
Control Flow versus Logic: a denotational and a declarative model
for Guarded Horn Clauses *

Frank S. de Boer1

Joost N. Kok2

Catuscia PalamidessP
Jan J.M.M. Rutten1

1Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2Department of Computer Science, University of Utrecht,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

3Dipartimento di Informatica, Universita di Pisa,
Corso Italia 40, 56100 Pisa, Italy

Abstract

The paper gives four semantic models for Guarded Horn Clauses (GHQ. Two operational models are based on a
transition system; the first one gives the set of computed answer substitutions (the so<alled success set) and the
second one takes deadlock and infinite behaviour into account. They are easily related. The main purpose of the
paper is to develop compositional models for GHC that are correct with respect to the operational models. For
the success set case we give a compositional declarative semantics which can be seen a an extension of models for
Horn Cause Logic. Further, a metric semantics that uses tree-like structures is given, which is proved to be correct
with respect to the second operational semantics.

1 lntrod uction

In this paper we consider several models for the concurrent logic language Guarded Hom Clauses (GHC). We have
good hope that these models (with some minor changes) are also suitable for other concurrent logic languages
like Concurrent Prolog ([Sha83] [Sha87]) and PARLOG ([CG86], [Rin88]). Interesting features of concurrent logic
languages include synchronization mechanisms (annotated variables, rules of suspension) and operators that restrict
the flow of control (commit). For an introduction to GHC consult [Ued85]. See also [Sar87a] for some remarks
about the definition of GHC.

We introduce four models for GHC: Two operational models, a denotational model and a declarative model.

The first operational model gives the results of successfull finite computations, that is the set of computed an­
swer substitutions. A second operational model gives more information: it also deals with deadlock and in­
finite behaviour. The two operational semantics 0 1 and 02 are based on the same transition relation (in the
so-called SOS style ([HP79])). For concurrent logic programming we can find this style of semantics for example
in [Sar87a, GCLS88, dBK88].

Although intuitively very clear, these operational models have one drawback: they are not compositional. In this
paper, we set out to develop both for 0 1 and 0 2 a more distinctive model that is compositional and correct with
respect to the corresponding operational model. For 0 2 we give a denotational model 1) that focuses on the flow of
control, including the deadlock behavior of a GHC program, and for 01 a declarative model is given in the spirit
of logic (programming).

In order to define the denotational semantics, which is compositional, we need structures that allow for interleaving
and that contain some information about choice points and deadlock. We use tree-like structures labeled by
functions that can be annotated. A function that is annotated is used to model the last step in the execution

•Part of this work was carried out in the context of ESPRIT 415: Parallel Architectures and Languages for Advanced Information Processing
- a VI.SI-directed approach.

166

Figure 1: Overview of the models

of a guard, after which we have a new interleaving point. Note that inside such a guard computation, which is
considered to be atomic, we do not have interleaving. Further we have operators like sequential composition, choice
and merge on processes; moreover we have an operator to increase the grain size of a process. These operators allow
us to give a compositional denotational semantics. We then show the correctness of the denotational semantics
with respect to 0 2 : there exists an operator yield which relates the two models. (Because the two operational
models are easily related, V is also correct with respect to 01.) The proof of the correctness is rather technical.
In the proof we do a step by step analysis of the denotational and operational model: The uniqueness of fixed
points is exploited: we show that the operational semantics and the composition of yield and the denotational
semantics are both fixed points of the same contraction. Other references that follow the 'flow of control' approach
are [GCLS88] (for Flat Concurrent Prolog), [DM87] and ijM84]. Our denotational semantics is related to [dBK88],
where a compositional semantics is presented for Concurrent Prolog. A major difference is that there the semantics
is constructed for an abstract uniform programming language, onto which the language CP is mapped. Here, the
semantic models are defined for GHC directly. Further, our semantic universe using annotated functions is slightly
simpler than the one used there, which facilitates a more transparant correctness proof.

The compositional model for the 01 is a declarative semantics, which is more in the style of the traditional
semantics for logic languages. References to a declarative style of models include [FL88], [Lev88], [LP85] and
[LP87]. A declarative semantics of a program, say in Hom Clause Logic (not to be confused with GHC), is a set
of pairs of goals and substitutions, of which the substitution verifies the goal. The situation for concurrent logic
languages is more difficult. Given a substitution, we cannot check whether or not all the input mode constraints
are satisfied for a certain atom. We also need to check the input mode constraints for those atoms on which it
is dependent. We make use of an extended notion of Herbrand base and interpretations, enriched with variables
(allowing to model the notion of computed substitution, [LP87, FLMP88a, FLPM88b]) and annotations. (Annotated
variables are implicit in GHC, but are explicit in languages like Concurrent Prolog and PARLOG. They allow to
model the synchronization mechanism; see [LP85] and [LP87] for similar approaches.) We extend the standard
notions of the unification theory ([Ede85, LMM88]) in a formal framework. In particular, we provide an extended
unification algorithm that preserves all the 'nice' properties of the standard one. Moreover, we introduce the
notion of parallel composition, that allows to formalize the combination (plus consistency check) of the substitutions
computed by subgoals run in parallel. Finally, we introduce the notion of streams of substitutions, that allows to
overcome the difficulties presented in [LP87]. An interpretation is now a set of tuples of the form < A, z >,where
a is an atom and z is a sequence of substitutions. We give an operator, which is called the immediate consequence
operator, that, given some interpretation, gives the set of immediate consequences (i.e. that can be derived with
the use of only one clause). In the definition of this operator we use annotated variables to ensure the correct
semantics. We prove this declarative semantics to be correct to the first operational model.

