Skip to main content

How to define functionals on free structures in typed λ calculus

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1989 (MFCS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 379))

  • 145 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. BerendregtThe Lambda Calculus Studies in Logic and the foundations of Mathematics, North-Holland 1981.

    Google Scholar 

  2. Coguand T, Huet G., A theory of Constructions, Eurocal 85, Linz, Austria (1985).

    Google Scholar 

  3. A. ChurchA formulation of the simple theory of types, Journal of Symbolic Logic 5(1) 56–68 (1940).

    Google Scholar 

  4. A. ChurchThe Calculi of Lambda-Conversion. Princeton University Press, Princeton, N.J., 1941.

    Google Scholar 

  5. H. B. Curry, R. FeysCombinatory logicvol 1, North-Holland, Amsterdam 1968.

    Google Scholar 

  6. H. FriedmanEquality between functionals, Lecture Notes in Mathematics vol. 453, 1975, 22–37.

    Google Scholar 

  7. G. HuetA unification algorithm for typed λ-calculus, Theoretical Computer Science 1, 1975, 27–58.

    Google Scholar 

  8. Schwichtenberg H., Definierbare Functionen im λ-Kalkuli mit Typen, Arch Math. Logic Grundlagenforsch 17 (1975–76) pp 113–114.

    Google Scholar 

  9. Statman R.The Typed λ Calculus is Not Elementary RecursiveTheoretical Computer Science 9, (1979) pp. 73–81.

    Google Scholar 

  10. R. StatmanOn the existence of closed terms in the typed λcalculus I, In: Hindley, R., Seldin, J. (eds): Combinatory logic, lambda calculus, and formal systems. New York: Academic Press 1980.

    Google Scholar 

  11. Statman R.λ-Definable Functionals and βν ConversionsArch. Math. Logic 23 (1983) pp. 21–26.

    Google Scholar 

  12. M. ZaioncThe set of unifiers in typed λ calculus as regular expression. Lecture Notes in Computer Science 202, 1985, 430–440.

    Google Scholar 

  13. M. ZaioncThe Regular Expression Description of Unifier Set in the Typed λ Calculus, Fundamenta Informaticae X (1987) 309–322.

    Google Scholar 

  14. Zaionc M.Word operations definable in the typed λ calculusTheoretical Computer Science 52 (1987) pp. 1–14.

    Google Scholar 

  15. Zaionc M.A Characteristic of λ definable Tree Operations, Submitted to Information & Computation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antoni Kreczmar Grazyna Mirkowska

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaionc, M. (1989). How to define functionals on free structures in typed λ calculus. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_102

Download citation

  • DOI: https://doi.org/10.1007/3-540-51486-4_102

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51486-2

  • Online ISBN: 978-3-540-48176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics