip

D -> p_up ... renig on com m itm ents in hoh' ...
%see below

1

Skip

Q i p_up; 9h —> p_up := true
->•» Skit

]

52

Note 1: h o h ' is the concatenation of the sequences h and h'; "p_j"«s h o h '

means no elem ent of h o h ' is "p_j"; thus S will accept a "p_j" message (as

an emergency message) only if it has not already received a "p_j" and only

if p_up is tru e .

Note 2: The first clause of ?A is similar to ?E. A prin t request m will be

accepted only if the printer is up, a ”p_j" message has no t been received,

and the request can be processed w ithin the specified time by which this

output is required; m.t, the third component of m is this specified time; x is

the current time; g(m) is the time required to p rin t a file of size m.s (recall

that the s specifies the size of the file); g is a function that, given a request

m, gives us the time for prin ting a file of size m.s. f(h o P) is the time for

processing the requests in ho|3; f is a function that m aps a sequence to the

time required to process all the requests in the sequence by sum m ing up the

results obtained by applying g to each element in the sequence.

53

process requests in h:

* [p_up a h*e -> r := h[l];

i := 1 ;

* [p_up a i < r.s; LPftr.f[i](h') - » i := i + 1 ;

[h'=e —> Skip

D h'?te —> p_up :=

false

1j

[h'=e —» Skip

0 h ’*e -> p_up :=

false

]

*

[p_up -> h := h[2 ..] D -p_up -* Skip]

1

For each request r in h , S forw ards the file r.f, line-by-line, to the line

printer LP. Once r.f is forw arded, we can rem ove r from h and do the same

for the next request. Any time during this a "p_j" message m ight arrive in

which case S w ill read in the entire contents of the buffer into h* and set

p_up to fa lse , thus term inating the loops. W e w ill then renig on the

54
commitments in hoh'. h [2 ..] is the sequence obtained by deleting the first

element of h.

reniging on commitments in hoh':

Suppose that r is a request in hoh'. In order to renig, on S's commitment to

process r w e need to know not only r bu t also the process that sent r. I will

assum e that given a sequence of messages h, h^tk] will be the process that

sent the k **1 message in h.

h := hoh1;

h ' := e;

r := h[l];

p := h*[l];

* [r * ”p_j" -»p$(r,"renig")(h'); h := h [2 ..]; r := h[l]; p := h*[l]]

Note: I have assum ed that the files to be printed are small. If they are even

m oderately large/ it w ould be a unreasonable to send the complete file in a

single communication. In this case, a m ore reasonable solution w ould be

for the process m aking the request to send only the nam e of the file, its

size, and the time by which the output is required. If the request is accepted

then S (or possibly another subordinate process) will have to communicate

w ith the requestor process to obtain the actual file (line-by-line or

block-by-block) (see Example 3).

55
Example 3. Line Printer Spooler Example, version 2 »

In this example the Spooler process has been revised to include a

subordinate process. This version is geared for spooling large files. It is the

first exam ple w here the acceptance condition bases its acceptance on the

process which is sending the message.

In the first version I had assum ed that the files to be prin ted are

small. So, the entire file can be sent in a single communication. In this

version I do no t assum e sm all files only. To avoid ty ing up the

com m unication lines, and hence slowing dow n the responsiveness of the

spooler, I introduce an additional process. N ow the Spooler is composed of

two processes, S[l] and S[2]. S[l] is similar to S in the previous version and

schedules the prin t requests as they arrive. S[2] is subordinate to S[l] and is

responsible for getting the actual file to be printed from the requestor and

sending it, line-by-line, to the line-printer.

Let us first consider S[l]. Now when a process makes a request for a

file to be printed it sends only two values: s, the size of the file to be printed

and t, the tim e that the file is to be printed. I assum e that the " p j" and

"p_f" messages are sent to both SCI] and S[2]. The code for S[l] is the same as

S in the previous version except for processing requests in h.

56

S [l]:: [[?E (m,jc,p) = {m="p_j" a "p_j"e hoh' a p_up = true)]

l?A (m,jc,p) a { [m="p_f a "p_f'<s hoh' a p_up = false]

v [m*"p_j" a m *"p_f" a p_up = true a

"p_j"£ hoh'

a m.t > (x + g(m) + f(hop))]}]

h := e;

p_up := true;

h ' := e;

* [p_up; 9h -> [h[-l] = " p j" -> p_up := false

0 h[-l] * "p_j" -> ... process requests in h ... % see

next page

1;

[p_up -> Skip

0 - 'P _ u p -> ... renig on com m itm ents in hoh' ...

%see next page

t

-*» Skip

D -i p_up; 9h -> p_up := true
•*» Skip

]

57
S[l] does only the scheduling of the requests. S[2] is actually responsible for

processing each request. So, w hat it means for S[l] to process its requests is

that it sends each request, one at a time, to S[2]. S[l] sends to S[2] a triple: p,

the name of the requesting process, s, the size of the file to be printed and t,

the time by which S[2] should finish processing this request, t is calculated

as the current tim e plus the time required for fetching the file (assuming

the process sends the file prom ptly when asked) and then sending it to the

line-printer.

process requests in h:

* [p_up a h*e —» p := hn [l];

s := h[l].s;

t := x + g(h[l]);

d := false:

* [->d a p_up; S[2]ft(p,s,t)(h') -» h := h[2 ..];

[h'=e d := true

Q h'*e —»p_up :=

false

]

[h'=e Skip

Q h'*e —> p_up :=
false

1
1

]

58

Each request is repeatedly sent to S[2] until it is accepted. Note that when

the request is accepted it is rem oved before checking for an emergency.

This is because it will be S[2]'s responsiblity for reniging on this request if a

"p j" message arrives. (Recall that S[2] will also receive the "p_j" message.)

Reniging on commitments is unchanged:

reniging on commitments in h o h ’:

h := h o h 1;

h ' := e;

r := h[l];

p := h*[l];

* [r * " p j" ->p$(r,"renig")(h'); h := h[2 ..]; r := h[l]; p := h*[l]]

Nov/ for S[2]: S[2] operates by first getting a request from S[l] and

then processing the request, and then repeating. To process a request S[2]

fetches the file from the requestor and then sends it, line-by-line, to the

line-printer. Emergencies are handled in the same fashion as in S[l].