Figure 1 gives an overview of the results. An arrow indicates that we have established an abstraction mapping
between the two models.

We have omitted many proofs due to lack of space. They can be found in the full paper, of which this is an
extended abstract.

Acknowledgement: We are grateful to the members of the Amsterdam Concurrency Group; while discussing a
preliminary version of this paper, they detected a serious error.

2 The language GHC

We only give an informal introduction to the language Guarded Hom Clauses (GHC). For a better description we
refer to [Ued85] and [Ued86].

Terms and atoms are defined as usual, except for that the set of atoms is extended with so-called unification atoms.
An unification atom is of the form t 1 = t 2, where t1 and t2 are terms. (The intended meaning of t1 = t 2 is that we

167

have to unify t1 and t2.) A GHC program is a finite set of clauses. Each clause is of the form H +- GIB, where B
is a non unification atom and G and Bare finite multisets of atoms. The atom H is called the head, G the guard
and lJ the body of the clause. The vertical bar I is called the commit operator.

A program is invoked by a goal clause ..._ C, where C is a multiset of atoms and with current substitution the
empty substitution. A goal tries to reduce itself in the following manner. Assume that the current substitution is
{). If there is an unification atom t 1 = t2 in the goal we can remove it from the goal if the most general unifier of
t 1 {) and t2{) exists. We then also update the current substitution with this unifier. We can remove a non unification
atom A if there exists a clause H +- GIB (properly renamed) in the program such that

• there exists a most general unifier 'Y of the atom AO and the head of the clause H

• the goal made up of the atoms in (; can in current substitution 1' reduce to O (the empty goal) yielding
current substitution {)'

• such that no variables in the atom A{) are instantiated by 1iJ '·

If all these requirements are satisfied then we can add jj to the goal (commitment to the clause H .- GjB) and
update the current substitution to {)'Y'{) '.

In this description we already made some simplifications to the original semantics of GHC: unification is atomic,
we impose an ordering on execution (first head unification followed by the execution of the guard and then the
execution of the body) and we use an interleaving model. The second and the third restriction are very common
in the literature. It is not difficult to lift the first restriction in the semantic models below.

Another well known restriction is the flatness of guards. A guard is called flat if it only consists of unification
atoms and atoms which are made up of clauses with empty bodies. We do not impose this restriction.

3 Operational semantics

For the rest of the paper let W denote a fixed program. We introduce the set of substitutions ({), 'Y E) Subst; further
we have the familiar notion of mgu, which is a partial function from pairs of atoms to substitutions. For X a
finite set of variables, we use {)jx to denote the restriction of{) to X. Given an atom A and term t the set of
variables occurring in A and t we denote by V(A), V(t), respectively. The operational semantics will be based on
the following transition relation:

Definition 3.1 (Thansition relation)

Let-->£;; (Goal x Subst) x (Goal x Subst) be the smallest relation satisfying

1. <-A,{)>_,< o,{)' >
If A= t1 = t2 and{)'= iJmgu(t 1iJ, t2t'J).

2. <<--A,{)>-><<- fJ,{){)' >
whenever H GIBE W (properly renamed),<- G, mgu(Ail, JI)>..:.< D, {)'>,and 11'iv(M) = €.

3. If <-A,11>-+< A',il'>l<D,iJ'>
then <+-A,B,iJ >-+<-A',iJ,'iJ' >I <-B,'iJ' >

<.- fJ,.A,iJ >_,<..._ f3,A. 1,il1 >I<+-- fJ,iJ' >

Here..:. denotes the transitive closure of the relation-+. In these transitions,{) represents the substitution that has
been computed until that moment. In 1, it is stated that we can resolve an unification atom by unifying its terms. In
2, it is stated that we can resolve,__ A if we can find a clause in our program with a head H that can be unified with
A; moreover, the refutation of the guard(; of that clause must terminate successfully and must yield a substitution
{)'that does not instantiate any variables of A{). A conjunction, in 3, is evaluated by the parallel execution of its
conjuncts, modeled here by interleaving. In the following definition we give the operational semantics.

Definition 3.2 (Operational semantics)
We define

0 1 : Goal_, M1 , with M 1 = P(Subst), and 02 : Goal-+ !112, with Ma= P(Subst'i').

(Here Subst't' = Subst+ u Substw u Subst• · {6}; the symbol 6 denotes deadlock.) We put O;ij ,__ trueij = {e}, the
identity substitution;

168

{(!91 ···'9n)!i,(,i)J «:- A,e >-+<'::'" A1,'91 >-+ · · · < 0,!9n >}
u {(!91 ···)lv(.4)1 «-A,e >-+«-A1,'91 >__,_ .. ·} _
u {(!91···'9n)lvc.w61 «-A,<>-+···-<An,1'n>f+A<-An# o}.

