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ABSTRACT 

OPTRAN is a batch-oriented system for the generation of compilers that support pro- 
gram transformations. Programs are represented by attributed abstract syntax trees 
(AAST). The transformation of AAST's is a powerful method to describe problems in 
compiler writing such as machine-independent optimisations, language-based editors, 
and source-to-source translations. 

The specification language OPTRAN allows for a static and declarative description of 
tree transformations. Given such a specification, the system will automatically gen- 
erate the transformation system, mainly consisting of an attribute evaluator and 
reevaluator, as well as a tree analyzer and transformer. 

The paper presents an introduction to the description mechanisms together with an 
overview of the system, showing the interaction of several generators. The main goal 
of the system design is the usage of precomputation methods wherever possible. This 
generative approach is explained. The static view of transformations makes it possible 
to generate highly efficient transformers but also has its limitations, which we men- 
tion. 

The system is written in Pascal and generates Pascal programs. Pascal also serves as 
host language, i.e. semantic rules are specified as Pascal procedures. This complicates 
the error diagnosis of the runtime system as the semantics of these procedures is not 
obvious to the generator system. Furthermore it inhibits the recognition of certain pro- 
perties of the specification like invariance of attribute assignments under non-trivial 
transformations. 

We report practical experiences for some applications, e.g. a compiler for MiniPascal 
producing M68000 code and a frontend for Ada producing DIANA intermediate 
descriptions. [Li88] contains an annotated bibliography on OPTRAN. 

*partially supported by the Demsche Forschtmgsgeanelnschaft under Project "Manipulatlon of ARribut~d Tre.es" and the 
Commission of the Europe, an Community under Esprit Project Ref. No. 390 (PROSPECTRA) 
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1. Introduction 

Attributed abstract syntax trees (AASTs) have become a standard representation for programs in 
software development and compiling environments. Many tasks such as standardization, code optimiza- 
tion, source-to-source translation, and transformational program development can be specified by attri- 
buted tree transformations. The OPTRAN specification language allows the def'mition of sets of such 
tree transformation rules. The OPTRAN system consists of a set of generators producing efficient tree 
transformers from an OPTRAN specification. 

We will now abstract from the applications listed above and discuss different views of the concept "tree 
transformation". 

The Term rewriting view 

Transformations of attributed trees can be seen as being derived from term rewriting: There, 
transformations are specified by a set of simple transformation rules (term rewriting rtiles, oriented 
equations). The rules are specified independently and not linked together by any superimposed control 
structure. Rules may be applied ("fired") whereever their left sides match inside the object tree. Rule 
application causes local changes in an object tree, which represents the state of the transformation sys- 
tem. OPTRAN is based on this batch oriented pure term rewriting scheme with the following exten- 
sions: 

rule application may depend on attribute values 
rule application may modify attribute values 
rule application conflicts are solved by user defined strategies mainly concerning the orientation in 
the object tree (bottom-up, top-down, left-to-right, right-to-left). 

The enrichment of term rewriting by attributes leads to the problem of attribute updating and ensuring 
attribute consistency, which is solved by reevaluation techniques. The advantage of this approach is the 
locality both of rule and attribute specification, the latter locally to a (operator resp.) production. On 
the other hand, this scheme lacks powerful constructs for describing strategies, linking rules together, 
building rule packages, coupling application of different rules, conditional and (locally) iterative rule 
application, and specifying tree walking. This deficit of describing control was recognized early. Pro- 
posals for a PASCAL like control structure have been made, see for example [GMW80]. In addition, 
proposals for language extensions like list constructs [Ba86] and their attribution [Ra86,BMR85] as 
well as more powerful patterns [BMR86] exist. [Th88] investigates coupling of transformation units 
and the maintenance of transformation rule packages. 

The Functional view 

Transformations are not specified as a set of unrelated rules, but as functions to be applied to the 
subject tree. The style of describing control is very different from the term rewriting or the OPTRAN 
style. Functional composition may be used to form bigger transformations from smaller ones. The sim- 
ple patterns and rules mentioned above do not vanish, but are embedded as parts of the functional 
expression deScribing the whole transformation. Higher order functions may be used to formulate 
transformation strategies. Nevertheless, the experience from the construction of pattern matching auto- 
mata etc. may be amortised in the implementation of such a functional language. The reader is referred 
to [He88] for more details. 

