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Abstract : A formal framework and a technique for the specification, refinement and correctness 

proving of parallel systems are presented. Processes are objects in the TCSP model and are specified by 

means of an auxiliary partial abstract data type. Part of the proofs are made in the abstract data type 

framework, so more powerful deductive methods can be used. Examples of specifications and of 

proving a refinement correct are included. 

1. Introduction 

During the last years, mathematical models for parallel systems such as CCS [Mil 80] and CSP [BHR 84, 

BrRo 85, Hoa 85] have been proposed giving a formal framework to specification, refinement and verification 

activities so that they could be accomplished with the necessary rigour. Unfortunately, there is not always an 

agreement on what the specification of a parallel program should be, neither on which notion of satisfaction of a 

specification by an implementation is the most appropiate one (e.g. see [Hen 86], [OIHo 86]). Moreover, 

verification is undecidable in general in the context of those models. For that reason, several methodological 

proposals have been made, some of them based on the algebraic manipulation of processes (e.g. [HoJi 85]), and 

others in gradually transforming the specification into a correct implementation (e.g. [Old 86, Hen 86]). 

One of the important needs for proving properties of parallel systems (correctness is just one of them), is to 

have powerful deductive methods supported as far as possible by automatic tools. The above mentioned models 

satisfy a rich set of algebraic laws [Old 86, Nico 85] but, due to the undecidability problem, most of the proofs 

have to be made mainly by hand and, in many cases, by finding "eureka" lemmas that solve the difficult steps. 

On the other hand, a field that have received most attention in the last decade ,s the study of models and 

deductive methods for abstract data types. The models are also algebraic, although they are simpler than those 

proposed for parallel systems, mainly due to the non existence of infinite objects. According to this simplicity, 

there are more decidable questions, more algorithms and more tools. In recent years, the so-called rewriting 

laboratories and, in general, many tools for algebraic theorem proving, have arisen (e.g. Reve, ERIL, RAP, 

CEC). 

In this paper, we present a formal framework and a technique for the specification, implementation and 

verification of parallel systems trying to bring together the advantages of both fields. The formal framework is 

borrowed from two sources: the parallel model proposed in [BHR 84, BrRo 85, Hoa 85] that, in the rest of the 

paper, will be referred to as TCSP, and the algebraic models of abstract data types, in particular, those called partial 

abstract types as developed in [BrWi 82, BMPW 86] that we will refer to as PAT. The technique consists of a 

restricted way of specifying a process, by means of a system of mutually recursive TCSP equations, that we will 

call the normal form of the process. Process equality will then be proved by comparing their normal forms. This 

idea already appears in [HoJi 85]. The differences here are mainly two: in one hand, the index set that subindexes 

the variables of the TCSP equations, is specified by means of a PAT. We choose for this index set the most general 

one: the process traces. Moreover, this set of traces will have a non monomorphic semantics. Its non isomorphic 
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models represent different process implementations, with different number of  internal states. On the other hand, to 

prove process equality we do not require identical sets of  recursive equations, as in [HoJi 85], but a weaker 

relation that turns out to be an implementation relation between two PAT's. Besides that, we show how part of the 

correctness proof and the proving of  other properties, can be made entirely in the PAT framework, so taking 

advantage of the more powerful deductive aids in this field. 

The technique is hierarchical because the design and verification tasks are accomplished a refinement at a 

time. By a refinement we mean the decomposition of a process S ,  representing the specification of a subsystem, 

into a net N of  processes N 1 ..... N r composed by the operator II. If I are the internal events of the net, that is, the 

synchronization or communication events between the net components, the correctnes of  the refinement consists of 

proving: 

(NIlI....IINr)\ I sat S 

where \ is the hide operator. In this work we choose, for simplicity and compositionality reasons, the sat relation 

to be the estriet equality. This implies that all valid implementations have to be as deterministic as the specification 

S (other satifaction notions allow the implementation to be more deterministic than the specification, e.g. [Old 86]). 

The organization of the paper is as follows: Section 2 summarizes the concepts about partial algebras that will 

be used in the rest of the paper. In section 3 we define the normal form of a process to be an infinite set of mutually 

recursive equations with the index set being the traces of the process. The semantics of this construction is given 

first, in terms of the PAT models to interpret the set of traces and then, in terms of  the TCSP model to define the 

process. The partial algebra approach gives a non monomorphic semantics to a specification. It is shown that the 

denoted TCSP process is independent of  the concrete model chosen for it. It is also shown that the normal form is 

expressive enough to denote any non divergent TCSP process. Section 4 is dedicated to explain how safety and 

liveness properties of a process, including deadlock freedom, can be proved using only deduction in the PAT 

framework. It is shown that, if there exists an implementation relation between two PAT's then they both denote 

the same TCSP process, provided that the rest of the normal form is identical. 

In section 5 we give the laws to combine processes in normal form, using operators II and \ .  While, in the 

first case, the normal form of the result can be, with some restrictions, mechanically obtained, it does not happen 

so with the hiding operator, which introduces several problems. An attempt to overcome them is done in section 6. 

It presents a method for verifying refinements consisting, in essence, of algebraically manipulating the net after 

hiding and trying to reduce it to normal form. This task needs to use both the laws of the TCSP model and the laws 

deductible from the PAT specification. It is illustrated with a small example which is thoroughly developed in an 

appendix. 

2. Partial Algebras 

In this section we summarize the main partial abstract type concepts we will use later on. A complete 

description can be found in [BrWi 82, BMPW 86, BrKr 86, GrBr 87]. 

Given a signature ~ = (S, F) with F = {Fw,s}wc S*, se S the set of operation symbols, a par t ia l  

Z-algebra A (from now on, a Z-algebra) is a pair ((sA)se S, (fA)f• F) such that, 

• (sA)s• S is a family of  carrier sets having one carrier for every sort se S. 

• (fA)fe F is a family of partial mappings of the form fA : sl A x ...x sn A ---> s A for every f • Fsl ... sn,s 

i.e. fA(a 1 ..... an) can be undefined for some tuples (a 1 ..... an). 

By T Z we denote the set of  ground terms, by TE(X) the set of terms with variables of X = (Xs)s• S 

and by t A the evaluation of  a ground term in A. Let us observe that for certain t • T Z, t A may be undefined. A 

Z-algebra is finitely generated (term generated) if the evaluation of terms is surjective. 
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Given two ,E-algebras A and B a weak Y_.-homomorphism h : A ~ B is a family of  partial mappings 

{hs : sA -'* sB }se S such that hs(fA(al . . . . .  an) ) = fB(hsl(al)  . . . . .  hsn(an) ). The symbol "=" stands for s trong 

equality i.e. two values al and a2 in A are equal if either both are defined and equal, or both are undefined. Let us 

note that, because h is partial, fA can be defined on more terms than lB. I fh  is total, then fB can be more defined 

than fA. It is called a total homomorphism. An homomorphism both weak and total is called strong. In this case, 

fA and fB are defined on the same terms. 

