Skip to main content

Backtrack searching in the presence of symmetry

  • Full Papers
  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1988)

Abstract

Methods from computational group theory are used to improve the speed of backtrack searching on problems with symmetry. The symmetry testing algorithm, which is similar to a color automorphism algorithm, takes the symmetry group as input and uses it to avoid searching equivalent portions of the search space. The algorithm permits dynamic search rearrangement in conjunction with symmetry testing. Experimental results confirm that the algorithm saves a considerable amount of time on some search problems.

Work supported in part by the National Science Foundation under grant number DCR-8603293.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James R. Bitner and Edward M. Reingold, “Backtrack Programming Techniques”, CACM 18 (1975), pp. 121–136.

    Google Scholar 

  2. Roger W. Brockett and David Dobkin, “On the Number of Multiplications Required for Matrix Multiplication”, SIAM J. Comput. 5 (1976), pp. 624–628.

    Google Scholar 

  3. C. A. Brown, L. A. Finkelstein, and P. W. Purdom, Jr., “Backtrack Searching in the Presence of Symmetry”, NUTR NU-CCS-87-2 (1987).

    Google Scholar 

  4. C. A. Brown, L. A. Finkelstein, and P. W. Purdom, Jr., “Efficient Implementation of Jerrum's Algorithm for Permutation Groups”, NUTR NU-CCS-87-19 (1987).

    Google Scholar 

  5. C. A. Brown, L. A. Finkelstein, and P. W. Purdom, Jr., “A New Base Change Algorithm for Permutation Groups”, NUTR NU-CCS-87-30 (1987).

    Google Scholar 

  6. G. Butler, “Computing in Permutation and Matrix Groups II: Backtrack Algorithm”, Math. Comp. 39 (1982), pp. 671–680.

    Google Scholar 

  7. G. Butler and C. W. H. Lam, “A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects”, Journal of Symbolic Computation 1 (1985), pp. 363–382.

    Google Scholar 

  8. J. J. Cannon, “An Introduction to the Group Theory Language, Cayley”, in Computational Group Theory, edited by M. D. Atkinson, Academic Press, 1984, pp. 145–184.

    Google Scholar 

  9. J. L. Carter, On the Existence of a Projective Plane of Order 10, Ph. D. Thesis, University of California at Berkeley (1974).

    Google Scholar 

  10. J. W. L. Glaisher, “On the Problem of the Eight Queens”, Philosophical Magazine series 4, vol. 48 (1874), pp. 457–467.

    Google Scholar 

  11. Shafi Goldwasser and Michael Sipser, “Private Coins versus Public Coins in Interactive Proof Systems”, Proc. 18th Sym. on Theory of Computing (1986) pp. 59–68.

    Google Scholar 

  12. J. Hopcroft and J. Musinski, “Duality Applied to the Complexity of Matrix Multiplication and Other Bilinear Forms”, SIAM J. Comput. 2 (1973), pp. 159–173.

    Google Scholar 

  13. Mark Jerrum, “A Compact Representation for Permutation Groups”, Journal of Algorithms 7 (1986), pp. 60–78.

    Google Scholar 

  14. Rodney W. Johnson and Aileen M. Mc Loughlin, “Noncommutative Bilinear Algorithms for 3 × 3 Matrix Multiplication”, SIAM J. Comput. 15 (1986), pp. 595–603.

    Google Scholar 

  15. Julian D. Laderman, “A Noncommutative Algorithm for Multiplying 3 × 3 Matrices Using 23 Multiplications”, Bull. Amer. Math. Soc. 82 (1976), pp. 126–128.

    Google Scholar 

  16. J. Leon, “Computing Automorphism Groups of Combinatorial Objects”, in Computational Group Theory, edited by M. D. Atkinson, Academic Press (1984), pp. 321–337.

    Google Scholar 

  17. E. M. Luks, “Isomorphisms of Graphs of Bounded Valence Can Be Tested in Polynomial Time”, J. Comp. Sys. Sci. 25 (1982), pp. 42–65.

    Google Scholar 

  18. Paul W. Purdom, “Tree Size by Partial Backtracking”, SIAM J. Comput. 7 (1978), pp. 481–491.

    Google Scholar 

  19. David A. Seaman, Fast Matrix Multiplication, Indiana University Master's Thesis (1978).

    Google Scholar 

  20. C. C. Sims, “Computation with Permutation Groups”, in Proc. Second Sym. on Symbolic and Algebraic Manipulation, edited by S. R. Petrick, ACM, New York, 1971.

    Google Scholar 

  21. Volker Strassen, “Gaussian Elimination is Not Optimal”, Numer. Math. 13 (1969), pp. 354–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Teo Mora

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, C.A., Finkelstein, L., Purdom, P.W. (1989). Backtrack searching in the presence of symmetry. In: Mora, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1988. Lecture Notes in Computer Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51083-4_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-51083-4_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51083-3

  • Online ISBN: 978-3-540-46152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics