
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

359

D. Gawlick M. Haynie A. Reuter (Eds.)

High Performance
Transaction Systems
2nd International Workshop
Asilomar Conference Center, Pacific Grove, CA, USA
September 28-30, 1987
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo

Editorial Board

D. Barstow W. Brauer R Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmfi l ler J. Stoer N. Wirth

Editors

Dieter Gawlick
Digital Equipment Corporation
10500 Ridgeview Ct., Cupertino, CA 95014, USA

Mark Haynie
Amdahl Corporation, 1250 East Arques Ave.
RO. Box 3470, Sunnyvale, CA 94088, USA

Andreas Reuter
Institut fL~r Parallele und Verteilte H6chstteistungsrechner
Universit~.t Stuttgart
Azenbergstr. t2, Herdweg 51, D-7000 Stuttgart 1, FRG

Program Committee

C. Mohan, IBM Almaden Research Center (Chairman)
Dieter Gawlick, Digital Equipment Corporation (Workshop Chairman)
Phil Bernstein, Digital Equipment Corporation
Jim Gray, Tandem Computers
Pat O'Neit, Computer Corporation of America
Andreas Reuter, University of Stuttgart
Tom Scrutchin, Boole & Babbage

CR Subject Classification (1987): C.1.2, C.2, C.4, D.2.7, D.4, E.0, H.2, K.6

ISBN 3-540-51085-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51085-0 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the erovisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.
© Springer-Verla 9 Berlin Heide}berg 1989
Printed in Germany
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 - Printed on acid-free paper

Contents

F o r e w o r d ... V

N e t w o r k i n g I s s u e s . 1

OSI Services for Transaction Processing

M. Bever, M. Fetdhoffer, S. Pappe .

LU 6.2 as a Network Standard for Transaction Processing

W. Duquaine . 20

Sys t em D e s c r i p t i o n ... 39

Model 204 Architecture and Performance

P.E. O'Nei l . 40

NonStop SQL: A Distributed, High-Performance, High-Availability

Implementation of SQL

The Tandem Database Group . 60

Citicorp's New High-Performance Transaction Processing System
F.K. Bamberger . 105

ALCS - A High-Performance, High-Availability DB/DC Monitor

S.J. Hobson . 134

A r c h i t e c t u r a l I s s u e s . 147

The Case for Orderly Sharing

G. Herman, G. Gopal . 148

Altruistic Locking: A Strategy for Coping with Long Lived Transactions

K. Salem, H. Garc ia-Mol ina , R. Alonso . 175

Enhancing Concurrency in Layered Systems

G. Weikum . 200

IV

High Performance Distributed Transaction Processing in a General
Purpose Computing Environment

A.Z. Spector, J.L. Eppinger, D.S. Daniels, R. Draves, J.J. Bloch,

D. Duchamp, R.F. Pausch, D. Thompson ... 220

P e r f o r m a n c e E v a l u a t i o n . 2 4 3

A Single-User Performance Evaluation of the Teradata
Database Machine

D.J. DeWitt, M. Smith, H. Boral .. 244

Performance Issues in High Performance Transaction

Processing Architectures

A. Bhide, M. Stonebraker .. 277

Group Commit Timers and High Volume Transaction Systems

P. HelIand, H. Sammer, J. Lyon, R. Carr, Ph. Garrett, A. Reuter 301

F o r e w o r d

In Fall 1985, the first event called 'International Workshop on High Performance

Transaction Systems' took place at Asilomar. It was an informal gathering of

users, developers and researchers from the field of large transaction processing

systems, and the idea was to discuss current topics, exchange experiences, ex-

plore future developments, in other words: define what was needed to achieve

high performance with transaction oriented systems.

Many discussions at this first workshop were triggered by the problem of multi-

processor database architectures, i.e. the question of how to couple processors in

order to efficiently run transactions against one (logically) centralized database.

The distinction of architectures into 'shared everything', 'shared disk', and

'shared nothing' was invented for a position paper at that workshop by Mike

Stronebraker.

Since many participants felt the first one was a success, it was decided to repeat

the workshop two years later. In 1987, there were more technical papers in the

formal sense, although discussions and ad hoc sessions still played a major role.

It was quite interesting to see that a number of suggestions that had been made

two years earlier had meanwhile influenced some products one way or the other;

some issues that had been discussed were settled meanwhile (much of the shar-

ing controversy, e.g.), and new topics had come up, some of which have rarely

been discussed in the context of transaction processing systems elsewhere.

It looks like many of the problems identified during the '87 workshop will deter-

mine the future development of transaction systems and distributed high per-

formance systems in general for many years to come. So the organizers of HPTS

'87 felt encouraged to collect the papers presented at the workshop in order to

make them accessible to a wider audience of interested developers and research-

ers. Since some of the contributions represented work in progress, the authors

agreed to prepare revised and updated versions of their papers for this publica-

tion. This accounts for the long delay between the event itself and the publica-

tion, but on the other hand it provides the reader with a s ta te-of- the-ar t account

of transaction processing topics.

The book is organized according to the major sections of the workshop. In the

networking section, we find an analysis of two of the major 'paradigms' in net-

working, ISO/OSI and SNA, from the perspective of transaction processing. First,

¥1

M. Bever, M. Feldhoffer and S. Pappe describe the ongoing efforts of the ISO to

incorporate transaction protocols into their overall open systems architecture. In

particular, they describe the ideas discussed in the CCR- (commitment, concur-

rency and recovery) group with respect to transaction models, error handling,

etc. They also present examples of applications based on CCR-protocols, espe-

cially an RDA (remote database access) interface.

In the second paper, Wayne Duquaine presents an analysis of LU 6.2, which is

SNA's transaction processing protocol. He puts some emphasis on the use this

interface can make of intelligent terminals like PCs to handle major portions of

the protocol. Certainly this will be a very important aspect in the design of the

next generation of TP systems.

It should make an interesting exercise for the reader to compare the basic as-

sumptions of CCR on one hand and LU 6.2 on the other. The result will be that

they do not look all too different. So the next question should be whether these

protocols contain all we need for future transaction processing, or whether they

just codify the way it is done now. This was discussed heavily at the workshop,

but - of course - there is no answer yet.

Both papers agree on the necessity to include network management into the dis-

cussion about networking standards.

The next section is comprised of a description of four different transaction proc-

essing and database systems.

It starts out with Pat O'Neil 's summary of Model 204, a database management

system marketed by Computer Corporation of America. The paper makes it very

clear that this system is optimized for handling complex selection predicates,

which is not typical for today's mainstream online transaction processing (OLTP)

applications, but might well be in the future.

The complete opposite - from that perspective - is Tandem's NonStop SQL,

which is described in the next contribution, tt was developed with OLTP explic-

itly in mind. In the paper, all important design and implementation issues are

covered, and the last part describes the results of a benchmark based on the

Debit/Credit database and workload definition. It is worth noting that one of the

first commercially available distributed relational systems is at the same time one

of the top performers in terms of OLTP workloads.

A significantly different approach to handling the same type of workload (online

banking transactions) is covered in Frank Bamberger's paper on Citicorp's trans-

VII

action processing system. This company just completed the transition from one

unique installation, consisting of a series of self-developped machines, to an-

other unique configuration based on TPF with a couple of own protocols and

application software on top. The paper might be of particular interest for those

interested in the problems of either setting up or migrating large transaction

oriented applications.

The last paper in the systems section is authored by Steve Hobson and describes

the implementation of ALCS, which basically is a version of TPF running under

MVS/XA. Considering that TPF (and its precursor, ACP) is an 'old' system by

the standards of our discipline it may seem surprising that substantial develop-

ment is still being invested into extending and adapting it. However, there is a

demand for it, as is shown by at least one large project for building a new airline

reservation system, which uses ALCS. And this also makes sense from a techni-

cal viewpoint, as you can see from the implementational descriptions. Such sys-

tems offer the basic mechanisms for very large OLTP systems, which more 'gen-

eral purpose' operating systems etc. don't, like very fast message routing and

context switching, simple but efficient fault tolerance mechanisms, etc.

The research section contains four very different contributions which are fairly

representative of the type of problems in transaction systems investigated in the

research community.

Gary Herrman and Gita Gopal present an architecture for achieving very high

transaction rates, which they call Datacycle. The idea is highly unconventional,

assuming that the data is permanently broadcast over a very high-bandwidth

medium to all processing sites. Each site can 'suggest' updates, which are de-

cided upon by some authority. If they are accepted (i.e. they are serializable), the

updates will be visible in the next broadcast round.

The authors claim - and support it by some strong arguments - that conventional

architectures are not likely to deliver the throughput required in some very high

performance transaction systems, so radically new architectures might well de-

serve much more attention than they get these days - at least in the area of TP

systems.

The next paper by Kenneth Salem, Hector Garcia-Molina, and Rafael Alonso

deals with a very old, very hard problem of transaction processing, which is the

co-existence of short transactions and very long transactions, be it of the batch-

type, or for modelling long lived activities. The protocol described in this paper is

VIII

based on the idea of releasing locks before the end of a 'long' transaction on

those objects that will not be accessed again. Other transactions can then access

these objects, must, however, observe additional protocols in order to avoid in-

consistencies.

Gerhard Weikum's paper discusses the implications of a nested transaction

model when applied to the implementation of a transaction system, with special

emphasis on multi-layered concurrency control. Although such techniques are

already used in existing systems (e.g. tuple locking), the formal framework pre-

sented here might prove very helpful in understanding the structures of such

protocols and in designing more reliable (and efficient) implementations of lay-

ered synchronization techniques.