Given a subsignature of  E, E ' c  E (i.e. S' ~ S and F ~ F) a E'-algebra A is a E ' - suba lgeb ra  of  the 

E-algebra B if  : (1) for every s in S' s A ~ sBand (2) for every f in F', fA = fB ]A, where fB IA denotes the 

restriction of fB to the carriers s A and "=" is strong equality. 

A part ial  abs t rac t  type specif icat ion (PAT) is a 3-tuple SP = (E, E, P) where P = (Z', E'), E'~_E and 

E, E' are sets of  axioms with E' ~ E. P is called the specification of  the primitive type. It is required for P to 

have initial model and that booleans are included in P. An axiom e in E has the form: 

F 1 A . . . A F n ~ G 1 A . . . A G m  , n > _ 0 , m > 0  

where Fi, G i are atomic formulas of  the form def(t) or t 1 = t 2 with t, t 1 , t 2 E TE(X). The satisfaction of an atomic 

formula by a E-algebra A is as follows: 

• A l= def(t) if ~(t) is defined in A 

• A l = t  l = t 2 i f  ~ ( t l )=  ~(t 2) 

for every cr : X --~ A ,  interpreting the symbol "=" as strong equality. 

A Z-algebra A satisfies an axiom,  A t= (F t A ... ^ F n ~ G 1 a ... ^ Gm) if, whenever A I= F i holds for 

every i~ l . . .n ,  then A I= G i holds for every i=l . . .m.  Given a PAT specification SP = (Z, E, P) a partial 

E-algebra A is a model of SP if: 

a) A is finitely generated 

b) A preserves the hierarchy i.e. the £'-reduct of A must be isomorphic to the initial model of P = (E', E'). 

Moreover, A satisfies, for the boolean sort, trueA-~false A 

c) A satisfies all the axioms in E 

We will call GEN(SP) the class of  all minimally defined models of  SP. Minimally defined models in a 

class C, are those models A such that, for all t~ T E, A I= def(t) if  and only if C I = def(t) i.e. a term is either defined 

or undefined in all models (using the [BrWi 82] terminology, GEN(SP) = MDEF(PGEN(SP))). In general, 

models in GEN(SP) are not isomorphic except for their boolean reducts. However, the observable behaviour for 

terms of  primitive sort is identical in all models. 

In contrast with total algebras, in GEN(SP) the initial and/or final models could not exist. In [BrWi 82] 

sufficient conditions for the existence of those algebras are given. Specifically, for the existence of initial model in 

a category with total homomorphisms, it is required for the PAT to be hierarchy-consistent andpartial complete 

w.r.t the primitive type, and consistent w.r.t to the boolean subspecification. A PAT specification with these 

properties will be called c o n s e r v a t i v e .  As GEN(SP) contains only minimally defined models, total 

homomorphisms are also strong. 

An atomic formula e is deducible from a specification SP, denoted by SP I- e, if e is deducible from the 

axioms of E using the first order logic inference rules adapted to partial algebras [BrWi 82, WiBr 81]. If SP is 

partial complete w.r.t, the primitive type then deduction is complete for ground equations i.e. 

GEN(SP) 1= t I = t 2 if and only if SP ]- t I = t 2 for every t 1, t 2 in T Z. It is not complete in the case of  theorems 

with variables i.e. GEN(SP) I= t I = t 2 if SP I- t t  = t2 for every t 1, t 2 in Tz(X).  Theorems valid in GEN(SP) hut 

not deducible are called inductive. Inductive theorems can be proved by structural induction on terms. 
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We will need also the algebraic implementation concept developed in [BMPW 86] which we restrict to strong 

homomorphisms: Let SP = (2, E, P) and SP + = (L +, E +, P) he two specifications with identical primitive type 

P = (Z', E') such that E ~ Z + and GEN(SP +) ~e 13. The specification SP + is an algebraic implementat ion 

of  SP if for every Z+-algebra A + in GEN(SP +) there exists a strong homomorphism from its finitely generated 

Z-subatgebra A, to some Z-algebra B in GEN(SP). Let us consider some interesting remarks about this definition: 

I) When defining an implementation, first of  all, the implementing type must be enriched with the operations 

of  the implemented type obtaining Z + such that Z ~ Y~+ 

2) Considering for every A + in GEN(SP +) its finitely generated Z-subalgebra A is equivalent, not only to 

forgetting sorts and operations not present in the implemented type SP, but also the objects o f A  + which 

are not implementation of objects of SP (they are not the evaluation of any Z- ground term). The objects of 

s A+ not in s A are usually called "junk". 

3) Every model A + of SP + has to implement some model B of SP, but not necessarily the opposite 

direction. So, the definition is liberal enough to enable a reasonable choice of SP + in contrast to other 

implementation notions, e.g. [EKMP 82], where to implement a concrete model of SP is required. 

4) The strong homomorphism from A to B induces a congruence on A whose meaning is the identification of 

objects in A which implement the same object in B. 

3. Process Specifications 

In this section we first define the syntax of a process in normal form and then its associated semantics. Two 

examples of process specifications illustrate the definitions. 

Definition 1 (syntax) 

Let A be an alphabet representing the set of  observable events of a process. A process specification in 

normal  form is a pair SPP = (M, SP) where: 

a) M is a family of  non empty subsets o f  A, M ff, P f  (A), called the menu. It is required for all the unitary sets 

to be pairwise disjoint. To avoid an explicit mention to A in SPP, it is assumed A = k..)me M m. 

b) SP is a conservative PAT specification whose primitive type consists of  the usual boolean specification 

and of  that o f  the sort event. The carrier for that sort must be isomorphic to A in all Be GEN(SP). There 

exists in S P a  distinguished sort trace with, at least, the following operation symbols: 

<> : --> trace { empty trace } 

^ : trace event ---> trace { register an event into a trace } 

G m : trace ---> bool , m e M { boolean guard for option m of  the menu } 

The following axioms, which specify the definedness predicate on traces, will be assumed to he included 

in SP although not explictly written: 

V s:trace 

def (<>) 

{ def (s) ^ Gm(s) ~ / ~ e ~  m def (s^e) }me M * 

The sets of  the menu M, are supposed to be in deterministic choice and, inside each set, the events are in 

nondeterministic choice. Assuming M = {m 1 ..... mp},we will usually write a specification SPP with the 

following syntax: 
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spec name 

Signa~Lre and equations of SP with the usual syntax 

process S (s) A 
[ O1(s)~ [q e 

ee m 1 

D 
a %(,)~ rl e 

eemp 
] 

end spee 

T h e  b o o l e a n  g u a r d s  G i n ( s )  d e t e r m i n e ,  f o r  e a c h  t r a c e  s,  the  p o s s i b l e  a n d / o r  m a n d a t o r y  e v e n t s  f o r  the  p r o c e s s  

a f t e r  t ha t  t r ace .  T h e  a x i o m s  fo r  the  defpredicate es t ab l i shes  tha t  o n l y  p o s s i b l e  t r ace s  a re  de f ined .  

Examole ]: a mutual  exclusion system 

W e  w i s h  to  s p e c i f y  a s y s t e m  o f  t w o  " u s e r s " ,  e a c h  o n e  c o n s i s t i n g  o f  a n  in f in i t e  l o o p  o f  the  s e q u e n c e  o i ~ c r  i 

f r  i ~ . . . .  i = 1 , 2 ,  w h e r e  e v e n t s  0 i m e a n  " o t h e r  t h i n g s " ,  c r  i m e a n  " b e g i n i n g  o f  c r i t i c a l  r e g i o n " ,  a n d  fr i ,  " e n d  o f  

c r i t i ca l  r e g i o n " .  B e f o r e  oi ,  a u s e r  is  in s t a te  t ,  f o r  " t h i n k i n g " ;  b e f o r e  c r  i i t  is  in  s t a t e  h,  f o r  " h u n g r y " ;  a n d  b e t w e e n  

c r  i a n d  f r  i, t he  s t a te  is  e,  f o r  " e a t i n g " .  T h e  s p e c i f i c a t i o n  m u s t  f o r b i d  a s ta te  in  w h i c h  b o t h  u s e r s  a r e  s i m u l t a n e o u s l y  

ea t i ng .  A l s o ,  i f  b o t h  u s e r s  a re  h u n g r y ,  i s  n o t  d e t e r m i n e d  w h i c h  o n e  wi l l  s u c c e e d  in  e n t e r i n g  the  c r i t i ca l  r eg ion .  T h e  

s p e c i f i c a t i o n  o f  th i s  s y s t e m  is a s  f o l l o w s :  

spec mutual_exclusion 
sor ts  trace, event, state 
ops < >  : --~ t race  

oi~ cri, fr i : ~ event {i = 1,2} 
: U'ace e v e n t  --~ t race  

s t ?  : trace ~ state {i = 1,2} 
_eq _ : state state ~ bool 
t, h, e : ~ state- 
A i ,  E i : trace ~ bool {i = 1,2} 
B, C, D : trace --> bool 

eqns  V s:tzace 
st i (<>) = t {i = 1,2} 
s • (s"o.) = if eq(ij)  then h else s .  (s) {i,j = 1,2} ti ^ j  , t i 
st i (s el-i) = If eq(i,j) then e else st i (s) {i,j = 1,2} 
st i (s^fri') = If eq(ij)  t hen  t else st i (s) {i,j = 1,2} 
A i (s) =" st i (s) eq t {i = 1,2} 
B (s) = Stl(S) eq h ^ st 2 (s) eq t 
C (s) = st2(s) eq h A st 1 (S) eq t 
D (s) = Stl(S) eq h A st 2 (S) eq h 
E i (s) = st i (s) eq e {i = 1,2} 
... equations for"eq". . .  

process  S (s) A [ 
i[] A i (s) ~ o i 
[] B (s) ~ cr 1 
D C (s) ~ cr 2 
[] D (s) ~ cr 1 [~ cr 2 
i[] E i (s) ~ fr i 

] 
end spec 

N o w ,  w e  g i v e  the  s e m a n t i c s  o f  th i s  c o n s t r u c t i o n  in  t w o  s teps :  f i rs t  w e  i n t e r p r e t  the  S P  p a r t  o f  S P P  in  t e r m s  o f  

P A T  m o d e l s .  T h e n ,  w e  d e f i n e  the  s e m a n t i c s  o f  the  p r o c e s s  p a r t  in t e r m s  o f  t he  T C S P  m o d e l .  T h e r e  a re  a t  leas t  

t w o  r e a s o n s  f o r  a d o p t i n g  pa r t i a l  a l g e b r a s  as  m o d e l s  o f  SP:  

A 
a)  n o t  e v e r y  t r a c e  g e n e r a t e d  b y  the  c o n s t r u c t o r  o p e r a t i o n s  < >  a n d  _ ,  i s  a p o s s i b l e  o r  v a l i d  p r o c e s s  t race .  

b )  t he  o p e r a t i o n s  w h i c h  d e t e r m i n e  the  p o s s i b l e  e v e n t s  a f t e r  a g i v e n  t r a c e  s a re  the  b o o l e a n  c o n s u l t o r s  o f  the  

s o r t  trace a p p e a r i n g  in  g u a r d s .  T h e r e  e x i s t  m a n y  a d m i s s i b l e  m o d e l s  f o r  t he  c a r r i e r  o f  so r t  trace w i t h  
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identical behaviour with respect to those consultor operations. 

Fact (a) suggests considering the constructor operation _A_ as partially defined so that only valid traces are 

constructed. The defpredicate of partial algebras, excludes invalid traces from all the models. Fact (b) suggests 

adopting a polymorphic semantics for SP, as distinct models could present the same behaviour with respect to the 

boolean consultors. We will define the semantics of  SPP in terms of the SP initial model and then generalize the 

definition for any model by proving that the denoted process is independent of the choice. 

Definition 2 (semantics) 

Let SPP = (M, SP) with M = {m 1 ..... mp}be a process specification in normal form. Its semantics is given 

by: 

a) The semantics of SP is GEN(SP). Let I be the initial model and trace I be the carrier in I for the sort trace. 

b) The semantics of  SPP is the component X<> of the unique least fix point of  the following system of 

mutually recursive equations : 

X=F(X) 

where X = <Xs>s~ trace I is a family of TCSP process variables and F = < Fs>s~ trace I is a family of 

functions each one taking as argument a traceI-indexed family of  processes, and giving a process as a 

result. For each s~ trace I, the function F s is defined by: 

F s ( X ) =  [] ( [ ]  ( e - - , X s ^ e ) )  

i~J s e e r n  i 

where Js = { i ~ N l i e {1 ..... p} ^ Gi I (s) = true } • 

Js is the set of indexes of  the menu M such that the guards {Gi I (s) }i E Js evaluate to true in I. If Js = ~ ,  

the above expression means the blocked process ~ .  If an m i is unitary, then the [ ]  operator disappears of the 

corresponding branch. [] is the deterministic choice, V] is the nondeterministic choice, and --4 is the prefix, all of 

them TCSP operators. 