The success set for A is given by 01 ~ <-A~: It contains_ all computed answer substitutions corresponding to all
successfully terminating computations. The set 02~ .-. A~ takes in addition into account some deadlocking and
infinite computations, represented by elements of Subst • · { 5} and Substw, respectively. The relation between 0 1

and o2 is obvious: If we set last(X) = {i9J 3w E Subst*(w · i9 EX)} then we have: 01 =last o 0 2 •

In the following sections, 0 1 and 0 2 will be related to a declarative and a denotational semantics, respectively.

We did not include all deadlocking and infinite behaviours in Ch In fact, we omitted so called local deadlock in
guards. This can appear when a local computation in a guard commits to "wrong" clauses. It is not difficult to
adapt 0 2 and the denotational model below as is shown in [KK89], but we prefer not to do so because it obscures
the equivalence proof between 0 2 and the denotational model. Moreover, on the version of GHC with flat guards,
which is the language that is used in the Japanese fifth generation project, the models coincide.

We end this section by noticing that our operational semantics is not compositional. Consider the program

{p(y) <-- r(y)J., q(y) +- Js(y)., r(a) +- J.}

and let p(x) and q(x) be two goals. Operationally, they both yield failure, the former because of the constraint
on the variables of the goal and the latter because of the absence of a clause for s(y). However, if we extend both
goals with an unification atom x = a, thus yielding the goals - p(x), x = a and <- q(x), x = a, then we get different
operational meanings: The first goal will never fail whereas the second one always will.

4 Denotational semantics

The semantic universe M 2 of the operational semantics offers too little structure to define a compositional semantics,
as we noticed at the end of the previous section. One of the reasons being that it is not able to distinguish between
different kinds of deadlock. A standard solution stemming from the semantic studies of imperative languages is
to use tree-like structures. Following [BZ82], we introduce a domain of such structures or a complete metric space
satisfying a so-called reflexive domain equation. (We omit the proof of its existence; in [BZ82] and [AR88], it is
described how to solve in general domain equations in a metric setting.)

Definition 4.1 The set (p, q E) P is given as the unique complete metric space satisfying

p ~{po} UP,(r x P).

where~ means "is isometric to" and P .(r x P) denotes the set of all compact subsets of r x P. Further r is given
by

(a: E) r =Vu V(l, with
(! E) V = Subst-+ Subst;, and V(l::: {[J] : f E V}.

Here Subst; = Substu { 8}, and 6 is a special element denoting deadlock.

Elements of Pare called processes. A process p can either be p0 , which stands for termination, or a compact subset
{< o:;,p; >: i E J}, for some index set J. In that case, p has the choice among the steps < a;,p; >. Each step
consists of some action °' ;, which is a state transformation, and a resumption p; of this action, that is, the remaining
actions to be taken after this action.

The main difference between P and M2 is, as was already observed above, the fact that P contains tree-like
structures whereas M2 is a set of (subsets of) streams. In addition, there are two other important differences. First,
we use state transforming functions rather that states (substitutions). This functionality is mandatory if we want to
define a compositional semantics. Secondly, internal steps are visible in P, which is not the case in the operational
semantics. For this purpose we distinguish between two kinds of actions: an element f E V represents an internal
computation step, which in the semantics of GHC corresponds to a step in the evaluation of a guard. An action
[!] E V(l indicates an external step or to be more precise, the end of an internal computation. (In other words,
external steps are modeled as internal computations of length 1.) A typical example of a process is

169

p= {< /i, {< [!2], {<[fa], po>}»< f4, { < [fs],po, < [fs],po >} >} >}.

We shall use the following semantic operators.

Definition 4.2 We define ; , II: P x P-+ P and int: P-+ P:

1.po;q=q,p;q={<Ct,p';q>I <Ct,p'>Ep}.;q={<a,p';q>I <Ct,p'>Ep}.

2. Po II q = q II Po = q,
Pllq=p[LqUq [Lp,
p [Lq = { < Ct,p' >[Lql < Ct,p' >E p},

< f,p' >l!_q =< f,p' [Lq >, < [fl,p' >ll_q =< [fl,p' 11 q >.

3. int(po)
int(p)

= Po
= {< f,int(p') >I(< f,p' >EpV < [f],p' >E p) Ap' :FPo}
u {< (f],po >I< f,po >E pV < [fl,po >Ep}.

(Notice that these definitions are recursive; they can be given in a formally correct way with the use of contractions.)
The definition of; is straightforward. The parallel merge operator II models the parallel execution of two processes
by the interleaving of their respective steps. In determining all possible interleavings, the notions of internal and
external steps are crucial; inside an internal computation, no interleaving with other processes is allowed. Only
after the last internal step, indicated by the brackets [],we have an interleaving point. This explains the definition
of the (auxiliary) operator for the left merge, which is like the ordinary merge but which always start with a step
from the left process: If this step is internal (but not the last step of the internal computation) then we have to
continue with a next step of this left process: < f,p' >Ilg=< f,p' ILq >. If on the other hand an interleaving
point is reached then we switch back to the ordinary merge again: < [f),p' >[Lg =< [f],p' II q >.

The operator int makes a computation internal by removing all internal interleaving points.

Now we are ready for the definition of a denotational semantics for GHC. Let W be a fixed program.

