
Specifying the Behavior of Graphical Objects Using Esterel

Dominique Cldment and Janet Incerpi
INRIA - Sophia Antipolis

06565 Valbonne Cedex, FRANCE

Specifying the behavior of graphical objects, such as menus, scroll-
bars, etc. is not an easy task. This is because one must deal with multiple
input devices such as the mouse and keyboard. This makes the specifica-
tion of such objects difficult to write and hard to maintain. We consider
these objects as reactive systems that receive inputs and generate out-
put after updating their internal state. We present here how one can
use the Esterel language to write efficient, clean, and modular specifica-
tions of such systems. Esterel also provides for the reuseability of such
specifications.

1. Introduction

The use of graphical user interfaces has led to much research on various as-
pects of them. Many systems address how one goes about building user interfaces.
Typically these provide graphical objects (such as buttons, menus, etc.) that the
user can combine and interface with his underlying application. Specifying the be-
havior of these primitive graphical objects is not easy. This is because one quickly
falls to the level of worrying about how to deal with mouse and keyboard input
and various other interaction devices. While such events drive the comportment
of graphical objects, the behavior should be expressed at a higher level without
concern for how the underlying hardware (or low-level software) interfaces with
such events.

We view graphical objects as reactive systems that respond to input events
and generate output events. Here we present how one can specify cleanly and
efficiently the behavior of graphical objects by using the Esterel [2] programming
language. Esterel is a synchronous language for programming reactive systems;
it combines the features of parallel languages with the efficiency of automata.
Thus far we have only specified the behavior of graphical objects: buttons (trill,
trigger), menus (pulldowns, pop-ups), sliders, scrollbars, menubars, etc. We would
like to continue specifying higher-level and specialized objects. The results are
promising. The specification is modular and easy to write and maintain. The
resulting automata are very efficient. We separate the behavior from the graphics
thus we obtain a hierarchy of behaviors independent of an underlying window
system.

We begin with a description of the problem. A short presentation of Esterel
follows; this can be skipped by those already familiar with Esterel. Next we present
a small example of a button for discussing behavior of graphical objects and the
kinds of events that are typical for such objects. In section 5, we present more
complex examples highlighting the various aspects in specifying behavior. We
then explain how one interfaces the generated automata with his system. Next we
discuss related work. Finally we close with a discussion of future work.

112

2. T h e P r o b l e m

Graphical objects are the building blocks of user interfaces. These include
but tons, menus, scrollbars, menubars, browsers, etc. There are many systems
available for using and combining these objects ([10],[14],[12]) to build variot~s
interface components. This may include specifying layout when combining existing
objects or specifying the appearance of a new object but for specifying the behavior
the user is on his own. We feel that specifying the behavior of graphical objects is a
complex task. It may require handling multiple input devices and often the notion
of time is important . Furthermore, the problem of specifying a behavior must be
at tacked independently of the graphical objects themselves. That is, independent
of the method used to define new objects.

In the simplest case, that of a but ton, we want that the description of the
behavior is not dependent on the graphical aspects of the bu t ton and that this
beha-~'ior can be reused. We are not concerned with the form of the bu t ton as it
appears on the screen or its internal representation. For the behavior of a but ton
one is concerned with relative position and, in the case of a "trill" but ton, with
timing.

For more complex objects, it is typically not just a straightforward combina-
tion of simpler behaviors. Graphically a menu is a collection of but tons ---typically
appearing as a row or column. The behavior of a menu is not simply that of, say, a
row of but tons. For a row of but tons one depresses a mouse bu t ton while inside a
bu t ton then with the mouse one highlights and unhighlights only the chosen but-
ton deciding whether to perform the action by releasing the mouse but ton within
the but ton. For a menu, while one initially depresses a mouse bu t ton in one of
the menu 's bu t tons to get things started, when moving to another but ton it is
not necessary to click inside. Thus it is not sufficient to specify the behavior of a
but ton. Clearly, we would like to reuse the but ton behavior adding the necessary
control.

We feel that the problem of specifying the behavior must be at tacked with
an appropriate level of abstraction. For example, in the case of a menu one could
ask what kind of menu do we want to specify? A fixed menu that is always on
the screen? A pulldown menu or perhaps a pop-up menu? It is clear that once a
pulldown or pop-up menu reveals its selections (buttons) that it behaves the same
as a fixed menu. Thus, the difference is how one initiates the behavior. We want
to write the specification for a menu which works for all three types of menus.

With even more complex objects, such as menubars or scrollbars, the behavior
becomes increasingly more difficult to specify correctly. Typically the situation
becomes so complex that one just decides to simplify the behavior. For example,
in scrolling if one leaves the shaft of the scrollbar and re-enters then the thumb
(or index) does not begin moving once again towards the mouse.

Efficiency is always a concern for interface components. One could directly
hand-code the behavior as au tomata but we feel this is a difficult task even for
simple behaviors. We find that with Esterel the generated au tomata are small and
efficient.

3. E s t e r e l

Esterel is a synchronous language designed to program reactive systems; it
combines the features of parallel languages with the execution efficiency of au-
tomata. One can view an Esterel program as a collection of parallel processes
which communicate instantly via broadcast signals. The underlying synchrony

113

hypothesis is that an Esterel program reacts instantly to its input by updating
its state and generating output. It is the input and output that determine the
behavior of the program.

Broadcast signals are the method by which Esterel communicates: internally
using local signals and with its surroundings using input and output signals. There
are two kinds of signals. With pure signals it is their presence (or absence) which
is important. For example, one can emit a signal, say, "mouse-up" when a mouse
button which was depressed is released. With valued signals there is typically
some additional information which is important. In this case, one can emit a
signal, say, "mouse" representing the mouse's position whose value would be the
mouse coordinates. Signals in Esterel are simply identified by names. If S is a
valued signal then ?S is its value. As well in Esterel there exists sensors which are
valued inputs to a program that are solely queried and never emitted. A typical
example of a sensor is the temperature, an Esterel program could query to find
out what's the current temperature.

There is no notion of absolute time in Esterel. One can treat physical time
as a standard signal. But more importantly one can treat every signal as a "time
unit". One can introduce time in the appropriate form for a particular problem.

In Esterel programming, the module is the standard unit. Data is handled by
abstract type facilities. The user declares types, signals, functions, and procedures.
Valued signals have types, for example, a signal named mouse may be of type point
or coordinate. Statements are of two types: those that are more classical dealing
with assignments, functions, etc., and those that deal with signals.

Here we give a brief sketch of the types of constructs that are available.
This is to aid the reader for the code that will be presented in later sections.
Basic statements in Esterel include: assignment, if-then-else, loop-end (an infinite
loop), procedure calls, and sequences or parallels of statements. The parallel
construct requires that there are no shared variables. It is assumed (due to the
synchrony hypothesis) that all these statements take no time. Also Esterel provides
powerful exception handling mechanisms, in what follows we use a simple trap-exit
construct. The "trap" declares an exception while an "exit" raises an exception.
In the simplest case, the body of the trap-exit construct is executed normally until
a corresponding "exit" is encountered:

trap FINISHED in
< statements >

end

Here FINISHED is the name of the exception. If within the statements one en-
counters an "exit FINISHED" then the trap terminates and execution continues
at the following instruction.

Another widely used construct is the copymodule statement. The copymodule
instruction provides for in-place expansion, possibly with signal renaming, of other
modules. This allows one to reuse existing modules.

There is also a class of statements which are temporalt and involve signal
handling. This group includes:

- emit, to broadcast a signal, and await, to listen for a signal.
- a present statement which checks for a signal's presence activating either a

"then" part or an "else" part.

t These can be used to handle time and synchronization.

114

- a do-upto s ta tement which executes its body until a signal is received at which
point it is aborted.

- two loop constructs: a loop-each and a every-do-end. These both execute the
loop body 's s ta tements and restart at the top of the loop each t ime a signal is
received. (Note the difference is the first entry into the loop. The "loop-each"
body is entered before the first signal is received, while the "every-do" waits
until the first signal is received.)

Esterel promotes a programming style that is very modular. Modules emit
signals and at the t ime are unaware who, if anyone, is listening. Thus for a given
task one can write many little modules each of which performs some task. This
along with renaming of signals can lead to a collection of reuseable Esterel modules.
Note that Esterel also encourages t ransmit t ing as much information as possible as
signals. In many cases one stays away from the variables and if-then-else style of
programming. This is because signals can store values and the present-then-else
construct exists. The main advantage is that while an if s ta tement always results
in a runtime test, a present s tatement is compiled more efficiently. For more details
regarding the Esterel language the reader should see [3].