System overview 

OPTRAN is a very-high-level language for the specification of attributed abstract syntax trees and 
tree transformations. The structure of an abstract syntax tree is described by a regular tree grammar. A 
set of attributes is associated with each node of a tree. Context information may be collected in attri- 
butes and passed over the tree. There is a set of semantic rules for each production of the tree grammar 
describing the functional dependencies between attributes. Transformation rules specify the possible 
modifications of trees. Each rule consists of an application condition (left hand side) and an output 
description (right hand side). The syntactic part of an application condition is described by an input pat- 
tern. An additional context condition can be formulated by means of a predicate over attributes of the 
input pattern. A transformation rule is said to be applicable at a node of a tree if there is a match for 
the input pattern at that node and the predicate is satisfied. If a rule is a applicable the part of the tree 
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An OPTRAN specification of a tree lransformation system is called a transformation unit (t-unit). 
A t-unit mainly consists of three parts, i°e. 

a tree grammar, describing the structure of abstract syntax trees, 
attributes associated with nodes of the tree and semantic rules associated with productions denoting 
the functional dependencies between attributes, 
a set of tree transformation rules. 

The OPTRAN system generates a transformation system (t.system) for a given t-unit. At run time, the 
t-system takes an abstract syntax tree and basically performs the following actions: 

initially, the attribute evaluator computes the value of all attributes according to the functional 
dependencies specified in the t-unit 
the tree analyzer searches the attributed abstract syntax tree for a node where a tree template 
matches and the corresponding predicate is satisfied; 
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the tree transformer applies the selected transformation rule to,the tree; 
the attribute reevaluator recomputes the value of inconsistent attributes of the transformed tree. 

Extensive analysis of the static properties of a t-unit at generation time makes it possible to per- 
form these tasks in a very efficient way. 

the attribute (re)evaluator generator analyses the attribute dependencies 
the tree analyzer generator analyzes the set of input patterns of the transformation rules and pro- 
daces an efficient tree pattern marcher from it [We83] ; 
the tree transformer generator generates efficient tree transforming programs for the transformation 
rules [Wi81] ; 

Figure 1 shows the basic components of the OPTRAN system and how they are connected. 

2. Specification language 

Abstract syntax trees are described by a regular tree grammar in OPTRAN. The grammar 
corresponds to the tree part of a string-to-tree grammar and makes linking to a compiler frontend possi- 
ble. At this time, such a ffontend can be generated with the POCO LALR(1)-Parser-Generator [Eu88] 
or the ELL(2)-Parser-Generator [He86a, He86b] both developed at the Universit~t des Saarlandes. 

A tree grammar is a quadrupet TG = (N, OP, P, S), where N is a finite set of nonterminals, OP is 
a finite set of operators with fixed arity, S e N  is the axiom, and P is a set of productions of the form 
Xo ::= X1 or Xo ::= <op, X1 ..... X~>, where naNo is the arity of the operator op, Xo, • " ",  Xn are nonter- 
minals, and <op, X 1 ..... Xn> is the linear representation of a tree with depth 1. An operator op must not 
appear in more than one production. 

An abstract syntax tree t of TG is a finite ordered tree. The nodes of t are labeled with operators. 

Example: 
STATLIST ::-- <sepop, STATLIST, STAT> 
STATLIST ::= STAT 
STAT ::= ASSIGNSTAT 
STAT ::= WHILESTAT 
STAT ::= IFSTAT 
ASSIGNSTAT ::= <assop, VARIABLE, EXPR> 
WHILESTAT ::= <whileop, EXPR, STATLIST> 
IFSTAT ::= <ifop, EXPR, STATLIST, STATLISTk2> 
EXPR ::= <addop, EXPRkl, EXPRX2> 
EXPR ::= <relop, EXPRkl, EXPRk2> 
EXPR ::= <intconst> 
EXPR ::= <boolconst> 
EXPR ::= VARIABLE 
VARIABLE ::= <varid> 

Figure 2 

Attributes are used to collect context information and to spread this information over the tree. 
Each attribute has a type. Two disjoint sets of attributes, i.e. the set of inherited attributes Inh(op) and 
the set of synthesized attributes Syn(op), are associated with each operator op. The set of all attributes 
of op is denoted by Attr(op) = Inh(op)wSyn(op). Instances of these attributes are attached to each node 
of a syntax tree labeled with op. 