The intuition behind this normal form definition is that, when a process begins to "execute", its history of 

events is the empty trace <>. Then, at each "iteration", it offers a choice of sets of events based on its whole past 

history s. The event finally done e, is a combination of external and internal decissions and the rest of the process 

is a new iteration of the normal form where the history has been modified to register the event e. 

Let us note that it is not possible to represent in this way a divergent process, as all the variables of the 

equation system are prefixed by one event. Comparing this with other TCSP process normal forms, [HoJi 85, 

Nico 85], there the order of choices is, first, a nondeterministic one between sets of events and then a deterministic 

one between the events of each set. The family of sets of the first choice must be saturated. Each process 

expressed in that form can be translated into our form by applying the distributive laws of choice operators at the 

price, may be, of some redundancy. We give a small example to show the translation process: 

((a---~A) [] (b-4B)) ['1 (c---~C) = ((a--~A) I"l (c-~C)) [] ((b--~B) [7 (c-¢C)) 

It has been shown [Nico 85], that the four operators [ ]  , [] ,--~ y stop. plus recursion, are enough to 

represent any non divergent process. So, the strategy with derived operators, such as I[ and\ ,  will be to try to 

eliminate them from the process specification. 

Prooosition 1 

A process specification SPP = (M, SP) defines a unique TCSP process independendy of  the model chosen for 

SP. 



334 

Proqf 

Let A and A' be in GEN(SP) and be s E TZ, trace" If GEN(SP) 1# def(s) then, s A arid s A' are both 

undefined. In both cases the process defined by SPP is ~ti/12, as none guard evaluates to true. 

If s is defined, let b[y] ~ Ty~(X) be a boolean context with y a variable in Xtrac e. All the boolean reducts of 

the models of SP are isomorphic to {true, false } as this is the unique finitely generated model of boot satisfying 

true #false. By the partial completeness of SP w.r.t, the sort boot , either SP I- b[s] = true, or SP I- b[s] =false, 

or ~(SP i- clef(his])) holds, so b[s] A = true A if and only if b[s] A' = true A'. Therefore, the set of open guards, 

and so, the set of events e admissible for X s are identical in both models. The continuation expressions Xs^ e 

have syntactically identical subindices, so the argument on X s can be extended to any variable of the equation 

system and then to the least fix point. Hence, the process associated to every term s, in particular to s = <>, is 

independent of the models of SP. ¢ 

This proposition allows us to generalize definition 2 and to take any model B e GEN(SP) as the set of 

subindices of the equation system. 

Example 2: a boolean semaphore 

We specify a semaphore for two users, with two sets of events {Pi ,vi }i=1,2, one for synchronizing with 

each user. 

spec semaphore 
sorts trace, event 
OpS <> 

Pi' vi 
free : trace 

eqns V s:trace 
free (<>) = true 
free (s~p i ) = false 
free (s^v i ) = true 

process SEM (s) A [ 
i[] free (s) ~ Pi 
i[] --, free(s) ~ v i 

] 
end spee 

--~ trace 
--~ event 

bool 

{i = 1,2} 

{i = 1,2} 
{i = 1,2} 

The SP semantics is the class GEN(SP). The initial model trace I wilt contain in the carrier for trace all the 

valid traces (in the usual sense of a trace as a sequence of events) and all of them will be different: 

trace I = {<>,< pi >, <PiVj>, <PiVjPk > .... } 

The final model trace F will have the least number of histories which are distinguishable by the boolean 

consuitors. In this case, it is only necessary to keep two valid histories: the one which has an even number of 

events and the one which has an odd number of them. 

trace F= {even, odd } 

freeF(even) = true F even ~ p = odd 

freeF(odd) = false F odd ,,,F p = undefined 

even ^F v = undefined 

odd .,xF v = even 

By proposition 1, both the initial and the final model or any other model in GEN(SP), define the same TCSP 

process semaphore. # 

4. P r o o f  o f  p r o p e r t i e s  o f  p a r a l l e l  p r o c e s s e s  

Many properties of a TCSP process P are provable from the set S of its possible traces. In particular, the so 

called safety properties [OIHo 86] expressing that P is not a!lowed to do any trace which do not belong to S. 
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These kind of  properties can be proved in the partial algebra framework, using the deductive power of algebraic 

specification, as SP characterizes the set of  a/l valid traces of  the process. Proving a property is equivalent to 

proving theorems of the the form t 1 = t2, or clef (t), which have to be satisfied by all the models of SP. 

In the mutual exclusion system of  example 1 ,  an operation expressing this property can be defined in the 

following way: 

ops mutex : trace --~ bool 

e q n s  V s : t r a c e  

mutex(s) = -1( Stl(S ) eq e ^ st2(s ) eq e ) 

The theorem needed in order to assure that the process satisfies the property is: GEN(SP) [=mutex(s) = true, 

which is an inductive theorem. 

Even, some liveness properties [OIHo 86] are provable by noting that, in the process specification we have, 

not only the "past" of  the process (its possible traces) but also its "future" in the form of  possible events after every 

trace s. The set of  these events is completely determined by the set of  open guards Gm(s ). 

In particular, deadlock freedom can be expressed as the process capability for participating in some event 

after every possible trace s. I f M  ffi { m 1 ... . .  mp}, this amounts to prove the following algebraic theorem : 

GEN(SP) 1= Gl(S) v ...vGp(s) = true 

This property can be studied, either at the subsystem specification level, or at the net, before hiding, level. If 

the net does not diverge, both proofs are equivalent [RoDa 86], and the fLrst will always be simpler. More complex 

liveness properties can also be expressed. For instance, that under condition B(s) some subset of  the events will 

always be offered. 

Algebraic deductive methods will also be useful in section 6 where a certain number of  transformation rules 

for processes are given. Most of  them need to be based on algebraic theorems satisfiable by SP. That means that 

one part of  the algebraic manipulation of TCSP processes can be carried out in the abstract data type framework 

and its associated deductive methods. 

A specially interesting property is to establish under what conditions two process specifications SPP1 = (M, 

SP1), SPP2 = (M, SP2), with identical menu structure, define the same TCSP process. This is equivalent to 

compare SP1 and SP2 in order to determine if they define the same models or, more generally, if either GEN(SP2) 

GEN(SP1) or GEN(SP1) ~ GEN(SP2) holds. We assume implicitly that SP1 and SP2 have the same 

signature. To illustrate this, let us consider the following example. 

Examole 3: another mutual exclusion system 

We specify a second mutual exclusion system based on the idea that the minimun information that the system 

must  keep in order to accept or refuse an event, is a pair of states (t, h or e), one for each user. The operation 

suc(s) gives the state next to s in circular order (i.e. t, h, e, t,...). 

s p e e  mutual exclusion 2 
sorts trace, event, state 
ops [_,_] : state state ~ trace 

< >  : ,-.,x t r a c e  

oi~ cr i, fr i : ~ event {i = t ,2} 
: t r a c e  e v e n t  ---> t r a c e  

st i : trace --~ state {i = 1,2} 
e q  _ : state state --~ bool 
s u c  ; s t a t e  --~ s t a t e  

t, h, e : -~ state 
Ai, E i : trace --> bool {i = 1,2]- 
B, C, D : trace --~ bool 

e q n s  V Sl,  s 2 : state, V s:trace 
<>  = [t, t] 

[s 1, s 2]  ^ o  I = [s I ,  s- 2] ^ e r  t = [s 1, s 2] ^ f r  t = [sue(s1),  s 2] 
[s I , s 2] ^ 0 2 = [s 1 , s 2] ^ er 2 = [s 1, s 2] ^ fr 2 = [s 1, sue(s2)] 
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st 1 ( Is 1, ~1 ) = s 1 
st 2 ( [s 1, s2l ) = s 2 
A i (s) = st i (s) eq t 
B (s) = stl(S ) eq h ^ st 2 (s) eq t 
C (s) = st2(s) eq h ^ st 1 (s) eq t 
D (s) = stl(S) eq h A st 2 (S) eq h 
E i (s) = st i (s) eq e 
... equations for"eq" and "sue"... 

process  S (s) A [ 
i[] A i (s) =* o i 
[1 B (s) =* cr 1 
[] C (s) ~ cr 2 
[] D (s) =¢. cr 1 [7 cr 2 
ill E i (s) --* fr i 

] 
end spec 

{i = 1,2i 

{i = 1,2} 

The approach that seems better suited to compare SP1 and SP2 in order to know whether they denote or not 

the same process, consists of defining an implementa t ion  re la t ion  between them. The specification with less 

models implements the one with more models, as the intuition behind implementation notions uses to be. The 

algebraic implementation concept surveyed in section 2 formalizes this idea by establishing that finitely generated 

Z-subalgebras A of  models A + of  SP +, have to be homomorphic to models B of  SP. Then, the boolean E-terms 

will be evaluated in the same way, both in A and in B. 

Proposition 2 

Let SPP = (M, SP) and SPP + = (M +, SP +) two process specifications in normal form. I f M  = M ÷ and SP + 

implements SP, then SPP and SPP + denotes the same TCSP process. 

Proof 

Follows from the above considerations and the same arguments than those of  the proposition i proof. • 

The algebraic implementation concept will also be useful in section 6 to formalize the idea of refining a TCSP 

process into a net of parallel processes. There will appear "junk" values in the implementing type corresponding to 

net states not reachable through traces of  visibles events. Also it may  happen that several net states be "confused" 

in the same visible state. 

o 

It seems obvious that this process is the same as that of example 1, even though the set of  admissible models 

for the sort trace is much more restrictive in SP2 than in SP1. Forgetting operations [_,_] and suc in SP2 to get 

identical signatures, we have in this example GEN(SP2) c GEN(SP1). In fact, GEN(SP2) contains only one 

model, which coincides with the final model of  SP1, and whose expression in the form of  a transition system can 

de depicted as follows: 
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5. Process composition 

To refine a process into a net of processes, we first specify every component, by writing their normal form 

expressed in terms of its own trace variables. Then, we must combine these normal forms with the parallel 

operator. For simplicity, we choose the original one II. We then require the net to be triple-disjoint [RoDa 86] i.e. 

every event is in the alphabet of  at most  two processes. Under these assumptions, the resulting process is 

deterministic if and only if every component is so. We will assume this case. 

Definition 3 

Let SPP1 = (M1, SP1) and SPP2 = ( M2, SP2 ) be the specifications of two deterministic processes i.e. M1 

and M2 are formed exclusively by unitary disjoint sets. Let, respectively A1, A2 be the alphabets of  the processes 

and sl ,  s2 the distinguished sorts of  both specifications. We define the normal form SPP = (M, SP ) parallel  

composition of SPP1 and SPP2 in the following way: 

• the alphabet of  SPP is A = A1 u A2 

• SP is the uni6n of SP1 and SP2, including once the primitive type, and renaming the operations of SP1 

and SP2 if necessary. Besides that, a new sort s, that will be the distinguished sort of  SP, will be 

included, together with the following operations and axioms: 

• a tupling operation < _ ,  _> : s l  s2 ~ s, which define the traces of  the net, as tuples of  traces of the 

components, with the following axioms: 

< x , y > % = < x % , y >  , i f e e  A l a n d e ~  A2 

< x , y > % = < x , y ~ >  , i f e ~  A l a n d e ~  A2 

< x , y > A e = < x ' X e ,  yAe> , i f e e  A1 a n d e e  A2 

the menu of SPP is M = M1 o M 2  

• for each guard G m l e  SP1 with ml  = {el]. and el ~ A2, a guard operation G m : s---)bool is introduced, 

where m = {el]. e M, with axiom: 

Gm( < x, y > ) = Gml  (x) 

• simetrical reasoning for guards of  SP2 

• for each event {e}~ M1 c3 M2 with guards G m l e  SP1 and Gm2 e SP2, a guard operation G m : s---)bool 

is introduced, where m = {e} e M, with axiom: 

Gin( < x, y > ) = Gml  (x) ^ Gm2 (y) 

• the definedness predicate for the new distinguished sort s, is specified with the implicit axioms mentioned 

in definition 1, which are assumed to be part of  the normal form. (Note in this respect that, not every tuple 

< x, y > of defined individual traces, is a defined trace of the net). • 

Proposition 3 

The process denoted by SPP, parallel composition of SPP1 and SPP2, is the TCSP process SPP1 [I SPP2. 

Proof 

It follows inmediatly from the TCSP laws for the II operator,  in the presence of  deterministic components. 

The common events need the cooperation of both processes so this explain the A composition of the individual 

guards. The non common events need only to take into account the state of one of the processes. • 

Examvle 4: A net of  two users and a semaphore 

We specify a user process with synchronization events {Pi, vi}and compose in parallel two of  them with the 

boolean semaphore of example 2. For brevity, we present only the process part of the resulting normal form. The 

state of  a user is now a natural number from 1 to 5. Operation --- is equality on naturals. 
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{i = 1,2} spee user i 
sorts trace, event 
ops < >  

°i~ Pi, eri , fr i ,v i : 
: trace event 

s t  i -  - t r a ce  

Ai,Bi, Ci,Di, E i : trace 
eqns V s:trace, V e:event 

st i (<>) = 1 
st i (s%) = ( st i (s) rood 5 ) + 1 
A i(s)= st i(s)-=t 
B i (s) = st i (s) ~- 2 
C i (s) = st i (s) -- 3 
D i (s) = st i (s) ~- 4 

E i (s) = st i (s) ~ 5 
process U i (s) A [ 

[] A i (s) ~ o i 
[] B i (s) =¢' Pi 
D C i (s) ~ cr i 
U O i (s) ~ fr i 
[] E i (s) ~ v i 

] 
end spec 

spec n e t  

process R (s) A [ 
i[] st i (s) -= 1 ~ o i 
i[] st i (s) --- 2 ^ free (s) ~ Pi 
i[] st i (s) -= 3 ~ er i 
i[] st i (s) --- 4 ~ fr i 
i[] st i (s) --- 5 ^ --,free (s) ~ v i 

] 
end spec 

---~ t race  

---) e v e n t  
--)  t race  

nat 
--) bool 

The next step to compare the net behaviour with the system specification, is to hide all the net internal events. 

Some problems appearing in attempting to reduce the resulting process to normal form are the following: 

• the alphabet of  the process is reduced, but  the the set of  traces must  be kept unmodified. If not, the 

definition of  the guard operations will no longer be valid. This implies an inconsistency between the 

alphabet that comes from the menu, and the carrier of sort even t  from the models of  SP. 

• after hiding, there will be in the process specification branches with no events i.e. it will no longer be in 

normal form. This specification would correspond to a system of  recursive equations with non guarded 

variables. Non divergence is not guaranteed as it could be expected. 

• if, in a deterministic selection, some of  the events but  not all, are hidden, fol lowing TCSP laws, the 

nondeterministic operator ['7 must  appear to take into account the possibility that the process chooses to do 

an internal event. To make appear these terms, we need to know explicitly the conditions i.e. the guards, 

under which these "mixed" selections will take place. 

The above problems imply, among other things, that it will not always be possible to transform a process after 

hiding into a normal form. In many cases, the difficulty to do that wilt probably indicate that the net diverges. In 

the next section, we give a method that obviates, when it is possible, all the above problems and arrives 

successfully to a process in normal form. 

6. P r o c e s s  r e f i n e m e n t  

The main activity in the development of  parallel programs consists of  implementing a process S, which 

represents a subsystem specification, by  a net R=R 1 [1 .-- IIRn of  synchronized parallel processes. This net will be 

called a re f inemen t  of S. Verifying a refinement consists of proving that the net behaviour is contained in the range 
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of  non determinism of  S, taking only into account the visible events i.e. those which are not internal 

synchronization events of  the net (let us call I these last events). In this work, we are assuming that S exactly 

specifies the desired degree of  non determinism. Therefore, verifying a refinement, consists of  proving S = R \ I. 

Moreover, we are studying the case that R is deterministic. 

The strategy followed here is to try to reduce R \ I to its normal form (M', SP'), in terms of a data type SP' 

which def'mes the possible traces of  the net after hiding and then to compare it with the normal form of S = (M, 

SP), in terms of  its own data type SP which defines the traces of the specification. If the same syntactic structure is 

obtained (more precisely, if M = M'  ) and it is proved that SP' is a correct implementation of  SP then, by 

proposition 3, the denoted TCSP processes will be the same. 

Problems arise when applying the hiding operator \, as we have seen in section 5. Let us remind some TCSP 

laws [Hoa 85] explaining how the operator \ interacts with the choice operators [] and [q : 

T1) ((a ---> P) [] Q) \ {a} = (P \ a) Fq ((P [] Q) \ a) 

T2) ((a --* P) [] (b ---> Q)) \ {a, b} = (P \ {a, b}) I7 (Q \ {a, b}) 

T3) (P[7 Q) \ {a} = (P \ {a})[7 (Q \ {a}) 

Let us consider the following deterministic process in normal form, representing the net R, where I={h 1 ..... 

hn} are the events to be hidden: 

R(s) A [ Bl(S) =-* ¢1 

[I Bn( s ) - -*e  n 
0 BHI(s) ~ h  1 

I iFIm(s)~h m ] 

The attainment of  the normal form of R(s) \ {h 1 ..... Ira} will imply the following phases: 

a) guard folding 

b) application of the \ operator laws 

c) unfolding of the non guarded expressions 

d) reduction to normal form 

e) implementation relation 

In the appendix, the net of example 4, formed by two "users" and a boolean semaphore, is reduced to normal 

form and shown to be the same process as the mutual exclusion system specified in example 1. All the 

transformation steps explained here are followed there, so the reader may wish to consult the appendix while 

reading what follows. 

a) guard folding 
The following laws, easily derived from the normal form definition, allow to explicitly introduce the [] 

operator in branches, to eliminate it if it is explicit, or to group redundant branches: 

L1) [ ... [ ... 
D BI=*¢ l 0 Bl~e 1 
[] B2~c2  n B 2 ~ e  2 
• .. n B1 ̂  B2 =----* el [] e. 2 

n )  i'L I 1 
[I B ~ C l l  e 2 [1 B ~e 1 
--. O B ~ c  2 

L3) i'L I i L I 
D B ~ o  I 0 B v B' -'--~e 1 
D B ' ~ e  I ... ] 
- . .  l 
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The first transformation of process R(s) will be the grouping of guards by applying law L1, in such a way 

that the events to be hidden appear in explicit determinisc choice with every external event and with the other 

internal events. The resulting process will have the form : 

R(s) A [ B 1 ~ e  1 
I] B 1AH 1 =-m.e l[] h 1 

0 B i ^ H m =~ e I [] h m 

[~ Bn^H m ~ % [ l h m  
H l ~ h  1 

I] H1AH 2 =:~hl[] h 2 

I] Hm_lAHm~hm_ 1 [] h m ] 

Let us note that the original branches B i ~ e i and H i ~ h i are still present, in order to consider the states in 

which e i and h i are offered without offering, at the same time, other internal events. The number of resulting 

branches is proportional to max (m.n, m2). Usually, most of them can be eliminated since, from the specification 

SP, the corresponding guards am provable to be false. 

b) application of the \ operator laws 

Next, the imernal events are hidden by the application of the \ operator TCSP laws T1 to T3. They can be 

reliably applied as it is explicitly shown, which events the hidden ones are in deterministic choice with. The 

nondeterminisric operator [-7 will probably appear in this step. We need to show explicitly the process expressions 

which are continuation of each hidden event. These expressions will not be prefixed by any event (they will be, in 

TCSP terminology, non guarded). So, the risk for divergence shows up. Let us call RH(s) the net process R(s) 

after hiding. 

c) unfoMing o f  the non guarded expressions 

To continue towards the normal form, we must unfold the non guarded process expressions, substituting 

them by their definitions. These consist of applying the process definition RH(s), to traces of the form sZh, where 

h is a hidden event. This is done under the certainty of guard Gin(s) that "protects" the occurrence of event h.. 