4. A Small Example: A Trigger B u t t o n

We present a small example of how to use Esterel for describing a trigger
button, where the associated action is triggered on mouse-up, that is, when the

mouse but ton is released. This examplet gives a feel for the style of programming.

4.1. The B u t t o n Module

A trigger but ton behaves as follows: depressing a mouse but ton inside the
but ton highlights it; moving out (resp. in) the but ton keeping the mouse but ton
depressed causes the but ton to be unhighlighted (resp. highlighted); finally releas-
ing the mouse but ton inside the but ton performs some action and unhighlights the
button; if the mouse but ton is released outside of the but ton then we are done but
there is nothing to do. Here we look at how to specify this behavior in Esterel.

For every Esterel module it is necessary to have some input and output signals.
This permits the module to communicate to the external world. These signals are
defined in the external interface. This includes the declaration of user defined
types, external functions and procedures.

Note that for the but ton behavior we need to know the button, the mouse
position, when the mouse but ton is released, and if the action is to be performed.
Thus, we have the following declarations:

A more detMled presentation of all the examples presented in this paper ap-
f

peaxs in [9].

115

module BUTTON :
type COORD,

RECTANGLE,
BUTTON;

function GET_RECTANGLE (BUTTON) : RECTANGLE;
procedure XOR 0 (BUTTON);
input BUTTON (BUTTON),

MOUSE (COORD),
MOUSE_UP;

relation BUTTON # MOUSE_UP,
BUTTON ----> MOUSE,
MOUSE_UP ----> MOUSE;

output PERFORM_ACTION (BUTTON);

Above we have the declarations for the user abstract data types: COORD (coor-
dinate or point), RECTANGLE, and BUTTON that will be used in this module.
The but ton module has three input signals: BUTTON whose value is of type
BUTTONt , MOUSE whose value is of type COORD, and MOUSE_UP (a pure
signal). It has but one output signal: PERFORM_ACTION whose value is of type
BUTTON.

We assume the button, through GET_RECTANGLE an external function,
can supply a rectangle which is its sensitive area. Note that this rectangle can
be smaller or larger than the visual appearance of the button. Also there is one

external procedure XOR:~ that takes as argument the but ton to be highlighted.
The relation section gives information about the relationships among the input

signals. The first states that the BUTTON and MOUSE_UP signals are incom-
patible and never appear in the same instant. Thus one cannot begin and end the
but ton module in the same instant. The other two are causality relations. The
former states that whenever the BUTTON signal is present then a MOUSE signal
will also be present. Similarly the latter states whenever MOUSE_UP is present
then MOUSE is also present (it tells where MOUSE_UP has occurred). These
relations represent assumptions about how signals will be received by the module.

The behavior of the trigger but ton can be seen as three tasks running in
parallel.

< tell whether inside or out of the button >
II

< control highlighting of button >
II

watch for mouse-up then do what's necessary >

t The signal declarations give the signal name followed by the type of the signal
in parentheses. We name both the signal and the type BUTTON. This is not a
problem as there are separate name spaces for the types, signals, and variables.

:~ Procedures in Esterel have two argument lists: the first is for call by reference
arguments the second for call by value. We should note here that in function and
procedure declarations it is the type of arguments (and type of the returned value
for functions) that are given.

116

One could view the behavior for a trigger but ton as simply the last two tasks,
highlighting and handling mouse-up, running in parallel, however, both of these
are dependent on knowing whether one is in or out of the button. Thus it seems
natural to separate such a task and consider it as a third component needed in
specifying the behavior of a button.

We assume there exists a module whose task is to say whether or not a point
is in or out of a given rectangle. This module, check-rectangle, generates (output)
signals IN and OUT each time the situation changes; one goes from being outside
the rectangle to being inside and vice versa. To do this, check-rectangle needs two
input signals: CHECK_RECTANGLE whose value is of type RECTANGLE and
MOUSE whose value is of type COORD. Also check-rectangle can answer queries
about the current situation. That is, whether we are in or out of the rectangle.
For this we need an input signal AM_I_IN and two output signals YES and NO.