A (possibly empty) set of semantic rules is specified for each production Xo::=<op,X1, • • • ,X.>, 
describing the functional dependencies between attribute occurrences of this production. We call the 
occurrences of the inherited attributes at op and the synthesized attributes at Xi used attribute 
occurences and the the occurrences of the synthesized attributes at op and the inherited attributes at Xi 
defined attribute occurences, where ie { 1 . . . . .  n}. There is exactly one implicit semantic rule r for each 
defined attribute occurrence of a production, that is not imported. Each used attribute occurrence can be 
an argument of r. Some defined attribute occurrences do not have an associated defining rule. The 
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corresponding instances will initially receive their value by importing it from a preceding frontend. 
These attribute occurrences are called imported. 

The set of transformation rules specifies how to manipulate a given tree. A transformation rule tr 
consists of an application condition and an output description. The application condition has a syntactic 
and a semantic part. An input pattern specifies the syntactic application condition. A leaf of a pattern 
may be labeled with a parameter. A parameter matches every tree. Input patterns have to be linear, that 
is no parameter appears twice in the pattern. The semantic application condition is given by a predi- 
cate over the attributes of the input pattern. A rule tr is applicable at a node n of a tree t if the input 
pattern matches at n and the predicate over attribute instances of the subtree at n is satisfied, n is 
called transformation node. The predicate can be omitted. 

Application of a transformation rule tr restructures the tree: the instance of the matching input 
pattern is replaced by the corresponding output pattern and each parameter of the output pattern is 
replaced by the matched subtree. The value of an imported attribute is specified by a so called explicit 
semantic rule, which may take any attributes of the input pattern as argument. The value of the 
non-imported attributes is defined by the implicit semantic rules specified for each production of the 
tree grammar. 

Example: 
transform 

<ifop, <boolconst>, THENPART, ELSEPART> 
if istrue(svalue of boolcons0 into 

THF_2qPART 
else into 

ELSEPART 
fi; 

transform 
<varid> 

if (sconst of varid) and (stype of varid = inttype) into 
<intconst> 

elsif (sconst of valid) and (stype of varid = beoltype) into 
<boolconst> 

fi; 

Figure 3 

In general, there may be more than one transformation rule applicable in a tree at the same time. 
A user defined strategy [We83] resolves the conflict: the user can specify if a given tree is searched for 
rule application bottom-up or top-down, left-to-right or right-to-left. In addition, a (strictly) monotonic 
strategy guarentees that only (proper) ancestors/descendants of a transformation node are tested for rule 
application. The rule with the most specific input pattern is chosen if there is more than one transfor- 
mation rule applicable at the same node. If two patterns are incomparable the textually preceding rule is 
chosen. 

An attributed tree grammar, a set of transformation rules and the specification of a strategy for 
conflict resolution together constitute a transformation unit. 

3. Attribute (re)evaluation 

3.1. Generation tlme analysis 
The analysis of static properties of a given transformation unit at generation time renders it possi- 

ble to generate very efficient transformation systems. The generative approach to tree pattern matching 
is explained in [MWW86], where it is compared to an interpretative approach, In this paper, we only 
give a short overview of the generative aspects of attribute (re)evaluation. A detailed description of 



57 

attribute (re)evaluation in OPTRAN can be found in [LMOW87]. 

Using a pure interpretaive approach an attribute (re)evaluator would at run time follow the attri- 
bute dependencies in a given tree. The generated attribute (re)evaluator uses precomputed information 
about attribute dependencies. The precomputation is based on the analysis of the tree grammar at gen- 
eration time. In the OFIRAN system it is performed using grammar flow analysis 
(GFA) [MW83,M685,M686a]. GFA simulates the transformation time behaviour at generation time by 
computing fixed points in a graph structure, called grammar graph [MW83] , that represents the tree 
grammar. Depending on the actual grammar flow problem, the precomputed information cart be exact or 
approximative. At run time, this information is associated with the nodes of the actual abstract syntax 
tree. 

The computation of characteristic graphs, ordered partitions of attributes, attribute evaluation 
plans [O186] and identity classes [Ti86] can be formulated as grammar flow problems. In addition, 
grammar flow analysis can be used to generate tree pattern matching automata [M686a] and code 
generators [M687]. 

The generative support for attribute (re)evaluation is motivated in several ways. Utilization of 
characteristic graphs makes reevaluation in time O(lnumber of changed attribute instancest) 
feasible IRe82] . The set of characteristic graphs resp. the IO-graph [KW76] can be precomputed for 
each nonterminal. At run time, there is no need to propagate graphs in the actual tree or to build tran- 
sitive closures. Instead, only encodings of graphs are propagated and an automaton selects the right 
graph from the set of graphs at a nonterminal, depending on the encodings of graphs at the children. In 
addition, the partition of attribute instances into classes of simultaneously evaluable instances together 
with a total order on these classes can be preplanned. Furthermore, the automata that perform the selec- 
tion process at run time can be compressed at generation time [BMW87]. 

OPTRAN can handle absolutely noncircular attribute grammars, if the IO-graphs, i.e. approxima- 
tive subordinate characteristic graphs, are precomputed. A pass evaluation scheme can be 
incorporated [LMOW87]. 

3.2. Language features 

A detailed survey of the following language features and a description of their implementation 
can be found in [GPSW86,LMOW87]. 

Demand and data driven reevaluation 

The OPTRAN system offers a data driven and a demand driven attribute (re)evaluator. Both 
evaluation mechanisms can be freely mixed. Using the data driven scheme, all attributes that may have 
changed their value are recomputed, i.e. a new consistent attribute value for an attribute instance is 
computed if at least one argument of the semantic rule defining the value of this instance has received-a 
new value. The demand driven scheme allows to delay the reevaluation of attributes until their values 
are needed. 

Complex attributes and footholds 

When using the demand driven scheme attributes ean be declared complex. Utilization of com- 
plex attributes instead of so-called simple attributes leads to smaller memory requirements since the 
value of a complex attribute instance is not stored. To speed up the reevaluation process some complex 
attributes can be made footholds (actually denoted based attributes): the value of a foothold is stored 
permanently in the tree. 

Local attributes 

Local attributes associated with a production rather than a nonterminal [M~86b] can be used to 
store some temporary result of a computation that is used by more than one semantic rule. 

Identity classes 

Atlribute instances identically depending on each other constitute an identity class and share the 
same memory allocation. An application of a transformation rule can modify identity classes. 
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4. Host and implementation language 
Pascal is used as implementation language and as host language, i.e. the OPTRAN system itself 

is written in Pascal, semantic rules have to be coded as Pascal procedures/functions and attribute types 
are Pascal data types. In the following we will comment on both design decisions. When judging these 
descisions, one has to keep in mind that the developement of OPTRAN started in the late 70's. A first 
system including all parts described in section 1 except an attribute reevaluator was available in 
1982 [SSW82, MWW84]. 

Implementation language 
The source of all generators makes up more than 39.000 lines of code and the static part of a run time 
transformation system has nearly 14.000 lines. The following deficiencies of Pascal made the imple- 
mentation and maintenance of the OPTRAN system particularly hard, as wiU be the case for any system 
of comparable size: 

lack of modularity 
During the development of OtrIRAN, there were more than 13 programmers involved in the imple- 
mentation of the system. Even though the system itself consists of several modules, some modules 
had to be maintained by more than one programmer at the same time. Here, we suffered from the 
absence of an accepted module concept in Pascal. 
under-developed operating system interface 
The system's resource management (file system, memory manager) could have been optimized if 
there was better access to OS services than those offered by standard Pascal (e.g. no random file 
access). Using non-standard features of some Pascal dialects is no solution since it makes the 
OPTRAN system non-portable. 
strong type checking 
The strong type checking of Pascal has to be circumvented using Pascal variant records leading to 
somewhat unnatural formulation of otherwise (e.g. in CO fairly obvious parts. In addition, some (gen. 
eric) operations had to be recoded for several data types, leading to a great amount of code duplica- 
dun. A less rigid type system, generic procedures or polymorphic functions would have solved this 
problem; 
no separate compilation 
The fact that a lot of the system's modules are f'txed or won't be changed after their generation can 
not be exploited by the system, i.e. changing a single semantic rule forces one to recompile the 
whole run time transformation system. Berkeley Pascal offers seperate compilation, but again this is 
a non-standard feature. 

Making a UNIX host (SUN 3/160 running SUN-OS 3.4) our development machine the sittmtion has 
been improved. The usage of the source code control system (SCCS) and the make utility facilitated the 
maintenance of the system and made it possible to reflect the modularity of the system in a reasonable 
way. However, the modularity of the generated transformation system is only exploited with Berkeley 
Pascal's seperate compilation feature. 

The run time system still suffers from a few specific Pascal limitations. Generated static tables can not 
be included in the Pascal source but have to be read from a file during the initialisation phase of the 
transformation system. Interfacing a frontend, i.e. reading an abstract syntax tree, is done via file i/o, 
too, since Pascal does not support input/output of dynamic data structures. Practical experiences reveal 
that the system's run time is dominated by the time spent for i/o. 

The run time library of some Pascal compilers is another cause for unsatisfying run times. Automatic 
translation of some system components from Pascal to C cut down the generator run time significandy. 

We have successfully ported the system to a Siemens 7.5xx running BS2000. Unfortunately, we 
encountered several Pascal compiler errors and limitations (e.g. incorrect code generation, static internal 
symbol tables) during this port and an attempt to bring it to another UNIX system. Especially, the 
unusual size (> 64 KBytes) of data structures used in some part of the OPTRAN system lead to several 
problems. 

Host language 
Attribute types are specified as Pascal data types (e.g. integer, record) and semantic rules are 
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written as Pascal procedures/fancdons. In addition, one has to specify special compare and 
copy/dispose operations for each attribute type which is used internally by the system at run time. The 
belmviour of the system can be manipulated by changing these operations. Such a modification can be 
intended, e.g. to artificially restrict the region of reevaluation in the transformed tree or to make access 
to context information more efficient. On the other hand, these modifications are the source of errors 
that are hard to find since it is not easy to distinguish them from possible bugs of the system itself. 

Furthermore, users of the system misuse side effects of Pascal routines to manipulate global data 
structures. This again may lead to hard-to-locate errors, especially because the user's expectation of sys- 
tem behaviour often differs from what is really going on inside the system. 

Besides, the possibility of side effects seriously interferes with the analysis of a Wansformation's 
semantics at generation time. In general, the generating system has no knowledge of the effect of a 
given semantic rule. Actually, there is one exception to this statement: identity functions (called copy 
rules in [Ho86] ) are treated in a special way by the system. 

Using a functional language as host language would - at least in some cases - make it possible to 
reason about safeness and invariance of attribute values with regard to application of 
transformations [GMW81] . There is a trade-off between an improvement of generation time analysis 
that can be achieved by the usage of a functional language and the exploitation of side effects in an 
imperative language, e.g. manipulation of a global state. However, taking into account the inherent 
functional nature of attribute grammars we plead for a functional host language. 

5. Practical experience 

Code optimisatinn and data flow analysis 

OPTRAN has proven its usefulness in classical fields of compiler construction, i.e. machine- 
independent code optimisation and data flow analysis [LMOW87] . [Li86] contains a transformation 
unit for a toy language called BLAN. A fraction of this t-unit is shown in the appendix. The generated 
t-system performs static semantic checking, global data flow analysis and constant propagation. The 
attribution for global data flow analysis and the transformation rules for constant propagation are based 
on algorithms presented in [Wi79a]. For this application the power of OPTRAN tree patterns is suffi- 
cient. The mixture of demand and data driven attributes accelerates the (re)evaluadon process. 
Automatic reevaluation is fully utilized since most of the transformation rules affect the set of constant 
variables, which is represented by a special demand atwibute. In addition, this attribute is an argument 
of some predicates. As stated in [Wi79a] , non-circular attribute grammars compute good approxima- 
tions to the exact data flow information. The class of absolutely noncircular attribute grammars which 
can be handled by OPTRAN is sufficient for BLAN. Currendy, [Ti88] investigates the effect of circu. 
lar grammars into the specification language and the generation mechanism. A simple way of simulat- 
ing circular attribute grammars by transformations and attribute reevaluation is described inTh88. 

Ada-->DIANA frontend 

The Ada DIANA frontend produces an intermediate description in DIANA for a given Ada pro- 
gram. The specification of this frontend consists of two t-units. 

The transformation system that is generated for the first t-unit [Ke88] produces a normalized 
OPTRAN Iree, where general operators are replaced by specific operators after name class analysis, e.g. 
the tree for an Ada construct like f(a) is replaced by a subtree that represents either a function call or 
an array access. The actual choice is dependent on the context, which is accumulated in attributes. 
These attributes serve as arguments for predicates, thereby driving the transformation process. The 
replacement of subIrees itself is described bY the syntactic part of the transformation rules. The specifi- 
cation for this t-unit (14300 lines) contains 116 transformation rules, 569 productions and 4211 seman- 
tic rules. 

The second t-unit (15000 lines) [Ma88] mainly specifies overload resolution. It contains no 
transformation rules. The generated run time system is merely used as an attribute evaluator. The 
specification contains 550 productions and 4950 semantic rules. 

The frontend itself will be described in [KM88]. Both t-units do not make use of the full power 
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of the OPTRAN system. As said before, the second one even does not contain any transformations. 
Therefore, there is no need for a sophisticated reevaluation process. On the other hand, the evaluator is 
designed with transformations in mind: special memory management techniques that are only useful in 
"pure" attribute evaluators [FY86] are not exploited. In the first t-unit context information is collected 
in symbol table attributes during initial attribute evaluation. The transformations are guaranteed to leave 
this information unchanged. Unfortunately, there is no explicit way to specify invariance of attributes 
with regard to a transformation. However, there is an implicit way, i.e. modifying the corresponding 
compare function, as described in section 4. Using a kind of global attribute is another dangerous 
possibility. ['Li86] exhibits the special risks of using global attributes in transformation systems. 

Code generator for Pascal 
An early version of the OPTRAN system without reevaluation (the reevaluation process was 

replaced by several runs of the initial attribute evaluator) was used to generate Motorola 68000 machine 
code for a subset of Pascal IRa86] . Code emission is done by explicit rules when replacing Pascal 
tree fragments with special register nodes. Semantic rules describe register allocation and assignment° 
The assignment is computed during initial evaluation and is protected against reevaluation. The 
emphasis lays more on efficient tree transformation than on clever reevaluation. The generated t-system 
was modified by hand to make attribute values dependent on the transformation history. However, the 
OPTRAN philosophy does not support this view: in OPTRAN, the value of an attribute instance is 
solely def'med by the functional attribute dependencies. 

At the time of writing the specification is adapted to the current system. 

Other applications 
A source-to-source translator, that Wanslates SPL4 (Siemens system programming language) pro- 

grams into C programs is part of [Ho88]. 

These partly nontrivial examples show, that OPTRAN can be successfully used for complex trans. 
lation and transformation tasks. It, however, requires a disciplined specifier, which withstands the 
temptation to gain efficiency by using all the possibilities Pascal as a specification language offers him. 
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Appendix AI 
{ I} t.unitB_LAN; 
{ 2} (* Authors: Peter Lipps, Matthias Olk 

{ 17}'"(* constant declaration part *) 
{ 18} const 

. . .  

