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Abstract 

The paper gives four semantic models for Guarded Horn Clauses (GHQ. Two operational models are based on a 
transition system; the first one gives the set of computed answer substitutions (the so<alled success set) and the 
second one takes deadlock and infinite behaviour into account. They are easily related. The main purpose of the 
paper is to develop compositional models for GHC that are correct with respect to the operational models. For 
the success set case we give a compositional declarative semantics which can be seen a an extension of models for 
Horn Cause Logic. Further, a metric semantics that uses tree-like structures is given, which is proved to be correct 
with respect to the second operational semantics. 

1 lntrod uction 

In this paper we consider several models for the concurrent logic language Guarded Hom Clauses (GHC). We have 
good hope that these models (with some minor changes) are also suitable for other concurrent logic languages 
like Concurrent Prolog ([Sha83] [Sha87]) and PARLOG ([CG86], [Rin88]). Interesting features of concurrent logic 
languages include synchronization mechanisms (annotated variables, rules of suspension) and operators that restrict 
the flow of control (commit). For an introduction to GHC consult [Ued85]. See also [Sar87a] for some remarks 
about the definition of GHC. 

We introduce four models for GHC: Two operational models, a denotational model and a declarative model. 

The first operational model gives the results of successfull finite computations, that is the set of computed an­
swer substitutions. A second operational model gives more information: it also deals with deadlock and in­
finite behaviour. The two operational semantics 0 1 and 02 are based on the same transition relation (in the 
so-called SOS style ([HP79])). For concurrent logic programming we can find this style of semantics for example 
in [Sar87a, GCLS88, dBK88]. 

Although intuitively very clear, these operational models have one drawback: they are not compositional. In this 
paper, we set out to develop both for 0 1 and 0 2 a more distinctive model that is compositional and correct with 
respect to the corresponding operational model. For 0 2 we give a denotational model 1) that focuses on the flow of 
control, including the deadlock behavior of a GHC program, and for 01 a declarative model is given in the spirit 
of logic (programming). 

In order to define the denotational semantics, which is compositional, we need structures that allow for interleaving 
and that contain some information about choice points and deadlock. We use tree-like structures labeled by 
functions that can be annotated. A function that is annotated is used to model the last step in the execution 

•Part of this work was carried out in the context of ESPRIT 415: Parallel Architectures and Languages for Advanced Information Processing 
- a VI.SI-directed approach. 
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Figure 1: Overview of the models 

of a guard, after which we have a new interleaving point. Note that inside such a guard computation, which is 
considered to be atomic, we do not have interleaving. Further we have operators like sequential composition, choice 
and merge on processes; moreover we have an operator to increase the grain size of a process. These operators allow 
us to give a compositional denotational semantics. We then show the correctness of the denotational semantics 
with respect to 0 2 : there exists an operator yield which relates the two models. (Because the two operational 
models are easily related, V is also correct with respect to 01.) The proof of the correctness is rather technical. 
In the proof we do a step by step analysis of the denotational and operational model: The uniqueness of fixed 
points is exploited: we show that the operational semantics and the composition of yield and the denotational 
semantics are both fixed points of the same contraction. Other references that follow the 'flow of control' approach 
are [GCLS88] (for Flat Concurrent Prolog), [DM87] and ijM84]. Our denotational semantics is related to [dBK88], 
where a compositional semantics is presented for Concurrent Prolog. A major difference is that there the semantics 
is constructed for an abstract uniform programming language, onto which the language CP is mapped. Here, the 
semantic models are defined for GHC directly. Further, our semantic universe using annotated functions is slightly 
simpler than the one used there, which facilitates a more transparant correctness proof. 

The compositional model for the 01 is a declarative semantics, which is more in the style of the traditional 
semantics for logic languages. References to a declarative style of models include [FL88], [Lev88], [LP85] and 
[LP87]. A declarative semantics of a program, say in Hom Clause Logic (not to be confused with GHC), is a set 
of pairs of goals and substitutions, of which the substitution verifies the goal. The situation for concurrent logic 
languages is more difficult. Given a substitution, we cannot check whether or not all the input mode constraints 
are satisfied for a certain atom. We also need to check the input mode constraints for those atoms on which it 
is dependent. We make use of an extended notion of Herbrand base and interpretations, enriched with variables 
(allowing to model the notion of computed substitution, [LP87, FLMP88a, FLPM88b]) and annotations. (Annotated 
variables are implicit in GHC, but are explicit in languages like Concurrent Prolog and PARLOG. They allow to 
model the synchronization mechanism; see [LP85] and [LP87] for similar approaches.) We extend the standard 
notions of the unification theory ([Ede85, LMM88]) in a formal framework. In particular, we provide an extended 
unification algorithm that preserves all the 'nice' properties of the standard one. Moreover, we introduce the 
notion of parallel composition, that allows to formalize the combination (plus consistency check) of the substitutions 
computed by subgoals run in parallel. Finally, we introduce the notion of streams of substitutions, that allows to 
overcome the difficulties presented in [LP87]. An interpretation is now a set of tuples of the form < A, z >,where 
a is an atom and z is a sequence of substitutions. We give an operator, which is called the immediate consequence 
operator, that, given some interpretation, gives the set of immediate consequences (i.e. that can be derived with 
the use of only one clause). In the definition of this operator we use annotated variables to ensure the correct 
semantics. We prove this declarative semantics to be correct to the first operational model. 

Figure 1 gives an overview of the results. An arrow indicates that we have established an abstraction mapping 
between the two models. 

We have omitted many proofs due to lack of space. They can be found in the full paper, of which this is an 
extended abstract. 

Acknowledgement: We are grateful to the members of the Amsterdam Concurrency Group; while discussing a 
preliminary version of this paper, they detected a serious error. 

2 The language GHC 

We only give an informal introduction to the language Guarded Hom Clauses (GHC). For a better description we 
refer to [Ued85] and [Ued86]. 

Terms and atoms are defined as usual, except for that the set of atoms is extended with so-called unification atoms. 
An unification atom is of the form t 1 = t 2, where t1 and t2 are terms. (The intended meaning of t1 = t 2 is that we 
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have to unify t1 and t2.) A GHC program is a finite set of clauses. Each clause is of the form H +- GIB, where B 
is a non unification atom and G and Bare finite multisets of atoms. The atom H is called the head, G the guard 
and lJ the body of the clause. The vertical bar I is called the commit operator. 

A program is invoked by a goal clause ..._ C, where C is a multiset of atoms and with current substitution the 
empty substitution. A goal tries to reduce itself in the following manner. Assume that the current substitution is 
{). If there is an unification atom t 1 = t2 in the goal we can remove it from the goal if the most general unifier of 
t 1 {) and t2{) exists. We then also update the current substitution with this unifier. We can remove a non unification 
atom A if there exists a clause H +- GIB (properly renamed) in the program such that 

• there exists a most general unifier 'Y of the atom AO and the head of the clause H 

• the goal made up of the atoms in (; can in current substitution 1' reduce to O (the empty goal) yielding 
current substitution {)' 

• such that no variables in the atom A{) are instantiated by 1iJ '· 

If all these requirements are satisfied then we can add jj to the goal (commitment to the clause H .- GjB) and 
update the current substitution to {)'Y'{) '. 

In this description we already made some simplifications to the original semantics of GHC: unification is atomic, 
we impose an ordering on execution (first head unification followed by the execution of the guard and then the 
execution of the body) and we use an interleaving model. The second and the third restriction are very common 
in the literature. It is not difficult to lift the first restriction in the semantic models below. 

Another well known restriction is the flatness of guards. A guard is called flat if it only consists of unification 
atoms and atoms which are made up of clauses with empty bodies. We do not impose this restriction. 

3 Operational semantics 

For the rest of the paper let W denote a fixed program. We introduce the set of substitutions ( {), 'Y E) Subst; further 
we have the familiar notion of mgu, which is a partial function from pairs of atoms to substitutions. For X a 
finite set of variables, we use {)jx to denote the restriction of{) to X. Given an atom A and term t the set of 
variables occurring in A and t we denote by V(A), V(t), respectively. The operational semantics will be based on 
the following transition relation: 

Definition 3.1 (Thansition relation) 

Let-->£;; (Goal x Subst) x (Goal x Subst) be the smallest relation satisfying 

1. <-A,{)>_,< o,{)' > 
If A= t1 = t2 and{)'= iJmgu(t 1iJ, t2t'J). 

2. <<--A,{)>-><<- fJ,{){)' > 
whenever H .... GIBE W (properly renamed),<- G, mgu(Ail, JI)>..:.< D, {)'>,and 11'iv(M) = €. 

3. If <-A,11>-+< ..... A',il'>l<D,iJ'> 
then <+-A,B,iJ >-+<-A',iJ,'iJ' >I <-B,'iJ' > 

<.- fJ,.A,iJ >_,<..._ f3,A. 1,il1 >I<+-- fJ,iJ' > 

Here..:. denotes the transitive closure of the relation-+. In these transitions,{) represents the substitution that has 
been computed until that moment. In 1, it is stated that we can resolve an unification atom by unifying its terms. In 
2, it is stated that we can resolve,__ A if we can find a clause in our program with a head H that can be unified with 
A; moreover, the refutation of the guard(; of that clause must terminate successfully and must yield a substitution 
{)'that does not instantiate any variables of A{). A conjunction, in 3, is evaluated by the parallel execution of its 
conjuncts, modeled here by interleaving. In the following definition we give the operational semantics. 