We begili by showing how to run the check-rectangle module in parallel with
the components for controlling the highlighting and handling mouse-up. The com-
ponent to < tell whether inside or out of the but ton > can be written in Esterel
as follows:

emit CHECK_RECTANGLE (GET_RECTANGLE (? BUTTON));
copymodule CHECK_RECTANGLE [signal BUTTON_IN / IN,

BUTTON_OUT / OUT]

The Esterel copymodule construct allows one to use other Esterel modules. This
corresponds to an in-place expansion of the check-rectangle module possibly with
signal renamings. Here we rename the IN (resp. OUT) signal to be BUT-
TON_IN (resp. BUTTON_OUT). Thus this instance of the check-rectangle module
emits BUTTON_IN and BUTTON_OUT. Before starting the module we send a
CHECK_RECTANGLE signal whose value, given by GET_RECTANGLEt an ex-
ternal function, is the sensitive area for the button. Note that check-rectangle uses
the MOUSE signal to determine when one moves in and out of the given rectangle.
(Broadcasting signals allows the Esterel code to be modular; one doesn't have to
know who is listening and anyone who is listening can act accordingly.)

Consider how one specifies in Esterel the control for highlighting. Recall that
initially the mouse is inside the but ton (a natural assumption if one clicks in the
but ton to start). The control is an infinite loop: highlight, wait until the mouse
is out of the button, unhighlight, wait until the mouse is inside the button. In
Esterel we have the following:

loop
call XOR 0 (? BUTTON);
await BUTTON_OUT;
call XOR 0 (? BUTTON);
await BUTTON_IN

end

The first call to XOR highlights the but ton while the second unhighlights it.
The check-rectangle module which is running in parallel emits the signals BUT-
TON_OUT and BUTTON_IN.

t Note that "? BUTTON" is the value of the input signal BUTTON; since this
signal is of type BUTTON, it is a valid argument to GET_RECTANGLE.

117

For handling mouse-up one equally needs to know whether the mouse is inside
the bu t ton or not. Here we wait for mouse up then query the check-rectangle mod-
ule and after possibly performing some action the bu t ton module is terminated.

await MOUSE_UP do
emit AM_I_IN;
present YES then

call XOR 0 (? BUTTON);
emit PERFORM_ACTION (? BUTTON)

end;
exit THE_END

end

When MOUSE_UP arrives we simply emit A M A I N then see if YES, which would
be emit ted by the check-rectangle module, is present. If so, we unhighlight the
bu t ton and emit PERFORM_ACTION. The ex/t is part of the trap-exit mechanism
of Esterel, thus with a corresponding trap s tatement surrounding the three parallel
tasks one exits completely the but ton module.

5. Reusabi l i ty and More Examples

We present various examples that show how one can re-use the Esterel modules
to make a hierarchy of behaviors. We begin with a description of a menu, followed
by that of pulldown and popup menus, and finally a menubar.

5.1. A General Menu Module

We now want to specify the behavior for a menu. We describe a module,
called menu-body, which doesn' t know whether one is initially in or out of the
menu body (buttons). Then we show how this module can be used to at tain the
various kinds of menus.

The external interface for the menu-body module introduces a new type,
MENU, and a new input signal, MENU, of this type. As well we have two external
functions: GET_MENU_RECTANGLE takes a menu as argument and returns the
rectangle associated with the menu body, and GET_MENU_BUTTON takes a
menu and a point and returns the menu bu t ton which the point is in. The Esterel
declarations are as follows:

module MENU :
type COORD,

RECTANGLE,
BUTTON,
MENU;

function GET_MENU_RECTANGLE (MENU) : RECTANGLE,
GET_MENU_BUTTON (MENU, COORD) : BUTTON;

procedure XOR 0 (BUTTON);

input MENU (MENU),
MOUSE (COORD),
MOUSE_UP;

output PERFORM_ACTION (BUTTON);
relation MENU ~ MOUSE_UP,

MENU ----> MOUSE,
MOUSE_UP -----> MOUSE;

118

The behavior of the menu can be described as follows: when the mouse is
inside the menu body (i.e., inside one of its buttons) then the selected but ton is
highlighted. The selected but ton changes as the mouse moves within the menu
body; when the mouse is outside the menu then no but ton is highlighted; on
mouse-up, if inside the menu the currently selected but ton 's action is performed.
We specifiy this behavior with three tasks in parallel:

tell whether inside or out of the menu body

II
keep track of current button >

II
wait for mouse-up then do what's necessary >

The first task is just an instance of the check-rectangle module:

emit CHECK_RECTANGLE (GET.MENU_RECTANGLE (? MENU));
copymodule CHECK_RECTANGLE [signal MENU_IN / IN,

MENU_OUT / OUT]

The task of keeping track of the current but ton needs to know whether the
mouse is inside the menu body or not. Thus it uses MENU_IN and MENU_OUT,
once inside the menu we must maintain the active button. This can be expressed
in Esterel as follows:

loop
await immediate MENU_IN;
var ACTIVE_BUTTON • BUTTON in

do
< Maintain and run active button >

upto MENU_OUT;

call XOR 0 (ACTIVE_BUTTON)
end

end

The "await immediate" allows one to start correctly the maintaining of the active
but ton when one is initiMly inside the menu body. The call to XOR is necessary
because the active but ton which will be running within the do-upto statement is in-
s tantly aborted on hearing MENU_OUT thus the active but ton is still highlighted;
only the menu knows this and can unhighlight the button.

What is necessary to keep track the active but ton? We are assuming whenever
we are in the menu then we must be in a button. The active but ton changes when
the mouse moves into a new button. At this time we want to start an instance
of the but ton module running on the new active button. To maintain the active
but ton we have:

119

loop
ACTIVE_BUTTON := GET_MENU_BUTTON (? MENU, ? MOUSE);

signal BUTTON (BUTTON), BUTTON_OUT in

trap CHANGE_BUTTON in
[

emit BUTTON (ACTIVE_BUTTON);
copymodule BUTTON;

Ilexit THE_END
await BUTTON_OUT do exit CHANGE_BUTTON end]

end
end

end

We first use the GET_MENU_BUTTON function to find the active button. Then
we use a trap-exit s ta tement for controlling when we move from one but ton to
another within the menu body. This requires running the bu t ton module on the
active bu t ton in parallel with watching for when the mouse leaves this button.

When B U T T O N _ O U T t is received we know that the menu's active bu t ton has
changed. (When we change the active but ton, in the same Esterel instant two
bu t ton modules are running: with B U T T O N _ O U T the first module terminates
and a second begins as the loop restarts.) Note that if ever the bu t ton module ter-
minates we terminate the menu-body module by executing the "exit THE_END".
Here again we are assuming that the three components of the menu-body module
are enclosed in a trap-exit construct.

The third component of the menu body ' s behavior is waiting for mouse-up.
Recall that if the module B U T T O N terminates then we terminate the menu-body
module. There is a bu t ton module running whenever we are inside the menu, so
there is nothing to do when we are in the menu. In the other case, there is no
bu t ton module running and thus we "exit THE_END" to terminate the menu-body
~nodule.

await MOUSE_UP do
emit AM_I_IN;
present NO then

exit THE_END
end

end

5.2. Special Kinds of Menus: Pop- Ups and PuUdowns

As we mentioned above the main difference in the various kinds of menus are
how one initiates the behavior. For a pulldown, this is done by clicking in what we
call the "title" but ton. For a pop-up, this is done by depressing a specified mouse
but ton. For a fixed menu, one simply clicks inside the menu.

t To re-use the bu t ton module requires a slight modification. The BUT-
TON_OUT signal must be declared as an output signal in the external interface
(declarations) of the bu t ton module. This allows it to be heard by other modules.
Otherwise that signal is viewed as local to the bu t ton module itself.

120

To use the menu-body module for a fixed menu one connects the Esterel
module so tha t it runs whenever a mouse but ton is depressed inside the menu.
For a pop-up menu the situation is not more difficult: one must draw and erase
the menu-body since it is not always visible on the screen:

call DRAW_MENU 0 (? MENU);
copymodule MENU;
call ERASE_MENU 0 (? MENU)

The declarations for the popup module must, of course, declare the two external
functions, DRAW_MENU and ERASE_MENU. Notice that here we are assuming
that the mouse and the popup menu are in the same system of coordinates.