{ 22} maxvector = 127; 
{ 23} maxn sting = 4; 

{ 160i" (* attribute type declaration part*) 
{ 161} simpletype mputype 
{ 162} (* user defined type for rood, pre, use *) 
{ 163} veclen = 1..maxvector; 
{ 164} bitvector = set of veclen; 
{ 165} bvindex = 0..maxnesting; 
{ 166} bvarray = array [bvindex] of bitvector; 
{ 167} mputypo = bvarray; 

*) 
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{ 168} operations 
{ 169} compare 
{ 1 7 0 }  function mputypecomp (mpul, mpu2 : mputype) : boolean; 
{ 171} copy 
{ 1 7 2 }  procedure mputypecopy (mpul : mputype; var mpu2 : mputype); 
{ 173} endtype 

[ 295i'" (* attribute declaration part *) 
{ 296} (* synthesized attributes *) 
{ 297} synthesized 

{ 324i'" spre : mputype attached to 
{ 325} (* preserved variables *) 
{ 326} parid, nopar, parlistop, procop, whileop, ifop, assop, sepop; 

{ 348i'" (* inherited attributes *) 
{ 349] inherited 

{ 365i'" ipool : symtabtype attached to 
{ 366} (* constant pool *) 
{ 367} sepop, assop, ifop, whileop, procop, relop, addop, intconst, bootconst, varid; 

{ 384/"(* declaration of semantic rules *) 

{ 515i'" procedure unionmpu (bvarrl, bvarr2 : mputype; var bvarr3 : mputype); 
{ 516} procedure intersectmpu Covarrl, bvarf2 : mputype; var bvarr3 : mputype); 

{ 591i"procedure searchinpool (pool : symtabtype; scan : scanattrtyp; vat ausscan : scanattrtyp); 

{ 622i" (* productions of attributed grammar *) 
{ 623} grammar is 
{ 624} 
{ 626} prog ::= <op_prog, block>; 

{ 697]"block ::= <op_block, blockhead, declpart, applpart>; 

{ 740i" applpart ::= <applpartop, stats>; 

{ 744]" (* constant pool *) 
{ 745} ereate(solstruct, true, ipool of stats); 

{ 747i"applpart ::= <noapplpan>; 

{ 751i"stats ::= <sepop, stats\l, statA2>; 
{752} 
{7531 

{757i'" 
{758} 
{ 759} 
{ 760} 
{761} 
{762} 
{763} 
{764} 
[765} 
[7671 
{768} 
{770] 

local luse : mputype; 
based spre of statsM; 

(* mod, pre, use *) 
intersectmpu (suse of stats',2, spre of statsM, luse); 
unionmpu (suse of statsM, luse, suse of sepop); 
intersectmpu (spre of statsM, spre of stats\2, spre of sepop); 
tmionmpu (stood of stats\l, stood of stats",2, stood of sepop): 

(* constant pool *) 
ipool of stats\l := id(ipool of sepop); 
ipool of stats\2 := id(spool of stats\l); 
spool of sepop := id(spool of stats\2); 

stats ::= Sm~ 

slat ::= eallstat; 
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{ 772} slat ::= assstat; 
{ 774} stat ::= While, st,at; 
{ 776} stat ::= ifstat; 

{ 780i'" assstat ::= <assop, assvariable, expr>; 

{ 788i'" (* mod, pre, use *) 
{ 789} suse of assop :-- id(suse of expr); 
{ 790} inittoO (selement of assvariable, spre of assop); 
{ 791} inittol (selement of assvariable, stood of assop); 
{ 792} (* constant pool *) 
{ 793} ipool of expr := id(ipool of assop); 
{ 794 } spool of assop := insertinpool (sconst of expr, sevalue of expr, 
{ 795} sscanattr of assvariable, selement of assvariable, ipool of assop); 

{ 801]" ifstat ::= <ifop, expr, statsM, statsk2>; 
{ 802} local luse : mputype; 

{ 810i'" (* rood, pre, use *) 
{ 811} unionmpu (suse of stats\I, suse of statsk2, luse); 
{ 812} unionmpu (suse of expr, hise, suse of ifop); 
{ 813} unionmpu (spre of statsM, spre of statsk2, spre of ifop); 
{ 814} unionmpu (stood of stats'd, smod of statsX2, smod of ifop); 
{ 815} (* constant pool *) 
{ 816} ipool of expr := id(ipool of ifop); 
{ 817} ipool of stats\l := id(ipool of ifop); 
{ 818} ipool of statsk2 := id(ipool of flop); 
{ 819} spool of ifop := intersect(equalpoolkey, lesskey, getobjkey~ 
{ 820} spool of statsM, spool of statsX2); 