Definition 3.2 (Operational semantics) 
We define 

0 1 : Goal_, M1 , with M 1 = P(Subst), and 02 : Goal-+ !112, with Ma= P(Subst'i'). 

(Here Subst't' = Subst+ u Substw u Subst• · {6}; the symbol 6 denotes deadlock.) We put O;ij ,__ trueij = {e}, the 
identity substitution; 
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{(!91 ···'9n)!i,(,i)J «:- A,e >-+<'::'" A1,'91 >-+ · · · ..... < 0,!9n >} 
u {(!91 ···)lv(.4)1 «-A,e >-+«-A1,'91 >__,_ .. ·} _ 
u {(!91···'9n)lvc.w61 «-A,<>-+···-<An,1'n>f+A<-An# o}. 

The success set for ..... A is given by 01 ~ <-A~: It contains_ all computed answer substitutions corresponding to all 
successfully terminating computations. The set 02~ .-. A~ takes in addition into account some deadlocking and 
infinite computations, represented by elements of Subst • · { 5} and Substw, respectively. The relation between 0 1 

and o2 is obvious: If we set last(X) = {i9J 3w E Subst*(w · i9 EX)} then we have: 01 =last o 0 2 • 

In the following sections, 0 1 and 0 2 will be related to a declarative and a denotational semantics, respectively. 

We did not include all deadlocking and infinite behaviours in Ch In fact, we omitted so called local deadlock in 
guards. This can appear when a local computation in a guard commits to "wrong" clauses. It is not difficult to 
adapt 0 2 and the denotational model below as is shown in [KK89], but we prefer not to do so because it obscures 
the equivalence proof between 0 2 and the denotational model. Moreover, on the version of GHC with flat guards, 
which is the language that is used in the Japanese fifth generation project, the models coincide. 

We end this section by noticing that our operational semantics is not compositional. Consider the program 

{p(y) <-- r(y)J., q(y) +- Js(y)., r(a) +- J.} 

and let ..... p(x) and ..... q(x) be two goals. Operationally, they both yield failure, the former because of the constraint 
on the variables of the goal and the latter because of the absence of a clause for s(y). However, if we extend both 
goals with an unification atom x = a, thus yielding the goals - p( x ), x = a and <- q( x ), x = a, then we get different 
operational meanings: The first goal will never fail whereas the second one always will. 

4 Denotational semantics 

The semantic universe M 2 of the operational semantics offers too little structure to define a compositional semantics, 
as we noticed at the end of the previous section. One of the reasons being that it is not able to distinguish between 
different kinds of deadlock. A standard solution stemming from the semantic studies of imperative languages is 
to use tree-like structures. Following [BZ82], we introduce a domain of such structures or a complete metric space 
satisfying a so-called reflexive domain equation. (We omit the proof of its existence; in [BZ82] and [AR88], it is 
described how to solve in general domain equations in a metric setting.) 

Definition 4.1 The set (p, q E) P is given as the unique complete metric space satisfying 

p ~{po} UP,(r x P). 

where~ means "is isometric to" and P .(r x P) denotes the set of all compact subsets of r x P. Further r is given 
by 

(a: E) r =Vu V( l, with 
(! E) V = Subst-+ Subst;, and V( l::: {[J] : f E V}. 

Here Subst; = Substu { 8}, and 6 is a special element denoting deadlock. 

Elements of Pare called processes. A process p can either be p0 , which stands for termination, or a compact subset 
{< o:;,p; >: i E J}, for some index set J. In that case, p has the choice among the steps < a;,p; >. Each step 
consists of some action °' ;, which is a state transformation, and a resumption p; of this action, that is, the remaining 
actions to be taken after this action. 

The main difference between P and M2 is, as was already observed above, the fact that P contains tree-like 
structures whereas M2 is a set of (subsets of) streams. In addition, there are two other important differences. First, 
we use state transforming functions rather that states (substitutions). This functionality is mandatory if we want to 
define a compositional semantics. Secondly, internal steps are visible in P, which is not the case in the operational 
semantics. For this purpose we distinguish between two kinds of actions: an element f E V represents an internal 
computation step, which in the semantics of GHC corresponds to a step in the evaluation of a guard. An action 
[!] E V( l indicates an external step or to be more precise, the end of an internal computation. (In other words, 
external steps are modeled as internal computations of length 1.) A typical example of a process is 
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p= {< /i, {< [!2], {<[fa], po>}»< f4, { < [fs],po, < [fs],po >} >} >}. 

We shall use the following semantic operators. 

Definition 4.2 We define ; , II: P x P-+ P and int: P-+ P: 

1.po;q=q,p;q={<Ct,p';q>I <Ct,p'>Ep}.;q={<a,p';q>I <Ct,p'>Ep}. 

2. Po II q = q II Po = q, 
Pllq=p[LqUq [Lp, 
p [Lq = { < Ct,p' >[Lql < Ct,p' >E p}, 

< f,p' >l!_q =< f,p' [Lq >, < [fl,p' >ll_q =< [fl,p' 11 q >. 

3. int(po) 
int(p) 

= Po 
= {< f,int(p') >I(< f,p' >EpV < [f],p' >E p) Ap' :FPo} 
u {< (f],po >I< f,po >E pV < [fl,po >Ep}. 

(Notice that these definitions are recursive; they can be given in a formally correct way with the use of contractions.) 
The definition of; is straightforward. The parallel merge operator II models the parallel execution of two processes 
by the interleaving of their respective steps. In determining all possible interleavings, the notions of internal and 
external steps are crucial; inside an internal computation, no interleaving with other processes is allowed. Only 
after the last internal step, indicated by the brackets [],we have an interleaving point. This explains the definition 
of the (auxiliary) operator for the left merge, which is like the ordinary merge but which always start with a step 
from the left process: If this step is internal (but not the last step of the internal computation) then we have to 
continue with a next step of this left process: < f,p' >Ilg=< f,p' ILq >. If on the other hand an interleaving 
point is reached then we switch back to the ordinary merge again: < [f),p' >[Lg =< [f],p' II q >. 

The operator int makes a computation internal by removing all internal interleaving points. 

Now we are ready for the definition of a denotational semantics for GHC. Let W be a fixed program. 

Definition 4.3 We define 1J : P(Var)-+ Goal-+ Pas follows: 

1. 'V0Xll +-t1 = t20 == {< (fc1,,1,,xJJ.Po >}, 
with 

(Here X.J = LJ{V(.J(x)) : x EX}, and mgu(t1 t9, t 2.J) 1 should be interpreted as stating the existence of the 
most general unifier.) 

2. vnxaa +-AO= U{int({ < f(A,H,X)> vnx u V(A)fifiGO >});'VfiXI0.80: H ..... GIBE W}, 
with 

Ji _ >.,J { i?mgu(At'!, H) ifmgu(Ai?, II) 1 and mgu(Ai?,H)lx.iuv(Ad) = < 
(A,H,X) - • 0 otherwise 

(Notice that the definition of V is recursive; like the semantic operators, it can be given as the fixed point of a 
contraction.) Both in the clauses 1 and 2, the additional parameter of V, the set of variables X, is used in the 
condition concerning the resulting new state in the definition of the state-transformation; moreover it is changed 
in clause 2 from X to Xu V(A) because a new guard computation is entered there. 

In clause 2 we have further that the computations of the unification and the guard are made internal by an 
application of the function int. 

5 Correctness of 1J with respect to 02 

We shall relate 0 2 and V via a function yield - id : P -+ M2 by showing 02 = yield - id o 'V. This implies the 
correctness of 1) with respect to 0 2, that is, the fact that 1J makes at least the same distinctions that 0 2 makes. It 
appears technically convenient to turn M2, the semantic universe of 02, into a complete metric space. 
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Definition 5.1 We define M2 = Pc1(Subst't'), where Pei denotes the set of all closed subsets. The set M 2 is a complete 
metric space if we supply it with the Hausdorff metric induced by the usual metric on Subst't'. 

Next we define a function yield as follows: 

Definition 5.2 Let the function yield: P ...... Subst-+ M 2 be given by 

yield(po)( '!9) = { '!9} 
yield(p)('19) = LJ0{ t9' · yield(pn)( t9') : < Ji, PI >E P /\ · · · /\ < fn-1,Pn-l >E Pn-2/\ 

< [fnJ.Pn >E Pn-1 /\Un O · • • O Ji)(t9) = t9'} 

(The attentive reader might observe that the function yield is not well defined, because in general yield(p)( ii) is 
not closed. He is right. Fortunately, however, we are saved by the observation that the restriction of yield to the 
set {p: 3.ii, X(p = VBXBB +-.Am always delivers closed sets. This turns out to be everything we need.) 

The function yield performs four abstractions at the same time. First, it turns a process (a tree-like structure) into 
a set of streams; secondly, it computes for every state transformation a new state (given some initial state), which 
is passed through to a next state transformation in the process; moreover, it performs the function composition of 
all functions occurring in a sequence Ji, ... , fn that is derived from a finite path in p like 

< Ji,p1 >, · ·., < fn-1,Pn-1 >. < [f,.J,pn > · 

Such a sequence represents an internal computation, the end of which is indicated by [! ,.] . If we apply the resulting 
composition to a state{) then we obtain a new state{)' of which the substitution '!9' is passed through to the recursive 
application of the function yield. Finally, the function yield removes all infinite internal computations. 

A final technical comment on this definition of the function yield concerns the use of the operation U6; it is defined 
by 

U6 X =UX\{6} ifUX\{6};60 
= { 6} otherwise. 

The main result of this section is 

02 = yield - id 0 vn0~. 

where yield - id : P _, M2 is given by yield - id(p) = yield(p)(<). 

The proof is rather technical and is omitted due to lack of space. It has the following structure: First we introduce an 
intermediate syntax IS such that Goal<;;; IS; next we extend the definititions of 02 and TJ to O' : IS--+ Subst ...... M2 
and 'D' : IS-+ P such that 0 2 = O'JGoal (the restriction of O' to the set Goal) and TJ~0B = D'I Goal; finally, we 
prove CY = yield a 'D', from which the result follows. In IS, internal computation steps are represented explicitly; 
this will enable us to prove O' = yield a T>'. 

6 Declarative semantics 

In this section we define the declarative semantics of GHC. In order to model the synchronization mechanism of 
GHC we introduce the notion of annotated variable. The annotation can occur on a variable in the goal, and it 
represents the input-mode constraint. Namely, such a variable can get bound by the execution of other atoms in 
the goals, but not by the execution of the atom in which it occurs (before commitment). 

We will denote the set of variables, with typical elements x, y, . . ., by Var, and the set of the annotated variables, 
with typical elements x-, y-, .. ., by Var-. LFrom a mathematical point of view, we can consider,,_,, as a bijective 
mapping - : Var--+ Var-. The elements of Var u Var- will be represented by v, w, . ... The set of terms Term, 
with typical element t, is extended on VarU Var-. r is the temi obtained by replacing in t every variable x E Var 
by x-. 

The notion of substitution extends naturally to the new set of variables and terms. Namely, a substitution t9 is a 
mapping t9 : Var u Var- --+ Term, such that {I( v) # v for finitely many v only. t9 will be represented by the set 
{v/t Iv E Var U Var- /\ t9(v) = t ;6 v}. The application of a substitution{) to a variable is defined by 



x{} = t?(x) 
r{J = t?(x-) if t9(x-) t x­
x-t9 = t9(x)- if t9(x-) = x-
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The new notion of application differs from the standard one in that { v E Varu Var- I fJ( v) f. v} (the set of variables 
mapped. by t9 to a different term) is now a subset of { v E Var u Var- I v{} 'f. v} (the set of variables bound by 
~ to a different tern:1). An annotated variable mapped to a different term represents a violation of the associated 
input-mode constr~mt. An annotated variable bound to a different term represents the ability to receive a binding 
from the computation of another atom in the goal. The application of t9 to a term (or atom, or formula) t is defined 
by tt9 = vt9if t = v E Var U Var-, and tiJ = f(t1 t9, .. ., tnt9)if t = f(t 1,. . ., tn) We factorize the set of substitutions 
with respect to the equivalence relation t? 1 = t?2 iff 'Iv E Var u Var-[vt? 1 = viJ2]. lFrom now on, a substitution t? 
will indicate its equivalence class. 

The notion of composition 1'J 1 1'J2, of two substitutions, t9 1 and t? 2 is ext'nded as follows 

The composition is associative and the empty substitution c is the neutral element. Given a set of sets of terms M, 
we define 1'J to be a unifier for M iff 

The ordering on substitutions is the standard one, namely: t91 :5 t92 iff 3t9a [iJ11?3 = iJ2] (iJ 1 is more general than 
1?2). The set of mgu's (most general unifiers) of a set of sets of terms M is denoted by mgu(M). The unification 
algorithm can be extended, without modifying its structure, in order to deal with the new notion of application of 
a substitution to a term. 

We need now an operation for combining the substitutions obtained by running in parallel two different atoms 
in the same goal. This operation can be performed in the following way: Consider the set of all the pairs 
corresponding to the bindings of both the substitutions. Then, compute the most general unifier of such a set. 
Note that the consistency check corresponds to a verification that such a set is unifiable. We will call this operation 
parallel composition. 

Definition 6.1 Let S(t9) denote the set of sets {{v,t} I v/t E iJ}. We define 

Moreover, for 9 1, 9 2 sets of substitutions, we define 91 082 = Uc,ee .. c,ee, t91 o t92. We will denote the sets { t9} 06 
and e o { 1?} by t9 o 9 and e o t9 respectively. 