The acceptance condition is m odified from S[l] to allow S[2] to

oscillate betw een getting a request from S[l] and processing the request.

W ithin S[2] there are two variables, g r (get a request) and p r (process the

request), gr is set to true when S[2] wants to get a request from S[l] and pr is

59

set to true w hen S[2] w ant to process the request. So, a request is accepted

from S[l] only if gr=true and we have finished processing the last request. If

p r= true then only messages from the requestor is accepted.

60

S[2]:: [[?E (m,jc,p) a {m="p_j" a "p_j"<£ hoh' a p_up = true)]

[?A (m,7C,p) a { [m="p_f" a "p_f"js hoh’ a p_up = false]

v [m *"p_ j" a m *"p_f" a p_up = t r u e a

" p j '^ h o h '

AJC=S[l]AgTAh7C[l] *S[1]]

v [m *"p_j" A m 9*’’p _ f” A p _up = t r u e a

"p _ j"eh o h '

A K = p A pr] }]

gr := true:

p r := false:

p_up := true:

* [p_up; ?h -> [h[-l]="p_j" -» p_up := false

□h[-l]*"p_j" . process request in h . . .

1

[p_up -» Skip

D -,p_up . . . renig on commitment in h . . .

1

Skip
D -«p_up; ?h -» p_up := true

Skip
]

61

Processing a request consists of three steps: the first step is to send a message

to the requestor, telling it to send its file. The second step is to receive the

file from the requestor and store it in S[2]'s own buffer, f. The third step is

now to transfer the file to the line-printer.

Throughout these three steps S[2] m ust keep track of whether or not

it is keeping w ithin the time limit, t. If the requestor is delinquent in

sending its file then there will not be enough time to receive the file and

send it onto the line-printer. So, during these three steps we keep checking

that the current time is less than t. If the current time exceeds t then a

message is sent to the requestor informing it that w e are unable to prin t its

file since it was too slow in sending the file.

62

process request in h:

gr := false;

p r := true:

p := h[l].p;

t := h[l].t;

s := h[l].s;

p$("send file")(h,); % step 1 (see above)

[h* = e —> Skip

D h'*e -> p_up := false

I

i := 1 ;
% step 2 (see above)

* [(x<t) a p_up a (i<s); 9h' -> [h'[-l] = "p_j" -> p_up := false

0 h ’U K p J " - * * [(h'^e)A(x<t)A(i<s) ->

f[i] := h'[l];

h' := h'[2 ..];

i := i + 1

]
]
Skip

1;

63

i := 1 ;

% step 3 (see above)

* [(rct) a p_up a (i<s); LPftf[i](h') -» [h' = e -> i := i + 1

0 h'*e -* p_up := false

]

[h 1 = e -» Skip

0 h'?te —> p_up := false

]
];

[(x>t) a (i<s) -> m sg := ’’File transfer too slow. Could not finish request."

pftm sg(h’);

[h ' = e —» Skip

0 h'*e —» p_up := false

1*

h := e

0 i=s —> h := e

0 ->p_up a (i <s) -» Skip

I
pr := false:

gr := true:

9h'; % flush P of any residual messages from p

64

[h’[- l]* " p j" - » Skip

0 h ,[-l]="p_j" -> p_up := true

I

There will be at m ost one request to renig on and it will be in h. In the

event that a " p j" message arrived after sending the file to the line-printer

then there will be no messages in h.

renig on com m itm ent in h:

[h = e —> Skip

0 h?te —> r := h[l];

[r="p_j" -> Skip Q r "p_j" -> p:= h[l].p; pft(r, "renig")(h')]

]

65
Example 4. Alarm Clock

This process serves as an alarm clock for other processes. A process

sends a wake-up time to this process and it sends back, at the designated

time, a wake-up message. This is the first example where time is referred to

directly in the program (of course, it has been used in prior examples in the

acceptance and emergency conditions).

Alarm requests are kept in a buffer h. It is not possible at each point in

time to see if a process needs to be waken-up, so I check to see, within an

interval of time, w hat processes needs waking, t ^ ^ and tnew are used to

m ark the interval. Initially, tn e w is set to infinity. This will prohibit

acceptance of any requests the first time through the loop (see below), since

the acceptance condition requires the request's time to be greater than tnew .

If tnew had been initialized to x (current time) then all requests accepted

during the time interval x and the time when tnew := x is executed in the

first iteration will not be considered in the second iteration. (If an input is

received before a process executes its first I /O statem ent then the process

will reject the m essage, i.e. the em ergency and acceptance conditions

evaluate to. false n o m atter w hat messages are received. See Chapter V, Q10

for a m ore complete discussion of the problem of initialization.) W ithin

the loop, h is concatenated w ith the new requests, tnew is updated to the

current time and then I check each request in h to see if a request's time lies

w ithin the interval and if it does I issue a wake-up message to that process

and delete the process from h. If it does not then I sim ply move onto the

6 6

next request in h. After this t0 id is incremented to tnew , and I loop around

again, reading in any new requests and checking for requests w ithin the

new interval.

Alarm_Clock::

[?E (m.rc.B) a false 1

[?A (m,rc,P) = m.time > tnew]

*bld:= x'

*new:= +°°'

h := e ;

h' := e;

* [?h' -» h := h o h';

*new:= T/

i := 1 ;

* [i^#h -» [tQid <, h[i].time <, tnew -» p := h^tiKh);

p$("wakeup")(h);

% remove the i^ 1

message in h:

h := h - h[i]

D h[i] > tnew i := i + 1]

]

t o l d fnew 1

67
Example 5. Alarm Clock, version 2.

In this version of the alarm clock I have elim inated t ^ and now

we just have tnew , which I call t. Instead of checking an interval I now just

check for any messages w ith requests before t. This exam ple demonstrates

how time m ay be easily program m ed for in RSP.

Alarm_Clock::

[?E (m.rc.B) = false 1

[?A (nvc,P) = m.time > t]

t := x;

h := e ;

h ’ := e;

* [9 h ' -> h := h o h ';

t:=x;

i:= 1 ;

* [i^#h -» [h[i].time <, t -> p := h^fiKh);

p$("wakeup")(h);

h := h - h[i]

D h [i]> t -> i := i + 1

]
]

]

CHAPTER V

DISCUSSION

This chapter is organized as a series of questions and answers about RSP

and how it relates to CSP and other m odels for d istribu ted real-tim e

systems.