Definition 4.3 We define 1J : P(Var)-+ Goal-+ Pas follows:

1. 'V0Xll +-t1 = t20 == {< (fc1,,1,,xJJ.Po >},
with

(Here X.J = LJ{V(.J(x)) : x EX}, and mgu(t1 t9, t 2.J) 1 should be interpreted as stating the existence of the
most general unifier.)

2. vnxaa +-AO= U{int({ < f(A,H,X)> vnx u V(A)fifiGO >});'VfiXI0.80: H GIBE W},
with

Ji _ >.,J { i?mgu(At'!, H) ifmgu(Ai?, II) 1 and mgu(Ai?,H)lx.iuv(Ad) = <
(A,H,X) - • 0 otherwise

(Notice that the definition of V is recursive; like the semantic operators, it can be given as the fixed point of a
contraction.) Both in the clauses 1 and 2, the additional parameter of V, the set of variables X, is used in the
condition concerning the resulting new state in the definition of the state-transformation; moreover it is changed
in clause 2 from X to Xu V(A) because a new guard computation is entered there.

In clause 2 we have further that the computations of the unification and the guard are made internal by an
application of the function int.

5 Correctness of 1J with respect to 02

We shall relate 0 2 and V via a function yield - id : P -+ M2 by showing 02 = yield - id o 'V. This implies the
correctness of 1) with respect to 0 2, that is, the fact that 1J makes at least the same distinctions that 0 2 makes. It
appears technically convenient to turn M2, the semantic universe of 02, into a complete metric space.

170

Definition 5.1 We define M2 = Pc1(Subst't'), where Pei denotes the set of all closed subsets. The set M 2 is a complete
metric space if we supply it with the Hausdorff metric induced by the usual metric on Subst't'.

Next we define a function yield as follows:

Definition 5.2 Let the function yield: P Subst-+ M 2 be given by

yield(po)('!9) = { '!9}
yield(p)('19) = LJ0{ t9' · yield(pn)(t9') : < Ji, PI >E P /\ · · · /\ < fn-1,Pn-l >E Pn-2/\

< [fnJ.Pn >E Pn-1 /\Un O · • • O Ji)(t9) = t9'}

(The attentive reader might observe that the function yield is not well defined, because in general yield(p)(ii) is
not closed. He is right. Fortunately, however, we are saved by the observation that the restriction of yield to the
set {p: 3.ii, X(p = VBXBB +-.Am always delivers closed sets. This turns out to be everything we need.)

The function yield performs four abstractions at the same time. First, it turns a process (a tree-like structure) into
a set of streams; secondly, it computes for every state transformation a new state (given some initial state), which
is passed through to a next state transformation in the process; moreover, it performs the function composition of
all functions occurring in a sequence Ji, ... , fn that is derived from a finite path in p like

< Ji,p1 >, · ·., < fn-1,Pn-1 >. < [f,.J,pn > ·

Such a sequence represents an internal computation, the end of which is indicated by [! ,.] . If we apply the resulting
composition to a state{) then we obtain a new state{)' of which the substitution '!9' is passed through to the recursive
application of the function yield. Finally, the function yield removes all infinite internal computations.

A final technical comment on this definition of the function yield concerns the use of the operation U6; it is defined
by

U6 X =UX\{6} ifUX\{6};60
= { 6} otherwise.

The main result of this section is

02 = yield - id 0 vn0~.

where yield - id : P _, M2 is given by yield - id(p) = yield(p)(<).

The proof is rather technical and is omitted due to lack of space. It has the following structure: First we introduce an
intermediate syntax IS such that Goal<;;; IS; next we extend the definititions of 02 and TJ to O' : IS--+ Subst M2
and 'D' : IS-+ P such that 0 2 = O'JGoal (the restriction of O' to the set Goal) and TJ~0B = D'I Goal; finally, we
prove CY = yield a 'D', from which the result follows. In IS, internal computation steps are represented explicitly;
this will enable us to prove O' = yield a T>'.

6 Declarative semantics

In this section we define the declarative semantics of GHC. In order to model the synchronization mechanism of
GHC we introduce the notion of annotated variable. The annotation can occur on a variable in the goal, and it
represents the input-mode constraint. Namely, such a variable can get bound by the execution of other atoms in
the goals, but not by the execution of the atom in which it occurs (before commitment).

We will denote the set of variables, with typical elements x, y, . . ., by Var, and the set of the annotated variables,
with typical elements x-, y-, .. ., by Var-. LFrom a mathematical point of view, we can consider,,_,, as a bijective
mapping - : Var--+ Var-. The elements of Var u Var- will be represented by v, w, The set of terms Term,
with typical element t, is extended on VarU Var-. r is the temi obtained by replacing in t every variable x E Var
by x-.

The notion of substitution extends naturally to the new set of variables and terms. Namely, a substitution t9 is a
mapping t9 : Var u Var- --+ Term, such that {I(v) # v for finitely many v only. t9 will be represented by the set
{v/t Iv E Var U Var- /\ t9(v) = t ;6 v}. The application of a substitution{) to a variable is defined by

x{} = t?(x)
r{J = t?(x-) if t9(x-) t x­
x-t9 = t9(x)- if t9(x-) = x-

171

The new notion of application differs from the standard one in that { v E Varu Var- I fJ(v) f. v} (the set of variables
mapped. by t9 to a different term) is now a subset of { v E Var u Var- I v{} 'f. v} (the set of variables bound by
~ to a different tern:1). An annotated variable mapped to a different term represents a violation of the associated
input-mode constr~mt. An annotated variable bound to a different term represents the ability to receive a binding
from the computation of another atom in the goal. The application of t9 to a term (or atom, or formula) t is defined
by tt9 = vt9if t = v E Var U Var-, and tiJ = f(t1 t9, .. ., tnt9)if t = f(t 1,. . ., tn) We factorize the set of substitutions
with respect to the equivalence relation t? 1 = t?2 iff 'Iv E Var u Var-[vt? 1 = viJ2]. lFrom now on, a substitution t?
will indicate its equivalence class.

The notion of composition 1'J 1 1'J2, of two substitutions, t9 1 and t? 2 is ext'nded as follows

The composition is associative and the empty substitution c is the neutral element. Given a set of sets of terms M,
we define 1'J to be a unifier for M iff

The ordering on substitutions is the standard one, namely: t91 :5 t92 iff 3t9a [iJ11?3 = iJ2] (iJ 1 is more general than
1?2). The set of mgu's (most general unifiers) of a set of sets of terms M is denoted by mgu(M). The unification
algorithm can be extended, without modifying its structure, in order to deal with the new notion of application of
a substitution to a term.

We need now an operation for combining the substitutions obtained by running in parallel two different atoms
in the same goal. This operation can be performed in the following way: Consider the set of all the pairs
corresponding to the bindings of both the substitutions. Then, compute the most general unifier of such a set.
Note that the consistency check corresponds to a verification that such a set is unifiable. We will call this operation
parallel composition.

Definition 6.1 Let S(t9) denote the set of sets {{v,t} I v/t E iJ}. We define

Moreover, for 9 1, 9 2 sets of substitutions, we define 91 082 = Uc,ee .. c,ee, t91 o t92. We will denote the sets { t9} 06
and e o { 1?} by t9 o 9 and e o t9 respectively.

We introduce now the notion of sequence of substitutions. We need it because the standard fiat representation of the
computed bindings (obtained by composing all the substitutions associated to the derivation steps), is not powerful
enough to model the effects of the possible interleavings in the executions of the atoms in a goal. See [LP85], [~87]
and [Le2] for a discussion of this problem. Since we model declaratively the success set only, we need to consider
only finite sequences.

Definition 6.2 The finite sequences of substitutions, with typical element z, are defined by the following (abstract)
syntax

z ::= iJ I [z]v I z1.z2

The role of the squared brackets is to delimita te the critical sections. V repre~nts a set. of varia_bles, ':"hose a~otation
has to be removed when computing the result of a sequence o~ substitutions. Thei~ mearun~ will be clarifi~ by
the definition of the interleaving operator and result operator. We introduce the following notations. If Z and Z are

de/ de/ I } If .01 / th .o • d!f (·' • -") / setsofsequences,thenZ.Z' = {z.z'lzEZ,z'EZ'}and[Z]v = {[z]v zEZ. z=u.z, envoz - vou .z

and -&o([z]v.z") "if[('!? 61?').z']v.z". For 9 a set of substitution we have 9 oz "if Ucee t9oz.

Definition 6.3 (Interleaving operator).

1. z1 \I z2

(t1.z1) ll_z2

([z]v.zi) lL z2

z1 lL z2 U z2 I\ z1

t1.(z1 II z2)
[z]v.(z1 II z2)

172

Since the interleaving operator is associative we can omit parentheses. We note that the definition of the operator
II is similar to the one given in definition 4.2, but it works on different structures (sequences instead of trees).

The following definition introduces the notion of result "R of a sequence z (or a set of sequences Z) of substitutions.
Roughly, such a result is obtained by performing the parallel composition of each element of the sequence with
the next one, and by checking, each time, that the partial result does not violate input-mode constraints.

Definition 6.4

1. R(iJ)= { ~iJ} if a1v.,.- = f

otherwise

2. R([z]v) = disannv("R(z))

3. "R(z1.z2) = n(n(z1) 0 z2)

where disannv(z) removes all the annotations of the variables of V which occur in z. Thus, rule 2. specifies that,
after a critical section, the input-constraints are released. Rule 1 checks that iJ (to be intended as the partial result)
does not map annotated variables. Rule 3 specifies the order of evaluation of a sequence: from left to right. Indeed,
we have R(01.il2 t?n) = R(... R("R(t11) o t?2) ... o dn)·

For Z a set of sequences we define R(Z) = U.ez R(z).

Next we introduce the notion of interpretation, and a continuous mapping (associated to the program) on interpre­
tations, whose least fixed point will be used to define the declarative semantics. Such a mapping is the extension of
the immediate consequence operator (see [Apt87]), firstly introduced by van Emden and Kowalski [vEK76]. First we
recall some basic notions. (Consult also the appendix with basic notions.) Given a program W, the Herbrand base
with variables Bw associated to the program is the set of all the possible atoms that can be obtained by applying
the predicates of W to elements of Term. Term consists of terms built of Var U Var- and of constructors of W.

Definition 6.5 An interpretation of W is a set of pairs of the form< A, z >,where A is an atom in Bw and z is a
sequence of substitutions on Var u Var- and Term. Iw will denote the set of all the interpretations of W.