In the case of a pulldown menu it is clear that we want to run the pop-up
module given above on the pulldown's menu. Since a pulldown menu is activated
by clicking in the "title" button, it is natural to assume the mouse and the title
but ton are in the same system of coordinates. Thus we introduce a local signal
"MENU_MOUSE" whose value is the mouse coordinates relative to the pulldown's
menu.

The behavior for the pulldown has two components running in parallel: one is
generating a MENU_MOUSE signal for every MOUSE signal received, the second
is running the pop-up module described above.

await immediate PULLDOWN;
signal MENU (MENU), MENU_MOUSE (COORD) in

trap THE_END in
[

every immediate MOUSE do
emit MENU_MOUSE (MENU_COORD (? PULLDOWN, ? MOUSE))

II end

emit MENU (GET-MENU_BODY (? PULLDOWN));
copymodule POP_UP [signal MENU_MOUSE / MOUSE];
exit THE_END]

end
end

Note tha t for the copymodule of POP_UP we just rename the MOUSE signal to
use the local signal MENU_MOUSE.
5.3. Menubar

A menubar can be viewed as a grouping of pulldowns in much the same way
tha t a menu is a grouping of buttons. There is again the slight behavioral difference
from a row of pulldowns that once one clicks inside one of the title buttons that
represents the menubar then it is enough to move into another title but ton to see
the new menu displayed.

The external interface requires the introduction of a type MENUBAR and
an input signal of tha t type. In addition we have input signals for MOUSE and
MOUSE_UP and the output signal PERFORM_ACTION. As well we introduce
functions for getting the menubar 's associated rectangle, a title's associated rect-
angle, and the current pulldown.

At a high level the behavior of a menubar is similar to that of a menu. That
is, one needs to know if one is inside or out of the menubar. When inside the

121

menubar itself one selects a title but ton which reveals the corresponding menu.
By watching the title buttons we keep track of the current pulldown. This happens
while awaiting mouse-up which terminates the behavior of the menubar. Thus we
have:

< generate inside or out of the menubar

II
< keep track of current pulldown >

II
wait for mouse-up then do what's necessary

The first component for the menubar is an instance of the check-rectangle module
similar to others we've seen.

Maintaining the current pulldown, however, is not as simple as maintaining
the active but ton of a menu. While it is true whenever the mouse moves within
the menubar from one title but ton to another that the current pulldown changes,
this pulldown remains the current pulldown when one is no longer in the menubar.

Thus the code for keeping track of the current pulldown is actually two tasks
in parallel. The first watches when the mouse is in the menubar to see if the title
but ton changes. The second runs the pulldown module on the current pulldown.
We have:

< Maintain current title button

< Run current pulldown >

Maintaining the current title but ton is similar to keeping track of the current
but ton in the menu-body module. That is, when inside the menubar we watch for
the mouse to enter a new title button. Each time the title but ton changes we have
a new current pulldown. Once out of the menubar we wait until we enter again.
This behavior can be specified as follows:

loop
await immediate MENUBAR_IN;
do

< Find current pulldown
Maintain current title button >

upto MENUBAR_OUT;
end

When we have found the current pulldown, we emit a signal of type PULL-
DOWN which will be used by the component which runs an instance of the pull-
down module. The code for maintaining the current title but ton is similar to that
of maintaining the active but ton of a menu, thus we won't go into further detail
here.

The component which runs the pulldown module for the current pulldown is,
of course, listening to the signals emitted by the code above:

122

var ACTIVE_PULL : PULLDOWN in
loop

ACTIVE_PULL := ? PULLDOWN;
do

copymodule PULLDOWN;
exit THE_END

upto PULLDOWN;

call ERASE_PULLDOWN_MENU 0 (ACTIVE_PULL)
e n d

end

Here we set ACTIVE_PULL to the emit ted PULLDOWN signal then run the pull-
down module. This module is aborted when a new PULLDOWN signal is emitted
li.e., when the mouse is in a new title button). The ERASE_PULLDOWN_MENU
is needed because the aborted pulldown module will not have erased the menu
which was drawn by that module. If ever the PULLDOWN module terminates,
which it does on mouse-up, then we want to terminate the menubar module.

This completes the maintaining of the current pulldown. What remains is
the handling of mouse-up. However, since an instance of the pulldown module is
always running and its terminat ion terminates the menubar, there is no special
handling for mouse-up.