We introduce now the notion of sequence of substitutions. We need it because the standard fiat representation of the 
computed bindings (obtained by composing all the substitutions associated to the derivation steps), is not powerful 
enough to model the effects of the possible interleavings in the executions of the atoms in a goal. See [LP85], [~87] 
and [Le2] for a discussion of this problem. Since we model declaratively the success set only, we need to consider 
only finite sequences. 

Definition 6.2 The finite sequences of substitutions, with typical element z, are defined by the following (abstract) 
syntax 

z ::= iJ I [z]v I z1.z2 

The role of the squared brackets is to delimita te the critical sections. V repre~nts a set. of varia_bles, ':"hose a~otation 
has to be removed when computing the result of a sequence o~ substitutions. Thei~ mearun~ will be clarifi~ by 
the definition of the interleaving operator and result operator. We introduce the following notations. If Z and Z are 

de/ de/ I } If .01 / th .o • d!f (·' • -") / setsofsequences,thenZ.Z' = {z.z'lzEZ,z'EZ'}and[Z]v = {[z]v zEZ. z=u.z, envoz - vou .z 

and -&o([z]v.z") "if[('!? 61?').z']v.z". For 9 a set of substitution we have 9 oz "if Ucee t9oz. 

Definition 6.3 (Interleaving operator). 



1. z1 \I z2 

(t1.z1) ll_z2 

([z]v.zi) lL z2 

z1 lL z2 U z2 I\ z1 

t1.(z1 II z2) 
[z]v.(z1 II z2) 
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Since the interleaving operator is associative we can omit parentheses. We note that the definition of the operator 
II is similar to the one given in definition 4.2, but it works on different structures (sequences instead of trees). 

The following definition introduces the notion of result "R of a sequence z (or a set of sequences Z) of substitutions. 
Roughly, such a result is obtained by performing the parallel composition of each element of the sequence with 
the next one, and by checking, each time, that the partial result does not violate input-mode constraints. 

Definition 6.4 

1. R(iJ)= { ~iJ} if a1v.,.- = f 

otherwise 

2. R([z]v) = disannv("R(z)) 

3. "R(z1.z2) = n(n(z1) 0 z2) 

where disannv(z) removes all the annotations of the variables of V which occur in z. Thus, rule 2. specifies that, 
after a critical section, the input-constraints are released. Rule 1 checks that iJ (to be intended as the partial result) 
does not map annotated variables. Rule 3 specifies the order of evaluation of a sequence: from left to right. Indeed, 
we have R(01.il2 ..... t?n) = R( ... R("R(t11) o t?2) ... o dn)· 

For Z a set of sequences we define R(Z) = U.ez R(z). 

Next we introduce the notion of interpretation, and a continuous mapping (associated to the program) on interpre­
tations, whose least fixed point will be used to define the declarative semantics. Such a mapping is the extension of 
the immediate consequence operator (see [Apt87]), firstly introduced by van Emden and Kowalski [vEK76]. First we 
recall some basic notions. (Consult also the appendix with basic notions.) Given a program W, the Herbrand base 
with variables Bw associated to the program is the set of all the possible atoms that can be obtained by applying 
the predicates of W to elements of Term. Term consists of terms built of Var U Var- and of constructors of W. 

Definition 6.5 An interpretation of W is a set of pairs of the form< A, z >,where A is an atom in Bw and z is a 
sequence of substitutions on Var u Var- and Term. Iw will denote the set of all the interpretations of W. 

Iw is a complete lattice with respect to the set-inclusion, with 0 as the minimum element, and the set union and 
set intersection as the sup and inf operations, respectively. 

The following definition, that will be used in the least fixed point construction, is mainly introduced for technical 
reasons. 

Definition 6.6 Let z1 , ... , zh be sequences of substitutions, and let A 1 , ... , Ak (h ::::; k) be atoms. The sequences 
z1 , ... , Zh are said to be locally independent on A 1 , ... , Ak if and only if 

Vi E {1,. . ., h}'v't? E z;((V(t?) U C(t9)) n V(A 1 I\ ... I\ Ak) ~ V(A;)]. 

where V(t?) and C(iJ) are the standard domain and codomain oft?, and V(F) denotes the set of variables of the 
formula F. 

If X is a set of variables, then W x will denote all the possible variants of W with respect to X, i.e. the programs 
whose clauses are variants, with respect to X, of the clauses of W. We give now the definition of our immediate 
consequence operator. 

Definition 6.7 The mapping Tw : Iw -+ Iw, associated to a program W, is defined as follows: 
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Tw(I) = { < A, z > I 3A' +- Ai /\ ... /\An IAn+i /\ ... /\Am E Wv(A) 

3z1, ... , Zm locally independent on A, A 1 , ... , Am 

{ < Ai, Z1 >, ... , < Am, Zm >} C I /\ 
z E (mgu(A- ,A1).(z1 I\ ... I\ z,.)]v.(zn+I II ... I\ Zm) 

J 

u {< A,iJ >I 3A' E {x = x)V(A): 0 E mgu(A,A')} 

In this definition V stands for V(A, A', z1, ... , zn ). If A is not a unification atom, then a possible sequence for A 
results from the critical section containing the mgu with the head of a clause, and a sequence resulting from the 
guard. The variables in A are annotated. The whole is followed by a sequence resulting from the body. If A 
is a unification atom, say t1 = t2, then the sequence contains only the mgu with an atom of the form x = x (or, 
equivalently, the mgu of t 1 and 12). 

Proposition 6.8 Tw is continuous. 

Corollary 6.9 The least fixed point lfp(Tw) of Tw exists, and lfp(Tw) = Un;::o T£i, (0) holds. 

We define now the least fixed point semantics associated to a program W. 

Definition 6.10 The least fixed point semantics F of a program W is the set 

:F(W) = { < Ai /\ ... /\ An, {) > : 3zi, ... , z,. locally independent on A 1 , •.. , An 

}. 

< Ai,z1 >, ... ,< A,.,z,, >E lfp(Tw) 
iJ E (R(z1 II .. -II z,.))1v(A1, .. ,A.) 

We are able to show that the informal operational semantics (as it is given in Guarded Horn Clauses section) is 
sound and complete with respect to the declarative semantics F: F(W) = 0 1 (W) for any GHC program W. For 
the proof (which is omitted here for reasons of space) we refer to [Pal88]. 

The following example illustrates the necessity to use sequences of substitutions. Similar examples have been 
given in [LP85J, [Lev88] and [Le2] to prove that a flat representation of the computed bindings (as given in [LP85] 
and [LP87]) is not adequate to deal with the cases of deadlock (it does not allow to distinguish between the two 
programs below). 

Example 

1. Consider the program {p(a, w1) +- lw1 =b., q(w2 , b) - lw2 =a.}, and consider the goal 

+- p(x, y), q(x, y). We have< p(J:, y), z 1 >, < q(x, y), z2 >E lfp(Tw ), for 

z1 = [{x-/a,wify-}]{x,y)·{wi/b} and z2 = ({y-/b,w2/x-)]{x,y)·{w2/a). 

For all the possible interleavings z E z1 II z2 , we get R.(z) = ©. Indeed, no refutations are possible (deadlock). 

2. Consider now the program {p(w1 ,wa) - lr(wi),w3 =b., r(a) +- 1., q(w2,b) - \w2 =a.}. We have 
< p(x,y),z1 >,< q(x,y),z2 >E lfp(Tw), for z1 = [{wi/X-,w3/y-}]{x,y}·{wa/b}.({w!/a}){w1} and z2 = 
[{y-/b,w2/x-}]{x,y)·{w2/a}. We have 

z = [{ w1/x-, w3/y-}}{x,yj·{ w2fb}.[{y- /b, w2/x-}]{x,y)·{w2/a}.[{ w! /a}){w.} E z1 I\ z2. Now, we observe that 

{ x/ a, y/b, wif a, w3 /b, w2/a} E R (z). Indeed, there exists a refutation of the goal +- p(x, y), q(x, y) giving the 
answer {x/a, y/b}. 
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7 Appendix: Basic Notation 

We will use mainly the same terminology and notations of [Apt87], [LMM88], and [Ede85] to which the reader is 
referred also for the main properties about substitutions and unification. 

Let Var be a set of variables, with typical elements x, .. .. Let Term be a set of terms, with typical elements t, .. . , 
built on Var and on a given sets of constructors. A substitution {) is a mapping from Var into Term such that 
'D(t'J) = {x E Var : t'J(x) f x} is finite. V(t'J) is called the domain of the substitution t'J. We will use also the 
set-theoretic notation for t'J: {) = {x/t Ix E V(t'J), t'J(x) = t}. Let F be a expression (term, atom or clause). The set 
of variables occurring in F is denoted by V(F). The application FiJ of{) to F is defined as the expression obtained 
by replacing each variable x in F by t'J(x). C(t'J) (which we will improperly call the co-domain, or range of 19) is 
the set U,,ED(6 ) V(t'J(x)). A renaming p is any bijective substitution from Var to Var. If X is a set of variables, 
then Fp is a variant of a expression F with respect to X iff p is a renaming and V(Fp) n V = 0. Fp is said to be 
a variant of F iff Fp is a variant of F with respect to V(F). The composition{){)' of two substitutions{) and{)' 
is defined in the usual way, namely (t'J,'J')(x) = (iJ(x))t'J'. We recall that the composition is associative, the empty 
substitution e is the neutral element, and for each renaming p there exists the inverse p- 1, i.e. pp- 1 = p- 1 p = e. 
Moreover, F({){)') = (F,'J){)'. {)is called idempotentiff{}{) ={)(or, equivalently, iffV(t'J) nC(t'J) = 0). The pre-order 
relation::; on substitutions is defined by: {) ::; {)' <:} 3t'J1[lJt?1 = 19']. The restriction t'J1x of{) to a set of variables X 
is the substitution i?1x(x) =·t'J(x) for x EX and t'J1x(x) = x otherwise. 

Given a set of sets of terms M, a substitution{) is a unifier of M iff'<IS E M'<lt,t' E S[ti? = t't'J] holds.{) is a most 
general unifier (mgu) of M if it is a unifier of M and {) ::; .J' for any other unifier {)' of M. 

8 Appendix: Extended unification algorithm 

In this appendix We give an extended version of the unification algorithm, based on the one presented in [Apt87], 
that works on finite sets of pairs. Given a finite set of finite sets of terms M, consider the (finite) set of pairs 

Mpair•= LJ {<t,u>it,uES}. 
SeM 

The unifiers of a set { < t 1 , u1 >, ... , < t,,, un >) are the ones of { { t 1. ui}, ... , {tn, ttn}}. Of course, M and Mpair• 
are equivalent (i.e. they have the same unifiers). A set of pairs is called solved if it is of the form 
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where all the x;'s are distinct elements of Var u Var-, x; ~ V(t1, ... , tn), and, if x; E Var and t; cl x;, then 
x; ~ V(x 1, ... , Xn, t 1, ... , tn)· For P solved, define "IP = { xi/t1, · · ·, Xnftn}, and Cp = "!P'YP· 

The following algorithm transforms a set of pairs into an equivalent one which is solved, or halts with failure if 
the set has no unifiers. 

Definition 8.1 (Extended unification algorithm) 

• Let P, P' be sets of pairs. Define P => P' if P' is obtained from P by choosing in P a pair of the form below 
and by performing the corresponding action 

2. < f(t 1 , .•. ,tn),g(u1, ... ,u,,) >,where f ;pg 

3. < x, x > where z E Varu Var-

replace by the pairs 
<t1,u1 >,. .. ,<tn,Un > 

halt with failure 

delete the pair 

4. < t, x > where x E Var u Var- ,t ~ Var u Var- replace by the pair< x, t > 

5. < x,t > where x E Var,x ,;/ t, x- ;/ t 
and x or x- occurs in other pairs 

6. < x,x- >where x E Var, 
and x occurs in other pairs 

7. < x-, t > where x- E Var-, x- ;/ t 
and x- occurs in other pairs 

if x E V(t) or x- E V(t) 
then halt with failure 
else app>ly the substitution 
{x/t} to all the other pairs 

apply the substitution 
{x/x-} to all the other pairs 

ifx- EV(t) 
then halt with failure 
else apply the substitution 
{x- ft} to all the other pairs. 

We will write P =>fail if a failure is detected (steps 2, 5 or 7). 

• Let=>* be the reflexive-transitive closure of the relation=>, and let PSD1 be the set P .. 1 = {P' I symm(P) =>* 
P', andP'issolved}, wheresymm({< t 1,u1 >, ... ,< t,,,un >}) = {< t1,u1 >, ... ,< t,,,u,, >} U {< 11,u! > 
, ... ,<t;; 1 u;; >}. 

The set of substitutions determined by the algorithm is C..(P) = { 5 p• I P' E Pso1}. 

The following proposition shows that the set of the idempotent most general unifiers of M is finite and can be 
computed in finite time by the extended unification algorithm. 

Proposition 8.2 Let P be a finite set of pairs, and /If be a finite set of finite sets of terms. 

1. (finiteness) The relation =>is finitely-branching and noetherian (i.e. terminating). 

2. (solved form) If P is in normal form (i.e. there exist no l" such that P => P'), then P is in solved form. 

3. (soundness) D,.(P) <; mgu(P) 

4. (completeness) mgu(M) <; C..(M,,.;,.). 

5. P =>"fail iff P is not unifiable. 

This result implies that the set of the idempotent most general unifiers of Mis finite and can be computed in finite 
time by a deterministic simulation of the extended unification algorithm (the non-determinism of the relation -+ 

can be simulated via a simple backtracking). 