Q l: The problem w ith using CSP for real-tim e system s is synchronous

com m unication: the sender m ay have to w ait for a long time for the

receiver to receive its request; why not solve this problem by going to an

asynchronous m odel (or, for that m atter, sim ulating asynchronous

com m unication w ith a CSP process that acts as a buffer)?

Ans: The problem cannot be solved by using an asynchronous model. If a

process makes a request of another process S, it is not enough for P to be

able to send the request off. P also needs to know w hether or not S will

process the request w ithin its (P's) time constraint, since w hat it should do

next will, in general, depend very m uch on w hether S can process its

request; if S will process the request in the specified time then P can proceed

w ith its other activities; if not, then P will have to m ake alternative

68

69
arrangem ents, such as sending the request to another process S'. It is this

consideration that led to the idea of responsive processes.

Q2: So is the RSP communication m odel synchronous or asynchronous?

A n s: In a way it is both - the sender P sees the receiver S as responding

quickly to m essages, accepting som e and rejecting others; so to P the

com m unication seem s quick and synchronous. In S, how ever, th e

com m unication seems asynchronous, each inpu t com m and reading in a

sequence of values from S's buffer.

0 3 : Since I don't have to actually refer directly to its buffer, can't we adopt a

synchronous view in S as well, and imagine that all the messages read in at

an input command were just received?

A n s: The problem is that the messages w ere accepted on the basis of the

states a t earlier I /O commands. If Ag does not depend very m uch on the

state, or if the state does not change from one I /O comm and to the next

then I m ay indeed imagine that all messages read in at the input were just

received.

0 4 : RSP requires the acceptance condition of a process to be based only on

the message received, on the messages already accepted, and on the state of

the process at its m ost recent I /O command. In general, can we w rite an

70
appropriate acceptance condition satisfying this requirement?

A ns: Let us consider the Spooler S again. Suppose a request to S was of the

form (f, t), f being the nam e of the file to be printed, and t the time by which

the file is required to be printed. N ow it w ould be impossible to write an

acceptance condition since in S we don 't have enough inform ation to

decide how m uch time it w ould take to process each request. Of course, S

could try to obtain the size of the file by communicating w ith the requestor

(say) P. But that w ould be against the idea of responsive processing since it

m ight be a w hile before the (|Xg j in the) Spooler actually looks at this

request, and com m unicates w ith P, and in the m eantim e P has no idea

w hether or not S will ultim ately accept the request. The solution, at least in

this example, was simple: P m ust include the size of f in its original request.

In general I believe that it is always possible to program in such a way that a

process can decide w hether to accept or reject a message on the basis of the

message, the identity of the sending process, the current contents of the

buffer, and the state at the last I /O command.

N ote that all of the above remarks apply to the emergency condition

also.

0 5 : In RSP how do w e distinguish between various types of messages such

as data, requests, emergencies, etc?

71
A ns: I don't. It is entirely up to the program m er to decide which messages

are in terpreted as data, which are interpreted as requests, etc. The same

m essage that is treated as an em ergency if control is in one part of the

process m ight be treated as a "normal" message to be read in at the next

inpu t com m and if control is in a second p a rt of the process, and even

rejected if control is in a th ird part of the process. It all depends on the

details of the acceptance condition and the emergency condition.

Q6: A ren't emergency messages really just interrupts? And w hy don 't we

have em ergency service rou tines analogous to the in te rru p t service

routines?

A n s: Interrupts are often used to provide quick response to the sending

process P, allowing it to continue w ith its activities. In RSP this quick

response is p rov ided by îg 2 and the acceptance condition Ag of the

receiving process S. The purpose of the emergency mechanism is, however,

quite different; there are certain messages that call for quick action by S

since if such action is not taken then serious problems could arise for S, the

receiving process. In all probability, the sending process does not even care

w hat S does w ith the message.

One of the problems w ith interrupts is the interrupt service routine. At

unpredictable points in a process the state changes - because an in terrupt

was received and the in te rrup t service routine was executed and this

72
routine changed the state. This makes it hard to understand the process. I

tried to design the emergency mechanism to avoid this problem. Although

control in a process is backed u p to the last I /O com m and w hen an

em ergency m essage is received, the program m er can completely ignore

this; he can just imagine that this message was received and input like all

other messages. The state does not change unexpectedly since there is no

emergency service routine w hich is implicitly invoked at any point in the

process. Instead, following each I /O com m and w e have to w rite code to

deal w ith certain im portant m essages - the emergency messages - if such

w ere to be received at th a t I /O com m and. But doesn 't that lead to

considerable code repetition? It might, bu t m ost of that can be eliminated by

using procedures in a fairly direct fashion. These procedures will, in effect,

be the em ergency service routines, b u t they will be invoked explicitly,

thereby avoiding the problem s of unexpected state changes that we would

have if they were to be invoked implicitly.

0 7 : One of the problems that proposals for m odels/languages for real-time

systems try to solve is the following: one process P needs another process Q

to do some com putations for it (P) urgently (perhaps in a few "clock

cycles"). To deal w ith this type of problem some models consider complex

scheduling algorithm s (in Q) to schedule the requests. H ow w ould w e

handle this problem in RSP?

73

Ans: We w ould not. And em ergendes are not designed for this purpose. In

general, I believe that a process should perform its own compuational tasks,

relying upon others only for "physical" (not com putational) services. If

indeed processes only request physical services then requiring such a

service in a m atter of a few dock cydes seems unreasonable.

There m ight be one exception to this. It seems possible that in order to

deal w ith an emergency situation a process P might need some information

from another process Q and, of course, P w ould need this inform ation

quickly since it is dealing w ith an emergency. I could deal w ith th is

situation by adding to an RSP process (Q, in particular) a function, Fq , of

die state of Q (at its last I /O command) and die messages in |Iq 2 's buffer; if

any process sent to Q an urgent request for spedal information then |1q 2

w ould simply send back the value of Fq . It w ould be easy to include such a

m echanism in RSP, but I d idn 't do so since, despite the intuitive appeal of

this m echanism , I have been unable to come up w ith an example w here it

is actually needed. One other potential application, apart from dealing w ith

emergencies, for such a m echanism w ould be for "monitoring" purposes.

Thus one process could use this mechanism to track the progress of another

process, and to watch for potential problems. (A possible notation for such a

construct: Q??x, meaning that P is making an urgent request of Q.)

0 8 ; W here is the "dock" in m y model?

74

A ns: I assum e that each process has access to a clock and that these clocks

are approxim ately synchronized. Since, as I said earlier, processes will

typically request physical ra ther than com putational services of other

processes, the time constraints specified in those requests will typically be

several milliseconds (or more), rather than a few clock cycles. Thus the

various clocks don 't have to be predsely synchronized. (Note; our Prime

N um ber exam ple is a rather atypical RSP program since the process P[0]

does rely upon other processes of the program for computational services.)

Q 9: CSP has in p u t/o u tp u t guards, bu t does not allow a not-done path

following a guard. Why does RSP allow a not-done path in addition to the

done path?

A ns: It is d ear that it is useful to have a not-done path: w hat a process P

does w hen it tries to send a request x to S will, in general, depend on

w hether or not S accepts the request, i.e. on whether or not Sftx can be done.

The commands on the done path specify how P proceeds if x is accepted and

the commands on the not-done path spedfy how it proceeds if x is rejected.

The reason that such a construct (the not-done path) does not belong in

CSP is that if an output guard S ! . . . cannot be chosen (in a CSP process P)

that only means that a t that m oment S is not trying to execute a m atching

75
input command P? . . from that alone one cannot conclude that S! . . . has

"failed" since in the very near future S might well try to execute P? On

the o ther hand, in RSP, if P sends a request to S, S will im m ediately

respond and either accept or reject P's request, and P knows S's decision; so

in RSP it is possible to have a not-done path (perhaps a more precise name

w o u ld be "cannot-be-done path") w hereas such an idea w ould be

unsuitable for CSP.

Q 1 0 : W hen S receives a m essage that satisfies Eg then control in S is

"backed-up" to its m ost recent I /O command. W hat if we have no t yet

executed an I /O command?

Ans: This is the problem of initialization. The right solution seems to be for

S not to accept any messages until it reaches its first I /O com m and; i.e.

before S reaches its first I /O command Ag and Eg will evaluate to false no

m atter w hat messages are received. This is reasonable since Ag and Eg will

in general refer to the state of S and, until S has completed initialization,

the state does not have a reasonable value.

O i l . Allowing ou tpu t guards in CSP causes considerable problems in the

im plem entation. W hat happens in RSP?

A ns. Consider a sim ple example: suppose a process P wishes to send the

m essage x to the process Q, o r the message y to process R. Using the

notation of chapter n , I would write

76

[Q ftx -» S Q Rtty - » S']

To execute this P could send x to Q; if Q accepts it, the communication is

complete and P will then execute S. If Q rejects x, P will send y to R; if R

accepts y this com m unication is complete and P will execute S'. (If R also

rejects y, P will abort.) P m ight try Rfty first, and if R rejects y then try Qftx.

But it does n o t poll Q and R to see w hether they w ould be "willing" to

accept x and y respectively and then choose one of the willing guards. Thus

I do not have the im plem entation problem s that o u tp u t guards in CSP

have.

Two further points should be m ade here: (i) If a process Q rapidly

changes its criteria for acceptance/rejection of messages (i.e. its "acceptance

condition" changes frequently), P m ight experience "race conditions" in its

attempts at sending messages to Q since the same message that is rejected at

one m om ent w ould have been accepted if tried a short while later. This

seems to be a fault of the particular Q rather than the language, (ii) Our

inpu t guards/com m ands are, in a sense, "local" commands since they just

result in the messages that have already been accepted to be "read in" by

the process.

0 1 2 . In CSP an ou tpu t guard in P fails only if the receiving process Q has

terminated, not if it is currently unwilling to input from P. W hy do I define

Qftx to fail even though Q m ight not have terminated?

77

A n s. N ote first that the success/fa ilu re of Qftx has nothing to do w ith

w hether or not Q is currently executing an input command. Instead Qttx

succeeds if Q accepts x, i.e. x satisfies Q's acceptance condition, and fails if x

does not satisfy Q’s acceptance condition. Recall also the purpose of the

responsive com m unication mechanism: if Q does not accept x (since it

doesn 't expect to be able to process the request w ith in the specified

constraint), P w ould very likely w ant to try other alternatives such as

sending x to Q1.1 can express this easily by saying

[Qltx —> . . .

■ ^ [Q 'f tx ...

]
which sends (or tries to send) x to Q’ if Q rejects it. Of course, if P simply

wants to keep faying Q until it accepts x, we can write

b := true:

* [b; Qltx-> b := false

-> Skip

].

0 1 3 . CSP's se lec tion /repe tition com m ands are easy to understand. In

understand ing a particu lar path , we only have to worry about the guard

corresponding to that pa th and the comm and following the guard; we do

no t have to w orry about the other guards that m ight have been tried bu t

78

d idn 't succeed. W ouldn 't this simplicity be lost if I define Qflx to fail if Q

rejects x?

Ans. No. Consider our earlier example: [Qflx -> S 0 Rfly —» S']. There will

be no difference between i) the case when P sends x to Q, Q rejects it, P tries

y on R which accepts it, and P goes on to execute S’; and ii) the case where P

sends y to R which accepts it, and P goes on to execute S'. In other words,

in understanding the path RfTy -» S', w e do not have to worry about the

fact that I m ight have tried Qttx and Q rejected x. This would, of course, not

be true if Q retained some memory of the fact that it rejected x. In fact, Q has

access only to the messages it accepts, not to the messages it rejects (not

even to the extent of know ing that it rejected anything!).

0 1 4 . W hen a process Q receives an emergency message its state is supposed

to be "backed up" to w hat it was immediately following its m ost recent I/O .

Isn't this very difficult for the program m er to do?

A ns. The "system" (i.e. the im plem entation) does it. The program m er can

completely ignore the backing up. To him the process seems "prescient": if

there is going to be an em ergency message before the process can read its

next I /O comm and, it w aits until the emergency message arrives. Thus the

fact that the process started on the local computations bu t backed up when

the em ergency m essage a rriv ed is com pletely tran sp aren t to the

program m er.