{ 824i'" whilestat ::= <whileop, expr, stats>; 

{ 831i'" (* rood, pre, use *) 
{ 832} unionmpu (suse of expr, suse of stats, suse of whileop); 
{ 833} allmpu (spre of whileop); 
{ 834} stood of whileop := id(smod of stats); 
{ 835} (* constant pool *) 
{ 836} ipool of expr := intersect (equalpoolkey, lesskey, getobjkey, 
{ 837} ipool of whileop, spool of stats); 
{ 838} ipool of stats := minuspool (equalkey, lesskey, getobjkey, 
{ 839} ipool of whileop, smod of stats); 
{ 840} spool of whileop := intersect (equalpoolkey, lesskey, getobjkey, 
{ 841} ipool of whileop, spool of stats); 

916i"expr ::= simpleexpr; 

{ 939i'" simpleexpr ::= <addop, simpleexpr, sirnpleopd>; 

{ 947i'" (* rood, pre, use *) 
{ 948} tmionmpu (suse of simpleexpr, suse of simpleopd, suse of addop); 
{ 949} (* constant propagation *) 
{ 950} sconst of addop := sconst of simpleexpr and sconst of simpleopd; 
{ 951} addcvalue(sconst of simpleexpr, sconst of simpleopd, 
{ 952} scvalue of simpleexpr, scvalue of simpleopd, scvalue of addcp); 
{ 953} (* constant pool *) 
{ 954} ipool of simpleexpr := id(ipool of addop); 
{ 955} ipool of simpleopd := id(ipool of addop); 
{ 957} simpleexpr ::= simpleopd; 
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{961} 
{963} 
{964} 
{965} 
{966} 
{967} 
{ 968} 
{969} 
{ 970} 
{971} 
{972} 

simpleopd ::= variable; 
simpleopd ::= <intconst>; 

local scanattr : scanattrtyp; 
imported scanattr (*of intconst*); 

stype of intconst := inttype; 
sscanattr of intconst := id( scanattr (*of intconst*)); 

(* mod, pre, use *) 
creatempu (suse of intconsO; 

(* constant propagation *) 
sconst of intconst := true; 
makecvalue(scanattr (*of intconst*), scvalue of intconsO; 

( 987 i'" variable ::= <varid>; 

{ 995]" (* mod, pre, use *) 
{ 996} inittol (extractelemcode(info), suse of varid); 
{ 997} (* constant propagation *) 
( 998} sconst of varid := isinpool2 (ipooI of varid, scanattr); 
{ 999} makecvalue(scanattr (*of varid*), scvalue of varid); 

[1022i'" (* declaration of tran~ormation rules *) 
{ 1023} transformation is 
{1024} strategy bulr sin; 
{ lO~} 
{1026} Or1) transform 
{ 1027 } <varid> 
{1028} if sconst of varid and (stype of varid = inttype) 
{ 1029 } into 
{ 1030} <intconst> 
{1031} apply 
{ 1 0 3 2 }  searchinpool(ipool of varid, scanattr of varid, scanatlr of intconst); 
{ 1033} elsff sconst of varid and (stype of varid = booltype) 
{ 1034 } into 
{ 1035 } <boolconst> 
{ 1036} apply 
{ 1 0 3 7 }  searchinpool(ipool of varid, scanattr of varid, scanattr of boolconsO 
{10381 fi; 

{ I056i'" (tr4) transform 
{1057} 
{1058} 
{1059} 
{1060} 
{1061} 

{1131}'" 
{1132} 
{1133} 
{1134} 
{1135} 
{1136} 
{1137] 
{1138} 

<addop, <intconstM>, <intconstk2>> 
into 

<intconst> 
apply 

trafoaddop(sscanattr of intconstM, sscanattr of intconstX2, scanattr of intconsO; 

Orl 1) transform 
<ifop, boolconst, thenpart, elsepart> 

if boolfalse(sscanattr of bootconsO 
into 

elsepart 
else into 

thenpart 
ft. 
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