6 . U s i n g t h e E s t e r e l C o d e

There are two aspects to interfacing with an Esterel module. The first is the
abstract da ta manipulat ion performed in that module. What is a button? How to
get a but ton 's associated rectangle? etc. The second concerns how one actually
uses the code. How does one start the automaton? How to generate an input
signal?

For a given Esterel module the user must define the da ta types and the exter-
nal functions and procedures. This is typically writ ten in some other host language
such as C, Ada, or Lisp. The compilation of Esterel results in the generation of
an automaton, a function to call this automaton, and one function for each input
signal. To use this au tomaton one emits an arbi trary number of input signals, by
calling the input functions, and then calls the automaton which, updates its state
and in tu rn generates an arbi trary number of output signals. The output signals
correspond to functions that the user must also define. Note tha t all input signals
emit ted before a call to the automaton are considered simultaneous. One call to
the au tomaton results in one state transition.

The interfacing is complete once the user decides how and when to emit the
input signals and when to call the automaton. For example, to use the menu-body
module given above, one would like the following situation:

- When one clicks in the menu-body, send input signals MENU and MOUSE
and then call the automaton.

- Each t ime the mouse is moved, send input signal MOUSE and call the au-
tomaton.

- When one releases the mouse button, send input signals MOUSE_UP and
MOUSE and call the automaton.

It is at this level, and only at this level, one must worry about connecting to any
underlying hardware or low-level software.

123

When one is trying to connect an Esterel module to the outside world, the
handling of input and output is very important. Recall the synchrony hypothesis
assumes that the Esterel program reacts instantly to its input signals by updating
its state and generating output signals. This translates practically into being
reasonably fast.

Thus one must guarantee that emitting signals and external function calls are
quick. Input signals are broadcast from the outside world and during the time the
automaton is called one must make sure that no other input signals are lost. In
our case, we have found execution speed is not a problem for external functions.
The time taken by an output signal such as PERFORM_ACTION is dependent
on the action performed. Instead of directly performing the action one can note
that there is something to do and after the call to the automaton returns do what
needs to be done.

7. Related Work and Discussion

In specifying the behavior of graphical objects one must find an appropriate
model. We view graphicM objects as reactive systems that respond to input events
and generate output events. The implementation of such systems as automata
(or state machines) is very efficient. However, automata are difficult to design
and modifications which are based on concurrency (i.e., the same behavior plus
something else happening in parallel) are difficult to make; often one is better off
throwing out the existing automaton and starting from scratch.

Esterel is a synchronous programming language designed for implementing re-
active systems. It provides parallel constructs that ease programming and mainte-
nance of such systems. An Esterel program is compiled into an automaton making
for an efficient implementation. Currently, the automata can be generated in ei-
ther C or Lisp. Esterel induces a programming style that promotes modularity and
limits runtime testing. Also it provides a certain degree of reusability or hierarchy
for behaviors, for example, the specification of a menu reuses that of a button.

Ours is not the first a t tempt in this direction. The "Squeak" language in-
troduced by Caxdelli and Pike [5] works along similar lines. In Squeak channels
exist as a method for communicating between various processors. Squeak is asyn-
chronous however and is somewhat restrictive in its notion of timing. Recently
Hill [11] has introduced the "event response language" (ERL) as a method of en-
coding concurrent activities. This is a rule-based language where the user specifies
conditions and flags that must hold for certain actions to be triggered. The flags
are essentially encoding the state of the system, the automaton, but the user is
responsible for generating these local variables. Modifying such a specification can
prove difficult. Also there is currently no modularity in ERL.

such as Modula 13 and Ada 1 offer con- While high-level parallel languages, . [] .[]
structs that ease the programming task there is usually some execution overhead
to be paid. Also such languages axe usually nondeterministic and an important
property of reactive systems is their determinism.

We find that concurrency and communication through signals permit us to
achieve an appropriate abstraction in defining the behavior of graphical objects.
The concurrency provides modularity, a separation of the behavior into various
tasks. The scheduling of these tasks is easily done in Esterel using the parallel
and signal broadcasting. With other parallel languages the scheduling is done by
hand and results in the intermixing of separate tasks that happen to be scheduled
at the same time. The broadcasting of signals provides reusability, small tasks
recombine with added control. An enclosing task can hide signals from a subtask

124

(a reused module) and the subtask doesn't know who, if anyone, is listening to its
signals.