The last paper by Alfred Spector and his students gives an account of design,

implementation and performance characteristics of Camelot. This is a distributed

transaction management system based on Mach, a Unix-compatible operating

system that has been extended by a number of features which are indispensable

for implementing high performance transaction systems. Some of the key fea-

tures are shared memory and cheap processes (tasks). The performance figures

illustrate quite clearly that, given the right basic mechanisms, competitive per-

formance can be achieved (using Debit/Credit-like measures) in an environment

of Unix workstations.

Since this was a high performance system workshop, of course there has to be a

performance section.

It starts with a performance evaluation of Teradata's DBC1012 by Dave DeWitt,

Marc Smith and Haran Boral. The paper describes a fairly elaborate measure-

ment with a number of parameters, functions investigated, and accordingly con-

tains a whole range of results which cannot easily be summed up. One of the key

observations is that the scheme used by this machine for achieving parallelism,

i.e. the hash-based distribution and storage allocation of tuples seems to cause

performance problems under special circumstances. However, readers interested

in that matter should give the paper a careful reading.

The paper by Anupam Bhide and Mike Stonebraker is an attempt to add some

quantitative arguments to the 'shared whatever' discussion. It describes a simula-

tion-based comparison of a shared everything and a shared nothing architecture,

including CPU consumption, message costs, disk accesses, etc. Intra-transaction

parallelism is also considered. The general result is the superiority of shared

IX

everything, especially if there are response time constraints and/or hot spots.

Load balancing is equally important for both architectures, and transaction inter-

nal parallelism improves the performance in either case.

The last paper by Pat Helland and others describes a special technique for in-

creasing throughput in Tandem's transaction manager, namely group commit.

The idea is to collect commit records in the log buffer (rather than forcing them

individually) and to write a batch of them in just one I/O. Obviously, this works

well under high transaction rates, but under conditions of low load, the buffer

must be forced explicitly in order to keep response time within limits. The paper

explains an analytic model for determining the optimal bundling factor and timer

setting, which has been used for incorporating a simple balancing strategy into

TMF.

As one can see from the agenda, there were more presentations than the ones

mentioned so far. However, they did not go with a full paper; these were only

foils or collections of one-liners, which is why they are not included in this book.

But since many of them raised quite interesting issues or succeeded in stimulat-

ing wild discussions, I will try to summarize them based on the scarce material I

am left with in some cases. So if something of what follows sounds weird, you

will most likely have to blame my summary rather than the original contender.

In the first round, Harald Sammer and Dieter Gawlick discussed the disadvan-

tages of 'shared nothing' and 'shared everything' systems, respectively. This was

particularly interesting, because both have profound architectural experience

with the type of systems they had to criticize.

Harald Sammer gave a list of disadvantages inherent to shared nothing systems

(i.e. distributed systems in a very general sense) as follows:

Such systems suffer from message overhead, since messages are the only means

for processors to cooperate. Without special precautions, which are not sup-

ported in all current communication architectures, the number of sessions be-

tween processes grows as a square function of the number of nodes, and very

quickly gets out of hand. Handling messages through layered communication

protocol increases pathlength.

Synchronization based on messages only is much harder than in a shared mem-

ory environment. This applies to logs as well as to concurrency control.

Shared nothing systems require efficient load balancing (which is hard) and - as

a complementary problem - application decomposition. Last not least, debugging

such systems is extremely difficult.

×

However, on a large scale each system will eventually be a 'shared nothing'

system, so all of these problems have to be managed anyway.

Dieter Gawlick's characterization of 'shared everything' architectures started at

this very point by saying that it is an electronic complex connected to one storage

hierarchy, in which all the required data reside, such that each unit of work can

be executed completely in one electronic complex. What follows immediately

from this definition is that only dumb terminals can be part of such a system and

that no online interaction between two 'shared everything' systems can be part of

any unit of work. Whereas these systems appear to be superior for simple, iso-

lated applications, they make both implementation and changing of complex ap-

plications hard (due to their monolithic attitude) and tend to become unmanage-

able as they grow. The same is true for performance, in that in complex, inte-

grated applications shared everything means one has to use high cost, high per-

formance components, because there is no way of functional distribution. High

level of multi-tasking implies problems in maintaining constant response times

for routine tasks like text processing, etc. Shared everything systems have single

points of failure, which causes serious availability problems; disaster recovery is

nearly impossible. Shared nothing systems, on the other hand, still cannot keep

data as corporate assets.

Whereas these position statements were made from the perspective of classic

OLTP systems, Sam DeFazio and Charles Greenwald presented a highly 'exotic'

application, the LEXIS/NEXIS Information Retrieval System, run by Mead Data

Central. Their transactions do full text search over (at that time) 200 billion

characters of raw text with fairly complex search criteria. They have to support a

peak load of 8.000 transactions/hour, with a response time target of 12 secs.