Iw is a complete lattice with respect to the set-inclusion, with 0 as the minimum element, and the set union and
set intersection as the sup and inf operations, respectively.

The following definition, that will be used in the least fixed point construction, is mainly introduced for technical
reasons.

Definition 6.6 Let z1 , ... , zh be sequences of substitutions, and let A 1 , ... , Ak (h ::::; k) be atoms. The sequences
z1 , ... , Zh are said to be locally independent on A 1 , ... , Ak if and only if

Vi E {1,. . ., h}'v't? E z;((V(t?) U C(t9)) n V(A 1 I\ ... I\ Ak) ~ V(A;)].

where V(t?) and C(iJ) are the standard domain and codomain oft?, and V(F) denotes the set of variables of the
formula F.

If X is a set of variables, then W x will denote all the possible variants of W with respect to X, i.e. the programs
whose clauses are variants, with respect to X, of the clauses of W. We give now the definition of our immediate
consequence operator.

Definition 6.7 The mapping Tw : Iw -+ Iw, associated to a program W, is defined as follows:

173

Tw(I) = { < A, z > I 3A' +- Ai /\ ... /\An IAn+i /\ ... /\Am E Wv(A)

3z1, ... , Zm locally independent on A, A 1 , ... , Am

{ < Ai, Z1 >, ... , < Am, Zm >} C I /\
z E (mgu(A- ,A1).(z1 I\ ... I\ z,.)]v.(zn+I II ... I\ Zm)

J

u {< A,iJ >I 3A' E {x = x)V(A): 0 E mgu(A,A')}

In this definition V stands for V(A, A', z1, ... , zn). If A is not a unification atom, then a possible sequence for A
results from the critical section containing the mgu with the head of a clause, and a sequence resulting from the
guard. The variables in A are annotated. The whole is followed by a sequence resulting from the body. If A
is a unification atom, say t1 = t2, then the sequence contains only the mgu with an atom of the form x = x (or,
equivalently, the mgu of t 1 and 12).

Proposition 6.8 Tw is continuous.

Corollary 6.9 The least fixed point lfp(Tw) of Tw exists, and lfp(Tw) = Un;::o T£i, (0) holds.

We define now the least fixed point semantics associated to a program W.

Definition 6.10 The least fixed point semantics F of a program W is the set

:F(W) = { < Ai /\ ... /\ An, {) > : 3zi, ... , z,. locally independent on A 1 , •.. , An

}.

< Ai,z1 >, ... ,< A,.,z,, >E lfp(Tw)
iJ E (R(z1 II .. -II z,.))1v(A1, .. ,A.)

We are able to show that the informal operational semantics (as it is given in Guarded Horn Clauses section) is
sound and complete with respect to the declarative semantics F: F(W) = 0 1 (W) for any GHC program W. For
the proof (which is omitted here for reasons of space) we refer to [Pal88].

The following example illustrates the necessity to use sequences of substitutions. Similar examples have been
given in [LP85J, [Lev88] and [Le2] to prove that a flat representation of the computed bindings (as given in [LP85]
and [LP87]) is not adequate to deal with the cases of deadlock (it does not allow to distinguish between the two
programs below).

Example

1. Consider the program {p(a, w1) +- lw1 =b., q(w2 , b) - lw2 =a.}, and consider the goal

+- p(x, y), q(x, y). We have< p(J:, y), z 1 >, < q(x, y), z2 >E lfp(Tw), for

z1 = [{x-/a,wify-}]{x,y)·{wi/b} and z2 = ({y-/b,w2/x-)]{x,y)·{w2/a).

For all the possible interleavings z E z1 II z2 , we get R.(z) = ©. Indeed, no refutations are possible (deadlock).

2. Consider now the program {p(w1 ,wa) - lr(wi),w3 =b., r(a) +- 1., q(w2,b) - \w2 =a.}. We have
< p(x,y),z1 >,< q(x,y),z2 >E lfp(Tw), for z1 = [{wi/X-,w3/y-}]{x,y}·{wa/b}.({w!/a}){w1} and z2 =
[{y-/b,w2/x-}]{x,y)·{w2/a}. We have

z = [{ w1/x-, w3/y-}}{x,yj·{ w2fb}.[{y- /b, w2/x-}]{x,y)·{w2/a}.[{ w! /a}){w.} E z1 I\ z2. Now, we observe that

{ x/ a, y/b, wif a, w3 /b, w2/a} E R (z). Indeed, there exists a refutation of the goal +- p(x, y), q(x, y) giving the
answer {x/a, y/b}.

174

References

[Apt87]

[AR88]

[dBKBB]

[BZ82]

[CG86]

[DM87]

[Ede85]

[vEK76]

[FL88]

K.R. Apt. Introduction to logic programming. Technical Report CS-R8741, Centre for Mathematics and
Computer Science, Amsterdam, 1987. To appear as a chapter in Handbook of Theoretical Computer
Science, North-Holland.

P. America and J.J.M.M. Rutten. Solving reflexive d.ornain equations in a category of complete metric spaces.
Proc. of the third workshop on mathematical foundations of programming language semantics, Lecture
notes in Computer Science 298, 1988, pp. 254-288.