Under assumption Gm(s), it will be possible to simplify the definitions by proving many guards of the form G m 

(s^h) to be false. We continue this unfolding scheme until all process definitions contain no unguarded 

expressions. Sometimes, we will need induction on the structure of s to show that the number of unfoldings is 

finite. The resulting process is obtained by combining the original process with the definitions of all the unfolded 

expressions to get a single global definition with no unguarded expressions. This is achieved by creating guards 

G' m that are conjunctions of  guards from different nested definitions. A number of simplifications are possible in 

this step, which can be done by using deduction in SP'. 

d) reduction to normal form 

The process obtained in (c) is not in normal form yet, due to two reasons: (1) operator [] is explicit in some 

branches, and (2) several branches offer the same single event (unitary sets in M' would not be disjoint). Problem 

(1) can be eliminated by applying law L2 i.e. by unfolding branches with explicit operator []. Problem (2) could 

apparently be eliminated by using law L3, but we find here another problem: continuation expressions after the 

same visible event e, will not usually be the same in all the branches which offer e. The hidden events, if any, 

registered previously to the visible one, could be different. The situation can be depicted in this way: 

ijB 1 (s) ~ e-~Xs~l^...^~ e 
[] B2(s) ~ e'-oXs^jl^...^jm % 
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where h 1 ..... hn, J 1 ..... Jm are hidden events. The problem can be solved by defining in SP' a new operation & 

, meaning "register in s a visible event", with the following axioms: 

k/s: trace, e: event Bl(S ) = true --~ s&e = S^hl^...^hn"e 
B2(s)=true =~ s&e= s"Jl^...ajm% 

then, in the process definition, we substitute the old registering operation _A._, by the new one & , and apply law 

L3, obtaining: 

[] BI (s) v B2 (s) =~ e --> Xs& e 

By repeatedly applying these rules we get finally the normal form for RH(s) = (M' ,  SP+), where SP + is the 

original net PAT SP', enriched with the new operation _&_, and with as many boolean consultors, as subsets are 

in M'.  The definition of  each consultor G m, is just an axiom stating that it is identical to the guard of the 

corresponding branch. This guard will be a combination, through the boolean operators ^ and v, of  the guards of 

R (the net before hiding). 

e) implementation relation 

Now, we have to show that the specification process S = (M, SP) and the net process after hiding RH = (M', 

SP+), both in normal form, are in fact the same. We consider the & operation of SP + to have the same name as 

the _ ~  registering operation of SP. We make use of the result of section 4 and state that, S = RH if: 

1) M=M'  and, 

2) SP + implements SP 

Let us note that, if the first condition is not satisfied, the second might have even not sense, as Z _ Z + could 

not be true, due to the different number of  consultors in both specifications. Let us also note that, if  we take a 

model of  SP +, the subalgebra generated by <> and & will not contain, in general, all the values of  the model 

(those generated by <> and _^ , corresponding to valid traces of  the net before hiding). The unreachable values 

are the "junk" of the implementation. It could also be possible that different reachable values in that model, are 

confused in the corresponding model of  SP. In the appendix example the final model of  the implementing 

specification is depicted and the "junk" and "confusion" phenomena are illustrated. 

7. Conclusions 

A normal form for the definition of non divergent TCSP processes has been proposed, around the following 

ideas: 

• a process is defined by a system of mutually recursive equations with some syntactical restrictions. The set 

of  subindices is the most general one: the process traces 

• the set of  traces is specified by means of partial abstract types and several non isomorphic model are 

possible for it. The process denoted is proved to be independent of  the model. 

Deductive methods for abstract data types can be used, to proof any security property and some liveness 

properties of  a process, including deadlock freedom. Also, an important part of  a refinement correcness proving 

(e.g. that SP + implements SP, and the simplifications during the reduction of R\I to normal form) can be entirely 

done in the abstract data type framework. 

A formal framework has been proposed in which the refinement of  a process into a net can be understood as 

an implementation relation between two abstract data types: the internal traces are an implementation of the external 

ones. We believe that this idea clarifies the effect of  the hide operator on a net of  parallel processes. 
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Based on this framework, a technique for verifying the correctness of a refinement has been developed an 

illustrated by an example. Up to this moment, it has been applied to simple examples but the hope exists that it can 

be used in more sophisticated ones, in particular, those with a variable number of processes. Also, large pans of 

the proofs are expected to be supported by automatic tools. 
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Appendix: Reduction to normal form of the net of  example 4, ~fter hiding the internal events 

We reproduce the process part of the normal form of the net obtained in examp/e 4: 

R(s) A [ i[] B i =~ o i B i = sti(s) --- 1 
i[] C i ~ e r  i Ci = sti(s)-~ 3 
i[] D i = f r  i Di = sti(s) --- 4 
i[] Hi ~ Pi Hi = sti(s) ~- 2 A free(s) 
i[] I i ---~ V i ] I i = s~(s) ---- 5 A ~free(s) 

where { Pi,Vi }i=1,2 are the events to be hidden. The following theorems can be deduced from the specification SP associated with R(s): 

i , j= l ,  2 : SPI- B i ^ H i = f a l s e ,  B iAI i= fa l s e ,  C i ^ H : = f a l s e ,  C:Al . .=fa l se  
D i ^ H j = f a l s e  , D i A I  j false, Hi^F~j=fa l se  ' J = I 1 ^ 12 = false 

a) Guard folding: The resulting process after elimlnating the branches with false guards is: 

R(s) A[  i[] B i ~ o  i 
l] B 1AH 2 =~o 1[] P2 
l] B I ^ I  2 ~ o 1 [ ]  v 2 
D B 2 A H I  ~ ° 2 n  P l  
D B 2 ^ I  1 ~ o 2 [ ]  v I 
i[] C i ~ cr i 
i[] D i ~ f r  i 
i[] H i ~ Pi 

H I A H 2  ~ P l  [] P2 
i[] I i ~ v i ] 

b)ADolication ofo_verator \: After applying the hiding of {Pi' vi}i= 1,2, the resulting process will be: 