Although the database is fully inverted (except for 'noise' words) any such trans-

action does 400+ I/Os and has a pathlength of more than 15 million instructions.

Given this, the workload requirements are really tough. The presentation made it

very clear, in which points current mainframe architectures and OS structures

are inadequate for such applications - and the key problem areas are: No func-

tional specialization, and too little support for substantial parallelism within one

application.

Next were two presentations on network management systems, NetMaster (Cin-

corn) and NetView (IBM). This was particularly interesting to the audience, since

- as I mentioned before - network management was generally felt to be an area

needing much more attention and work. Of course, it is impossible to summarize

these product descriptions. The general impression, though, can be put as fol-

X!

lows: Both systems - to a certain degree - implement their own type of network

on top of whatever the underlying network is, provide their own TP-monitor etc.

and effectively manage that. What would be required, on the other hand, is an

integration of communication protocols and network management services.

In addition to the long papers on OSI and LU 6.2, there was a position statement

by Andreas Reuter weighing connection oriented vs. connectionless communica-

tion protocols from the perspective of transaction processing. He basically argued

that the increase in quality of communication due to sessions or similar concepts

are not really helpful for implementing transaction protocols. They are 1 : 1,

whereas transactions can involve many nodes, which means a two-phase commit

has to include several sessions. Put the other way: The implementation of trans-

action protocols does not become much simpler if you have sessions rather than

datagrams. One counter argument was that with datagrams one has to go through

authentication for each packet.

In the systems section, there was a contribution describing IBM's ONEKAY

benchmark with IMS Fast Path, which unfortunately is not available as a full

paper. The workload reflects a credit card application i.e. card authorization,

credit limit check, debit processing and reporting of lost or stolen cards. There

were four databases, 1 DEDB holding account information (13 M records), 1

MSDB holding exception cards (14 MB), 1 MSDB for establishment activity

counters (2K records), 1 DEDB for added exception cards (500 records).

The transaction type bearing most resemblance to the Debit/Credit benchmark

transaction was DEBIT, which did the following:

Get MSG from terminal; fetch and update account database root; put the transac-

tion in the journal (dependent segment); update establishment database; reply to

the terminal.

The benchmark was run on a 3090-400 with 128 MB of memory (+ 256 MB

ESD), 96 channel paths and 86 volumes for the database (the DEDB-part).

The DEBIT transaction peaked at 933 TPS, with 95 % CPU utilization and .34

secs average transaction transit time.

Some interesting performance bottlenecks in IMS and VTAM were discovered

during the benchmark (and removed, of course).

Don Hadefle gave a brief overview of the DB2 development, with an emphasis

not so much on technical details, but on the general design decision and the

parameters having influenced them. It was an exceptionally interesting account

Xll

of what shapes a new product and how it is tied to the environment, but based on

just the presentation it is impossible to give a fair summary of what was said.

Probably the most vivid session was Ed Lassetre's attempt to outline the 'Future

DB Mechanisms for Transaction Processing'. On his first slide, he tried to clas-

sify applications into three categories: Short transactions with few data and sim-

ple processing requirements, i.e. current OLTP style; second were transactions

operating on complex data structures (objects) with many links and references,

like in CAD, and with moderate processing requirements; the third group was

characterized by very complex computations on vast amounts of data, like in

deductive systems.

He then asked whether we would have different types of systems for each class,

with the usual problems for 'mixed' applications, or if super-systems doing

equally well in all cases would be conceivable, or if there would be generic archi-

tectures that can be configured for each application profile. As a matter of fact,

Ed Lassetre did not get beyond this first slide. Discussion heated up very quickly

and covered all the ground there was. It is impossible to repeat all the arguments

that came up; but quite obviously there were representatives from different

camps, i.e. different view points on what transaction processing means and what

a transaction processing system should deliver. For example, some participants

contended that application types 2 and 3 are not transaction-related, and transac-

tion systems had nothing to do with that. Others claimed that at least category 2

needed support by transaction-like control sturctures, but again there was the

argument on whether this was just an issue of data models and user interfaces, or

if this had further impact on the underlying system and its implementation. On

the other hand, it became quite clear that most of the participants, users, devel-

opers etc. were confronted with the problem of either extending transaction serv-

ices to other applications or of integrating them one way or another. So this

question will be around for a couple of years.

In retrospect, this workshop will probably mark the moment where transaction

processing systems made the 1KTPS-technology available for production envi-

ronments. It also indicated increasing interest in making transactions a much

more fundamental paradigm of processing than they are now. The big challenge

in the future will be to shape systems which are strictly transaction oriented down

to the very primitives of the OS, but still support all conceivable applications

(plus the new ones) in a better way than today's systems can.

Andreas Reuter