The reuseability of Esterel code is an essential feature. It allows one to build
a hierarchy of behaviors and also to provide others who want to write Esterel code
a library of simple modules. Of course, this reuseability is at the Esterel code level
not at the compiled code level. One cannot link to some already compiled Esterel
module.

Another important feature is the quality of the compiled Esterel code. Esterel
code is compiled into automata that are very smallt and very efficient. Our graph-
ical objects are used in the Centaur [4] interface (a generic interactive environment
system) and the performance is good.

8. Conclus ion and F u t u r e W o r k

We have presented here how one can use Esterel to specify the behavior of
graphical objects. We believe that the reactive systems model is correct for such
interface components. Esterel permits one to describe behaviors at an abstract
level. Thus a surprisingly complex task is now much easier. Since our specifications
are not dependent on graphics, they are rather portable. As well Esterel modules
give a certain level of re-useability that permits one to build from previous modules.
Finally since Esterel code is compiled into automata, the resulting behaviors are
extremely efficient.

Thus far we have only concentrated on low-level graphical objects: menus,
menubars, scrollbars, etc. We are very encouraged with our results. We have de-
scribed behaviors without calling specific graphic primitives, without using specific
features of a given window manager, without explicitly using low-level device calls.
The communication done through signals represent abstract events. We would like
to specify more sophisticated and customized objects. We also feel that Esterel
could be used to specify the interface of full "applications" rather than singular
objects.
Acknowledgement s

We would like to thank G4rard Berry for introducing us to Esterel and for
many helpful discussions regarding this work. As well we thank both G4rard Berry
and Gilles Kahn for proofreading this paper.

References
1. A D A, The Programming Language ADA Reference Manual, Lecture Notes

in Computer Science, Springer-Verlag, (155), 1983.

2. G. BERRY, P . COURONNE, G. GONTHIER, "Synchronous Programming
of Reactive Systems: An Introduction to ESTEREL" Proceedings of the First
France-Japan Symposium on Artificial Intelligence and Computer Science,
Tokyo, North-Holland, October 1986. (Also as INRIA Rapport de Recherche
No. 647.)

3. G. BERRY, F . BOUSSINOT, P . COURONNE, G. GONTHIER, "ESTEREL
v2.2 System Manuals" Collection of Technical Reports, Ecole des Mines,
Sophia Antipolis, 1986.

t The menubar's automaton has I0 states and its octal code representation is
1014 bytes.

125

4. P. BORRAS, D. CLEMENT, T. DESPEYROUX, J. INCERPI, G. KAHN,
B. LANG, AND V. PASCUAL. "CENTAUR: the system", Proceedings o~
ACM SIGSOFT '88: Third Symposium on Software Development Environ-
ments, Boston, November 1988. (Also as INRIA Rapport de Recherche No.
777).

5. L. CARDELLI AND R. PIKE, "Squeak: a Language for Communicating with
Mice", Proceedings of SIGGRAPH 19(3), San Francisco, 1985.

6. L. CARDELLI, "Building User Interfaces by Direct Manipulation", Research
Report # 22, DEC Systems Research Center, October 1987.

7. J. CttAILLOUX, ET AL. "LeLisp vl5.2:Le Manuel de R~f~rence, INRIA Tech-
nical Report, 1986.

8. D. CLl~MENT AND J. INCERPI, "Graphic Objects: Geometry, Graphics,
and Behavior", Third Annum Report, Esprit Project 348, December 1987.

9. D. CLI~MENT AND J. INCERPI, "Specifying the Behavior of Graphical
Objects Using Esterel", INRIA Rapport de Rercherche No. 836, April 1988.

10. M. DEVIN ET AL., "Aida: environnement de d~veloppemnt d'applications",
ILOG, Paris, 1987.

11. R. HILL, "Supporting Concurrency, Communication, and Synchronization
in Human-Computer Interaction - - The Sassafras UIMS" ACM Transactions
on Graphics, 5(3), July 1986.

12. MACINTOSH TooLKIT Apple Computer Corp.
13. N. WIRTH, Programming in Modula-2, Springer Verlag, 1982.
14. X11 TOOLKIT MIT project Athena, February 1987.