J.W. de Bakker and J.N. Kok. Uniform abstraction, atomicity and contractions in the comparative
semantics of concurrent prolog. ln Proc. Fifth Generation Computer Systems (FGCS 88), pages 347-355,
Tokyo, Japan, 1988. Extended Abstract, full version available as CWI report CS-8834 and to appear in
Theoretical Computer Science.

J .W. de Bakker and J .I. Zucker. Processes and the denotational semantics of concurrency. Inform. and Control
54, 1982, pp. 70-120.

KL. Clark, S. Gregory, PARLOG: Parallel programming in logic, ACM Trans. Program. Lang. Syst. Vol.
8, 1, 1986, 1-49. Res. Report DOC 84/4, Dept. of Computing, Imperial College, London,1984.

S.K. Debray and P. Mishra. Denotational and operational semantics for prolog. In M. Wirsing, editor,
Formal Description of Programming Concepts Ill, pages 245-269, North-Holland, 1987.

E. Eder. Properties of substitutions and unifications. Journal Symbolic Computation 1, 1985, pp. 31-46.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming language. Journal
of the ACM 23(4), 1976, 733-742.

M. Falaschi, G. Levi, Finite Failures and Partial Computations in Concurrent Logic Languages, Proc. of the
FGCS'88.

[FLMP88a] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative modeling of the operational behaviour of
logic languages. Theoretical Computer Science, 1988. To appear.

[FLPM88b] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. A new declarative semantics for logic languages. In
Proceedings Conference and Symposium on Logic Programming, MIT press, 1988, pp. 993-1005.

[GCLS88] R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully abstract denotational semantics for concurrent
prolog. In Proc. Logic In Computer Science, 1988, pp. 320-335.

[Gre87]

[HP79]

[JM84]

[KK89]

[KRBBJ

[Lev88]

[Le2]

S. Gregory. Parallel logic programming in PARLOG. International Series in Logic Programming, Addison­
Wesley, 1987.

M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programming language. In J. Becvar,
editor, Proceedings Sth MFCS, Lecture Notes in Computer Science 74, Springer Verlag, 1979, pp.
108-120.

N.D. Jones and A. Mycroft. Stepwise development of operational and denotational semantics for prolog.
In Proc. 1984 Int. Symp. on Logic Programming, 1984.

P. Knijnenburg and JN. Kok. A compositional semantics for the finite failures of a language with
atomized statements. Technical report, University of Utrecht, 1989.

J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency semantics. In Proceedings 15th
ICALP, Tampere, Lecture Notes in Computer Science 317, Springer Verlag, 1988, 317-332. To appear in
Theoretical Computer Science

G. Levi. A new declarative semantics of flat guarded horn clauses. Technical Report, ICOT, Tokyo, 1988.

G. Levi. Models, unfolding rules and fixed point semantics. Proc. Symp. on Logic Programming, 1988, pp.
1649-1665.

[LMM88] J.-L. Lassez, M.J. Maher, and K. Marriot. Unification revisited. In J. Minker, editor, Foundations of
deductive databases and logic programming, Morgan Kaufmann, Los Altos, 1988.

[LP85] G. Levi and C. Palamidessi. The declarative semantics of logical read-only variables. In Proc. Symp. on
Logic Programming, IEEE Comp. Society Press, 1985, pp. 128- 137.

[LP87]

[Pal88]

[Rin88]

[Sar87a]

[Sha83]

[Sha87l

[Sh83]

IUed85l

{Ued86]

175

G. Levi and C. Palamidessi. An approach to the declarative semantics of synchronization in logic languages.
In Proc. 4th lnt. Conference on Logic Programming, 1987, 877-893.

C. Palamidessi. A fixpoint semantics for Guarded Horn Clauses. Technical Report CS-R8833, Centre for
Mathematics and Computer Science, Amsterdam, 1988.

G.A. Ringwood. Parlog 86 and the dining logicians. Comm. ACM, 31:10-25, 1988.

V.A. Saraswat: The concurrent logic programming language CP: definition and operational semantics, in: Con­
ference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages,
Munich, West Germany, January 21-23, 1987, pp. 49-62.

E.Y. Shapiro. A subset of concurrent prolog and its interpreter. Technical Report TR-003, ICOT, Tokyo, 1983.

E.Y. Shapiro. Concurrent prolog, a progress report. In W. Bibel and Ph. Jorrand, editors, Fundamentals
of Artificial Intelligence, Springer Verlag, 1987. Lecture Notes in Computer Science 232.

E.Y. Shapiro. A subset of concurrent prolog and its interpreter. Tech. Report TR-003, ICOT, Tokyo, 1983.

K. Ueda. Guarded Horn Clauses. Technical ReportTR-103, !COT, 1985. Revised in 1986. A revised version
is in E. Wada, editor, Proceedings Logic Programming, pages 168-179, Springer Verlag, 1986. LNCS 221.

K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with the Concept of a Guard.
Technical Report TR-208, !COT, 1986. Revised in 1987. Also to appear in M. Nivat and K. Fuchi,
editors, Programming of Future Generation Computers, North Holland, 1988.

7 Appendix: Basic Notation

We will use mainly the same terminology and notations of [Apt87], [LMM88], and [Ede85] to which the reader is
referred also for the main properties about substitutions and unification.