79
Q 15. Is a physical device that is part of a large system an RSP process in

some sense? If so, how can it automatically back up the mechanical action it

m ight have perform ed since the last I/O ?

A n s . I do treat physical devices as (hardw are) RSP proceses. But their

em ergency condition is identically 'false', so they never receive an

emergency message, and never have to back up. Typically, if the device does

need to be backed up, the (software) device driver associated w ith the device

will send an explicit communication to the device instructing it to perform

the opposing (backing up) action.

Q16. If I send a process a request that needs to be completed within, say, 15

nanoseconds, how can I be sure that the other process will respond w ith an

accept or reject, let alone perform the request, w ithin the 15 nanoseconds?

A n s. First of all, a RSP process is no t designed to handle such requests.

Requests are typically intended to be used for m aking requests for physical

services, and time constraints for such services are normally in the range of

tenths of seconds or greater. A request w ith a 15 ns time constraint is most

likely a request for some computation. As I have stated repeatedly, due to

the low co >t of computing power, processes should perform their own com­

putations.

Another view of this question m ight be: w hat if a process is besiged

all a t once by a num ber of requests. W on't the time for responding to

requests become large? This could be a problem, especially if the emergency

80
and acceptance conditions are complicated. So, w hen designing the system

the designer m ust take in to account the com plexity of the Boolean

expressions an d the m ax im um num ber of p rocesses th a t could

sim ultaneously o u tp u t to each process, and see if the turnaround time

would be bigger than the typical time constraint in the ouput messages.

CHAPTER VI

CONCLUSION

In the previous chapters a motivation for the language Responsive

Sequential Processes was presented, the features of the language were fully

characterized and illustrated w ith examples, a system m odel was presented,

and a discussion was given regarding various aspects of the language. In

this chapter I will compare RSP w ith some other languages which were

designed w ith the same target application, and lastly I will sum m arize this

research.

M odula vs RSP

M odula was designed especially for applications such as em bedded

industrial and scientific real-time computer systems. In [281 W irth describes

a discipline for w riting real-time program s in M odula. Such program s, he

explains, are to be w ritten first to ensure that it is logically correct and then

another pass is m ade to check that any constraints are met. W hether or not

the constraints will be met, of course, will depend upon the machine on

81

82

which the program is being run. Processors are shared by the processes.

This makes a static time analysis difficult at b e s t This difficulty is

com pounded by the use of in terrupts. To account for in terrup ts and

processor sharing W irth introduces some form ulas to approxim ate the

execution time of the statements.

There are several problem s w ith this approach. The first is that

upon reading such a program a person is unaw are of w hether or not the

p rogram has to satisfy any tim ing constraints. M aintenance of such a

p rogram by som eone other than the original program m er will be very

difficult since it is unclear w hat constraints the program is attem pting to

m eet.

Next, time analysis of M odula real-time program s are very difficult.

Sharing processors m akes it very hard to tell w hether a piece of code will

m eet a time constraint. The code m ay m eet its time constraint if it has a

dedicated processor du ring the execution of the code. H ow ever, w ith

processor sharing, it cannot be guaranteed that the processor w ill be

dedicated to that process during that time span, since an emergency may

arise in another process, which will result in process switching.

In te rru p ts m akes a p rog ram both d ifficu lt to w rite and to

u n d ers tan d . A t any p o in t in the p rog ram the s ta te m ay change

unexpectedly, because an in terrupt has occurred. This forces the w riter of

the process to w rite the code under the assum ption that the state which

83

exists w hen a statem ent is reached m ay be either the state w hich existed

after the execution of the last statement or the state which exists after the

last statem ent was executed and then an in terrup t service routine was

executed (possibly several in terrupt routines m ay be executed if there are

several interrupts). Clearly, this will make writing and understanding such

processes very difficult. Actually the situation is even w orse since an

interrupt can occur in the m iddle of a statement.

N one of these difficulties are present in RSP: Any constraints that

are present in the program are explicitly program m ed for in the program .

In addition, the emergency condition and the acceptance condition clearly

define w hat constraints a process is capable of meeting. Next, each process

has its own dedicated processor, so the complexities of processor sharing are

not present. Lastly, interrrupts are not allowed in the RSP language - each

process defines w hat messages that it receives constitutes an emergency for

itself; it w ill react im m ediately to those m essages it receives that are

emergencies.

D istributed Programming System vs RSP

The D istributed Program m ing System (DPS) w as designed for

d istribu ted real-tim e systems. The language allows the specification of

tim ing constraints, w hich a system scheduler uses for scheduling. A

"temporal scope" construct is provided for specifying the time constraints

84

of code execution and of interprocess com m unication. In addition, the

language allows for the detection and handling of exceptions caused by

tim ing constraint violations.

The tem poral scope construct identifies a sequence of statements

w ith tim ing constraints. The construct specifies when the statements are to

be executed, in either absolute or relative time, and it specifies how soon

the statem ents have to be completed. A communication tem poral scope is

used to specify the tim ing constraints of interprocess communication. It

specifies w hen a message should be received and processed by a receiving

process, how long a sending process is willing to w ait for a reply, how long

a receiving process is willing to w ait for a message to arrive, and how long

it takes a receiving process to process a message. The run-tim e support

system detects any timing constraint violations and transfers control to the

end of the tem poral scope, where exception handlers are located.

Introducing constructs for specifying the time constraints facilitated

a run-tim e support system in scheduling the processes on the processors.

This allev ia ted the program m er from having to im plem ent his own

scheduling system. This is argued by the authors of the language as a strong

advantage of DPS over such languages as Modula. I grant this. However,

w ith the low-cost of processing units each process should be able to have its

ow n processor, as is proposed in RSP. This will eliminate the need for any

kind of external scheduler or run-tim e support system. Each process, then,

85

has greater flexibility in scheduling its own activities. In addition, if each

process has its ow n dedicated processing un it then a process will be less

complex and more autonom ous since it no longer needs to program for the

situation w here there is no processor available when one is needed.

A second criticism of DPS is in its exception handling. W ith DPS an

exception is raised by the run-tim e system if the job is not completed within

the program m er specified time constraint. A group of non-communicating

statem ents w ithin a process m ay not be completed w ithin the constraints

specified in the temporal scope, thus creating an exception. This is inherent

in any real-tim e language implementation where processors are shared. It

obviously w ill no t exist in RSP w here each process has a dedicated

processor. A nother source of exception ra ising in DPS is w hen an

interprocess com m unication fails. If the receiving process is overloaded

w ith other requests, or if all of the processors are being utilized then the

com m unication will fail. W ith the later, m ore processing pow er w ould

solve the problem . W ith the former, if the sender was notified, w hen it

sent its request, as to w hether or not the receiver could process the request

then it w ould see that the process was overloaded and would not be able to

process its request and w ould then have time to try other alternatives.

A final objection against DPS is that it is unable to recognize

emergencies, other than emergencies which occur w hen time constraints

are violated. Clearly, in a distributed real-time system, it would be necessary

86

to have a m echanism for recognizing and reacting to messages that are

received that will have grave consequences if not handled immediately.

This mechanism is an integral part of RSP. Emergency messages are defined

by the em ergency condition. If a m essage arrives w hich satisfies the

emergency condition then it is detected and reacted to immediately.

CSP vs RSP

A CSP program consists of a set of independently executing

processes [P | / / ... / / Pn]. Processes in teract by m eans of explicit,

synchronized com m unication: P j :: [Pj!x] means that process Pj outputs

(shrieks) the value of x to process Pj. The communication does not actually

take place un til Pj executes the m atching in p u t statem ent. W hen Pj

executes the m atching in p u t statem ent: Pj :: [Pj?y] then the value is

transferred and is assigned to y. The I /O statements may also be used as an

I /O guard in selection statem ents and in loops. W hen used in a selection

statement: P j :: [[Pj!x -> S j 0 Pfc?y - » S2]] the system randomly selects one of

the guards that succeeds, performs the I/O , and then executes the statement

following the arrow . If both guards fail then the process aborts. An I /O

guard fails w hen the m atching process has terminated. I /O guards may also

87

be employed in loops: [*[Pj!x -» Sj Q Pfc?y —> S2]]. The loop is repeated until

both guards fail.

In [24] an extension has been proposed to CSP to m ake it more

suitable for real-time applications. A time-out mechanism was added to the

1/O constructs. Previously, a process could w ait at an I /O construct for an

indefinite period of time as it w aited for the other process to execute a

m atching I /O com m and. O bviously , this is not su itab le for tim e

constrained processes. W ith the tim e-out m echanism control rem ains at

the I /O construct until the I /O succeeds or until the tim e-out occurs,

whichever comes first. This m echanism is denoted by W ait N ow After

alarm , time.

The problem with the time-out mechanism is twofold: suppose that

a process Pj sets the time-out for two seconds, which is the time by which

some job m ust be completed. Suppose that the receiving process does not

complete the desired task w ithin the 2 seconds. W hen the two seconds

expire then it is typically too late for Pj to do anything. The job had to be

done w ithin two seconds and now that time has expired. Suppose we set

the time-out for a lesser time and it expires. If we had only set the time-out

for a longer time it m ay have finished. W hat is needed is a mechanism by

w hich the sending process can im m ediately know w hether or not its

88

requests' constraints can be met. If it has an immediate response then it can

attem pt to take some alternative action, if needed. Otherwise, if the receiver

indicated that it can process the request, it may rest assured that the request

will be processed within the constraints specified. The ability of a process to

receive im m ediate response to a request lies at the very heart of RSP. As

soon as a process m akes a request of another process the requestee will

respond w ith an accept or reject, indicating that it can or cannot process the

request. If the requestee cannot process the request then the requestor will

(presumably) try some other course of action. If the requestee accepts the

request then the requestor m ay rest assurred that its request will be carried

out.

M otivating Concepts for RSP

In this section I sum m arize the software engineering principles

which underly and m otivate RSP, and propose a set of principles on what

constructs are useful and w hat constructs are harm ful in distributed

program s.

1. Autonom ous Processes

The first principle is that distributed systems should be composed of

independently executing processes, there should be no shared variables,

and processes should interact by means of explicit communications. The

89

justification for this principle is as follows: An autonom ous process which

cleanly interfaces w ith other processes via explicit communications will be

easy to w rite and easy to understand . Shared variables destroy the

autonom y of processes. Consider two processes P | and P2 which share

m em ory M. In order to understand P^ one needs to understand how it

changes M. But, P2 also changes M. Thus you also need to understand P2

and how it changes M. So instead of an autonom ous view of each process

w e m ust have a global view of the entire program . This principle of

autonom ous processes, interacting by m eans of explicit communications,

was, of course, first advocated by H oare [17], and was the m otivation

behind the language CSP.

2. The Interrupt Mechanism

The use of an in te rrup t m echanism should be avoided in w riting

distributed program s. There are tw o prim ary reasons for this. Let us

exam ine a d istribu ted program w hich utilizes an in terrup t mechanism.

Consider a process P which is interrupted. How is P to be written? Suppose

that statem ent Sj in P has just been executed w hen the in terrup t occurs.

Control is transferred to some in terrupt service routine, which is executed

(resulting, in general, in the state of P being changed), and finally control

90

returns to the next statem ent, S j+ j. From S j+ i's view point the state has

som ehow "magically" changed from the state w hich existed just after

execution of Sj. So, for any two statements ... Sj; Sj+| ... in P, m ust be

w ritten under the assum ption that the state which will exist w hen control

reaches it, will be either the state which exists just after Sj is executed or the

state which exists after Sj is executed and then the interrupt service routine

is executed. Obviously reading and w riting code w ith such arbitrary state

changes will be very difficult. The situation is actually worse since m ultiple

in te rrup ts (i.e., m ore them one in te rrup t betw een and Sj+ j) w ould

further exacerbate the situation!

A second argum ent against interrupts lies at the very heart of the

philosphy of using interrupts. The underlying prem ise of interrupts is that

an in te rrup ting process Q knows how to best u tilize the in terrup ted

process' (P) tim e and resources. Thus, a t any m om ent Q can stop P from

executing its current task and get P to do some job for it. This is an unsound

premise. Autonom ous processes know best how to handle their own time

and resources and not the time or resources of any other process.