RH(s) A [ i[] B i ~ o i 
[l B I ^ H  2 ~ R P 2 [ ~  (o1[] RP2) 
I] B1A 12 ~ R V 2 N  (Ol[] RV 2) 
I] B 2 A H  1 ~ RP 117 (02[] RP1) 
I] B2A I 1 ~ RVI [q  (02[] RV I) 
i[] C i ~ er i 
i[] D i =¢,fr i 
i[] H i =----*. RP i 
[] H 1 A H  2 =*RP 1[] RP 2 
i[] I i ---~ RV i ] 

where RP i = RS(sApi) and RV i = RH(s^vi). 

c) UnfoldinQ of  the non euarded exoressio~x¢: To do the unfolding of the non guarded expressions we will make use of theorems known 
to be true in SP'. So, we get the following definitions: 

B2( s )AHl (S ) f t rue  impliesRH(sApl)A [ t r u e ~ o  2 
[] t r u e ~ c r  1 ] = [ t r u e ~ o 2 [ ] e r  1 ] 

because B2(s) AHI(S) =true implies Bl(SAPl)=false ^ 
B2(SAPl ) = B2(s ) = true ^ 
Hl(S^Pl) = false 
...etc... 

the rest of the unfoldings can be developed in the same way, obtaining: 

Hl(S ) = true implies RH(sApl) A [ B2(SApl ) ~ 02 
true :=~ er I ] 

Hl (S)AH2(s )= t rue  implies RH(SAPl ) ,5 [ I r u e = , c r l ]  
B2(s) A II(S ) = true implies RI-I(S^Vl) A [ true ~ o 1 

1] t r u e ~ o  2 ] = [ t r u e ~ o l [ ] O  2 ] 
I i (s  ) = true implies RH(s^vl )  A [ t rue=*o 1 

0 B 2 (sAvl) ~ 02 
B 1 (SaVl) A H2(SAVl) ~ RH(SAVlAp2 ) [7 (O 1 [] RH(S^vlAp2 )) 

D H2(s^v I ) ~ RH(S^Vl^P 2) ] 

where SP I- B2(sAPl ) = B2(SAVl ) = B2(s) ^ B I(SAVl ) = trim A H 2 (SAVl) = 
H2(S ) = true ^ ll(S ) = Irue implies RH(s^vlTxP2 ) A [ true ~ o 1 H2(s) 

fl Irue ~ cr 2 
] = [ tree ~ O l  ~ cr2 ] 

The developments of RH(s^P2 ) and RH(sAv2 ) are simetrical to these. Next, we substitute the definitions of the unfolded expressions in 
the original definition of RH(s) and, after some simplifications, we get: 
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RH(s) ~ [ i [] B i ~ o i 
[] BI ^ H2 ~ ° l  [] or2 {P2} 
[] B 1 A I  2 =¢,o 1 [1o2 {v 2} 
[] B2 ^ H I  ~ 02 [] crl  {Pl} 

B 2 ^ I  1 9 ° 1  [ ] °2  {Vl} 
i [] C i ~ cr i 
i [] D i ~ fr i 
i [] H i ~ cr i {pi } 
[] H 1 ^ B 2 ~ 02 {Pl } 
[ 1 H 2 A B  1 ~ o  1 {P2}~ 
[ ]H I ^ H  2 = ~ c r  1V] cr 2 { P l I I P 2  } 
i [] I i ~ o i {v i} 
[ ] I I ^ B  2 :=~o 2 {v 1} 
0 11 ^ H 2 ~ 01 [] cr2 {vl^P2} 
[ ] I 2 ^ B  1 ~ o  1 {v 2} 
[ ] I 2 ^ H  1 ~ o 2 [ ] c r  1 ] {v2^P 1} 

In this expression of RH all the branches contain guarded expressions. We have recorded in brackets the events hidden at each branch. 

d) Reduction to normal form: Applying now the rules given in step (d) of  section 6, we get: 

RH(s) A [  B1 v (B1 ^ H2) v (B1 ^ I2) v (B2 ^ I1) v I1 v (I1 ^ H2) :----a o 1 
[] B 2 v  (B2 A H1) v (B2 A I1) V ( B 1 A  I2) V 12 V (I2 ^ H1 ) =¢'o 2 
[] C 1 v (B 2 ^ HI)  v H I v (I 2 ^ HI)  ~ cr 1 
[] C 2 v (B I A H2) v H 2 v (I 1 ̂  H2) ~ cr 2 
i [] D i ~ fr i 
[ ]H  I ^ H  2 ~ c r  1 R  cr 2 ] 

by simplifying the guards we obtain the final process and the definition of the & operation: 

RH(s) A [ B 1 v I 1 =* o 1 
[] B 2 v 12 ~ 02 
[ ] C I v H  1 ~ c r  1 
[] C 2 v H 2 ~ cr 2 
[ ] H 1 A H  2 ~ c r l [ - ]  cr 2 
i[] D i ~ fr i ] 

I i(s  ) A H2(S ) = true ~ s&o 1 = S^vl^P2^O 1 
ll(S ) ^ ~ H2(s ) = true :----a s&o 1 = SAVl^O 1 
BI(S ) ^ H2(s ) = true =~ s&o 1 = s^P2^O 1 
BI(S ) ^ I2(s ) = true =:¢. s&o I = s^v2^o 1 
Bl(S) ^ 4  H2(s) A~ I2(S ) = t r u e ~  S&O 1 = SAO 1 
HI(S ) ^ I2(s ) = true ~ s&cr I = s^v2"PlACrl 
Hi(s ) A ~ I2(S) = true ~ s&cr 1 = s"Pl 'c r  1 
CI(S ) ^ BI(S ) = true ~ s&cr 1 = sAcrl 
Dl(S ) = true ~ s&fr 1 = s^fr 1 

The definitions for s&o2, s&cr 2 and s&fr 2 are simetrical to these. The implementation relation is completed with the following 
definitions for the boolean guards (left names are those of example 1, and right names are those of process R at the beginning of the 
appendix):A i = B i v l  i , B = C l v H  1 , C = C 2 v H  2 , D = H I ^ H  2 , E i = D i 

e) Implementation relation: Obviously, M=M'. If SP + is a correct implementation of SP, then we have proved that S = RH. 
In example 3, the final model of SP was depicted. In the next figure, the final model of SP + and the implementation relation is 
presented. Let us notice that the two typical situations of the implementation relation arise : "junk" values (e.g. 31, 32, 23 and 13 do 
not implement any value of the model of SP) and "confused" values (e.g. 11, 51 and 15 implement the value tt of the final model of 
SP): 

o 
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