Let Var be a set of variables, with typical elements x, Let Term be a set of terms, with typical elements t, .. . ,
built on Var and on a given sets of constructors. A substitution {) is a mapping from Var into Term such that
'D(t'J) = {x E Var : t'J(x) f x} is finite. V(t'J) is called the domain of the substitution t'J. We will use also the
set-theoretic notation for t'J: {) = {x/t Ix E V(t'J), t'J(x) = t}. Let F be a expression (term, atom or clause). The set
of variables occurring in F is denoted by V(F). The application FiJ of{) to F is defined as the expression obtained
by replacing each variable x in F by t'J(x). C(t'J) (which we will improperly call the co-domain, or range of 19) is
the set U,,ED(6) V(t'J(x)). A renaming p is any bijective substitution from Var to Var. If X is a set of variables,
then Fp is a variant of a expression F with respect to X iff p is a renaming and V(Fp) n V = 0. Fp is said to be
a variant of F iff Fp is a variant of F with respect to V(F). The composition{){)' of two substitutions{) and{)'
is defined in the usual way, namely (t'J,'J')(x) = (iJ(x))t'J'. We recall that the composition is associative, the empty
substitution e is the neutral element, and for each renaming p there exists the inverse p- 1, i.e. pp- 1 = p- 1 p = e.
Moreover, F({){)') = (F,'J){)'. {)is called idempotentiff{}{) ={)(or, equivalently, iffV(t'J) nC(t'J) = 0). The pre-order
relation::; on substitutions is defined by: {) ::; {)' <:} 3t'J1[lJt?1 = 19']. The restriction t'J1x of{) to a set of variables X
is the substitution i?1x(x) =·t'J(x) for x EX and t'J1x(x) = x otherwise.

Given a set of sets of terms M, a substitution{) is a unifier of M iff'<IS E M'<lt,t' E S[ti? = t't'J] holds.{) is a most
general unifier (mgu) of M if it is a unifier of M and {) ::; .J' for any other unifier {)' of M.

8 Appendix: Extended unification algorithm

In this appendix We give an extended version of the unification algorithm, based on the one presented in [Apt87],
that works on finite sets of pairs. Given a finite set of finite sets of terms M, consider the (finite) set of pairs

Mpair•= LJ {<t,u>it,uES}.
SeM

The unifiers of a set { < t 1 , u1 >, ... , < t,,, un >) are the ones of { { t 1. ui}, ... , {tn, ttn}}. Of course, M and Mpair•
are equivalent (i.e. they have the same unifiers). A set of pairs is called solved if it is of the form

176

where all the x;'s are distinct elements of Var u Var-, x; ~ V(t1, ... , tn), and, if x; E Var and t; cl x;, then
x; ~ V(x 1, ... , Xn, t 1, ... , tn)· For P solved, define "IP = { xi/t1, · · ·, Xnftn}, and Cp = "!P'YP·

The following algorithm transforms a set of pairs into an equivalent one which is solved, or halts with failure if
the set has no unifiers.

Definition 8.1 (Extended unification algorithm)

• Let P, P' be sets of pairs. Define P => P' if P' is obtained from P by choosing in P a pair of the form below
and by performing the corresponding action

2. < f(t 1 , .•. ,tn),g(u1, ... ,u,,) >,where f ;pg

3. < x, x > where z E Varu Var-

replace by the pairs
<t1,u1 >,. .. ,<tn,Un >

halt with failure

delete the pair

4. < t, x > where x E Var u Var- ,t ~ Var u Var- replace by the pair< x, t >

5. < x,t > where x E Var,x ,;/ t, x- ;/ t
and x or x- occurs in other pairs

6. < x,x- >where x E Var,
and x occurs in other pairs

7. < x-, t > where x- E Var-, x- ;/ t
and x- occurs in other pairs

if x E V(t) or x- E V(t)
then halt with failure
else app>ly the substitution
{x/t} to all the other pairs

apply the substitution
{x/x-} to all the other pairs

ifx- EV(t)
then halt with failure
else apply the substitution
{x- ft} to all the other pairs.

We will write P =>fail if a failure is detected (steps 2, 5 or 7).

• Let=>* be the reflexive-transitive closure of the relation=>, and let PSD1 be the set P .. 1 = {P' I symm(P) =>*
P', andP'issolved}, wheresymm({< t 1,u1 >, ... ,< t,,,un >}) = {< t1,u1 >, ... ,< t,,,u,, >} U {< 11,u! >
, ... ,<t;; 1 u;; >}.

The set of substitutions determined by the algorithm is C..(P) = { 5 p• I P' E Pso1}.

The following proposition shows that the set of the idempotent most general unifiers of M is finite and can be
computed in finite time by the extended unification algorithm.

Proposition 8.2 Let P be a finite set of pairs, and /If be a finite set of finite sets of terms.

1. (finiteness) The relation =>is finitely-branching and noetherian (i.e. terminating).

2. (solved form) If P is in normal form (i.e. there exist no l" such that P => P'), then P is in solved form.

3. (soundness) D,.(P) <; mgu(P)

4. (completeness) mgu(M) <; C..(M,,.;,.).

5. P =>"fail iff P is not unifiable.

This result implies that the set of the idempotent most general unifiers of Mis finite and can be computed in finite
time by a deterministic simulation of the extended unification algorithm (the non-determinism of the relation -+

can be simulated via a simple backtracking).