Based upon these two argum ents, m y second principle states that

the use of an interrupt mechanism in distributed programs should be

avoided. However, consider the following problem: Some messages that a

91

process P m ight receive constitute an "emergency" for P , and require

imm ediate corrective action. If w e had an in terrupt mechanism, we could

deal w ith this by letting the message interrupt P. How do we deal w ith this

problem if w e do no t have in terrupts? The answ er is tha t w e need a

m echanism that a process say, P, can use to identify the messages that

constitute an emergency for it, and if such a mesage is received, P m ust be

able to react quickly and take corrective action, abandoning whatever it is

currently doing. N ote that the sending process does not "interrupt" P; it

cannot; it is P that decides w hat messages constitute an emergency for it and

how to react in the face of such an emergency. To the sender this message is

like any other message it m ight send to P.

This brings m e to m y th ird principle: a process should have the

capability of defining what messages constitute an emergency for the

process and be able to react immediately to an occurrence of such a

message.

3. Responsive Systems

In distributed program m ing there are num erous applications (i.e.,

real-time programs) w here a process Pj makes a constraint-bound request of

process Pj. A constraint-bound request is a request which has certain

constraints, such as time constraints, associated w ith it (eg. perform some

9 2

service w ithin x units of time). If Pj cannot process the request w ithin the

constraints then Pj w ould like to take some alternative action. Further, if Pj

is to take the alternative action then it m ust have sufficiently advance

knowledge that Pj will be unable to meet its request. It will be too late for Pj

to take alternative action if it sim ply waits (for example) until the time

specified in the constraints have expired. Pj needs to receive a quick

response to its request. If the request is accepted then it (Pj) m ay rest

confident that the request will be processed within the constraints specified

in the request. If the request is rejected then Pj will have am ple time to try

other alternatives.

This brings m e to my next principle: processes should be responsive,

i.e. a process should respond quickly to requests, indicating whether or not

it will be able to carry-out the request within the specified constraints. T h is

does not m ean that the requestor will interrupt the requestee, only that the

requestee should quickly respond and either reject the request or accept the

request for later processing. Note also that this is not the same as a CSP-like

synchronized com m unication m echanism, as such a m echanism w ould

indeed provide a response but not quickly - as is required.

93

4. A Processor for each Process

The notion of having a lim ited num ber of processing elem ents

(P.E.s) to be shared among processes was a natural response to the high cost

of hardw are in the early seventies. Large, complex operating systems to

m anage and schedule the processes on the P.E.s soon ensued. Today, w ith

the low cost of hardw are and the skyrocketing costs of softw are such

systems need to be rethought. Indeed, sharing processors does not create a

system w hich prom otes softw are productiv ity . M y next princip le of

d istributed software engineering is thus: each process should have its own

P.E.. There are several reasons for this. Obviously, it imm ediately rids us of

the cumbersome operating system. Each process is now free to m anage and

schedule its own activities. Secondly, a system which is designed w ith one

P.E. per process will be less complex. Consider a system which shares P.E.s.

Suppose that a process P receives an emergency message and it presently

does not have a P.E. allocated to it. Clearly a good operating system will

attem pt to quickly provide P with a P.E.. But suppose that all of the P.E.s are

being used. Let's suppose that the operating system preem pts process R,

which has a P.E., and allocates the P.E. to P. This m ay create an emergency

for R, w hich results in it preem pting another process, etc. Thus, one

em ergency m ay have a "domino" effect by inducing em ergencies in

processes which are totally unrelated to the original process. The possibility

of such a cascading of emergencies has to be accounted for in shared

94

processor systems and will naturally result in a much more complex system

than in a system where such an occurrence is not possible.

5. Concise, M eaningful Communication Primitives

M y final p rincip le is that communication primitives should be

concise and meaningful. Concise notations are easier to deal w ith,

rem em ber and, of course, type than long, w ordy notations. A symbol is

m ost easily rem em bered if the symbol has some association to something

else w e are already fam iliar with. Further, a language that has constructs

w hich are easily rem em bered is more likely to be used than a language

w ith equally pow erful constructs bu t w ith w ordy constructs which are

difficult to remember. One reason for CSP's remarkable success seems to be

the conciseness and simplicity of its notation. In RSP I have similarly tried

to use a concise and sim ple notation for primitives that can be em ployed to

build complex distributed real-time systems.

In this section I have identified a num ber of principles that will be

useful in the construction of distributed programs. Also, I have identified

constructs which will be dangerous if used in a distributed program.

95

Summary and Further Research

O ver the last few years, a considerable am ount of work has been

done on w hat are called "real-time systems". Despite all the work, progress

seems to have been lim ited. M ost proposals seem to try to answ er the

question, "How can we express 'time constraints' in real-time systems, and

how can w e ensure tha t these constraints are met?". The situation is

rem iniscent of the sta tu s of "concurrent program m ing" in the early

seventies. The question then was , "How do we express 'concurrent

activities' in a program , and how do we ensure that these activities do not

in terfere w ith each o ther in unacceptable ways?". The fundam ental

contribution of CSP was to shift the focus from 'concurrent activities' to

'distributed processes'. The w ork presented in this dissertation is based

upon m y belief that a sim ilar shift in focus is needed - from 'real-time

systems’ to 'responsive processes'.

The classic problem in real-time systems is to design a process S that

will process a request from another process P w ith in the tim e lim it

imposed by P (and specified as part of the request). In general, however,

there is no w ay to ensure that S will indeed m eet P's time constraint; S

might, for instance, have already received a num ber of requests from other

processes, thus preventing it from processing P's request w ithin the desired

time. Clearly then, P m ust be willing to take appropriate action if S is

unable to m eet its request. But in order to be able to do that P needs to know

9 6

whether or no t S will process its request - and P needs this knowledge now.

for only then w ill it have enough time to try other alternatives. In other

words, S m ust be responsive - as soon as P makes a request, S m ust respond

and either reject the request or accept it for processing at a later time (but

w ithin the time specified by P), and inform P of the acceptance or rejection.

If S accepts the request, P can continue w ith its other activities confident

that S w ill process the request in a timely manner. If S rejects the request, P

will have plenty of time to try other alternatives such as m aking a similar

request of another process S'.

Let us re tu rn to CSP for a m om ent CSP d id m ore than shift the

focus to distributed processes. It also provided a powerful set of tools - in

the form of I /O com m ands and guards - to build them . R esponsive

Sequential Processes (RSP) sim ilarly tries to provide a set of tools for

building responsive processes.

In sum m ary, RSP is a language which is well-suited for systems that

contain not only "computational" activities bu t also a num ber of "physical

devices". The responsiveness of a process p rovides o ther requesting

processes w ith a g rea ter certainty over their request's destiny. The

em ergency condition and its associated sem antics yields trem endous

flexibility for a process in defining w hat constitutes an emergency for it.

This is in contrast to the c u rre n t em ergency m echan ism s, w here

emergencies are rather "cast in stone" and are not at all flexible. In example

1 (pg 43) a non real-time example was given to demonstrate the emergency

97

mechanism. This dem onstrates RSP’s emergency mechanism is useful not

only in real-time systems bu t also in non real-time systems. The examples

dem onstra te that th is language can elegantly handle a w ide range of

problems.

There are two problem s that need further exploration: (1) H ow are

heirarchical systems to be handled? RSP, proposed in this thesis, has only

"flat" processes. Can w e treat a group of RSP processes as a high-level

process? W hat will its acceptance and emergency conditions be? How will it

interface w ith other processes in the system? (2) How do we formally define

the semantics for RSP?

The solution to these problems should prove to be very interesting

and will provide further insights into the language and its ramifications in

this area of program m ing.

LIST OF REFERENCES

1. Allchin, J.E. Modula and a Question of Time. IEEE Tran, on Soft. Eng.
SE-6 , 4 0uly 1980), 390-391.

2. Berry, D.M., G hezzi, C., M androili, D., and Tisato, F. Language
Constructs for Real-Time Distributed Systems. Com puter Languages 7, 1
(1982), 11-22.

3. Berry, G., M oisan, S., and R igault, J.-P. ESTERAL: Towards a
Synchronous and Semantically Sound High Level Language for
Real-Time Applications. Proc. Real-Time Systems Sym posium , IEEE,
1983, pp. 3-19.

4. C aspi, P. and H alw achs, N. A n Approach to Real-Time Systems
Modelling, Proc. of the Int. Conf on Distributed Systems, Miami Beach,
Florida, 1982, IEEE Cat. No. 82 C H 1802-8.

5. D asarathy, B. Timing Constraints for Real-Time Systems: Constructs for
Expressing Them, Methods for Validating Them. IEEE Transactions on
Software Engineering. January 1985. pp. 80-86.

6 . Ghezzi, C., Jazayerri, M. Programming Language Concepts, pp. 137-8.

98

99
7. G lass, R., Real-Time: The "Lost World" of Software Debugging and

Testing, Comm ACM, Vol. 23, No. 5, May 1980.

8 . Gligor, V.D. and Luchenbaugh, G.L. An Assessment of the Real_Time
Requirements for Programming Environments and Languages. Proc.
Real-Time Systems Symposium, IEEE, 1983, pp. 3-19.

9. G ouda, M., Analysis of Real-Time Control Systems by the Model of
Packet Nets, Proc. of the Nat. Comp. Conf., AFIPS Press, Vol. 48,
M ontrale, N. J. 1979.

10. H ansen, P. Brinch (1975), A Real Time Scheduler, Inform ation Science
Report, California Institute of Technology.

11. H ansen , P. Brinch (1978), Distributed Processes: A concurrent
programming concept, Comm ACM, 21, 11, pp. 934-941.

12. H ansen, Per Brinch, The Programming Language Concurrent Pascal,
IEEE TSE, Vol. SE-1, No. 2, June 1975, pp. 199-207.

13. H ansen, Per Brinch, EDISON: A Multiprocessor Language, USC Dept,
of Comp. Sd., September 1980.

14. Hansen, Per Brinch, The Design of EDISON, USC Dept, of Comp. Sd.,
Sept. 1980.

15. Hasse, V., Real-Time Behavior of Programs, IEEE - Trans on Software
Engineering, Vol. SE-7, No. 5, Sept. 1981.

16.Hoare, C.A.R. Communicating Sequential Processes. CACM 21, 8 .
August, 1978, pp. 666-677.

100
17. Holden, J., and W and, I.C. (1980), An assessment of Modula, Software P

and E, 10,8 , pp. 593-622.

18. Lee, I., and Gehlot, V. Language Constructs for Distributed Real-Time
Programming. Technical Report. University of Pennsylvania. April 30,
1985.

19. M artin, T. Real-Time Programming Language PEARL - Concept and
Characteristics. Proc. COMPSAC, Chacago, 1978, pp. 301-306.

20. M artin, T., Real-Time Programming Language PEARL - Concept and
Characteristics, Proc. COMPSAC, Chicago, 1978, IEEE Cat. No. CH
1338-3/78/0000-0301.

21. M artin, T., PEARL at the Age of Three, Proc. of 4th Int. Conf. on Soft.
Engin., M unich 1979, IEEE Cat. No. CH 1479-5/79/0000-0100.

22. Mok, A.K. Fundamental Design Problems of Distributed Systems for the
H ard R ea l-T im e E n viro n m en t. Ph.D . T h., MIT, M ay 1983.
MIT/LCS/TR-297.

23. Mok, A.K. The Design of Real-Time Programming Systems Based on
Process Models. Proc. Real-Time Systems Symposium, IEEE, Dec., 1984,
pp. 5-17.

24. OCCAM Program m ing Manual. Prentice/H all International.

25. Rao, Ram, Design and Evaluation of Distributed Communication
Primitives. U niversity o f W ashington, Dept, of Com puter Science, TR
80-04-01, April 1980.

26. W ard , S.A., A n Approach to Real-Time Computation, Proc. of
Seventh Texas Conf. on Com puting Systems, Oct. 1978.

101

27. W irth, N. (1977), Modula: a language for modula multiprogramming,
Software P and E, 7, pp. 3.

28. W irth, N. Toward a Discipline of Real-Time Programming. Comm, of
the ACM 20,8 (Aug. 1977), 577-583.

29. Young, S.J. Real Time Languages Design and Development, Pub. Ellis
Horw ood Limited, ISBN 0-85312-460-4.

