Abstract
In [18] a three level model was presented to establish a concept of completeness or optimality for data flow analysis algorithms in the framework of abstract interpretation [2]. The notion of observational equivalence introduced here generalizes the idea of the three level model, which can only deal with hierarchies of abstract interpretations. Investigating this more general notion, it actually turns out that the three level model is general in a theoretical sense: it determines the most abstract computation level which delivers complete results. However, consideration of other aspects of data flow analysis profit from the extra generality of our observation directed approach. For example the completeness or optimality proof for a “real life” optimizer could be shortened significantly this way.
The author is supported by the Science and Engineering Research Council grant GC/D69464
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. L. Burn, C. L. Hankin, and S. Abramsky. The theory of strictness analysis for higher order functions. Science of Computer Programming, 7:249–278, 1986.
P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In 4th POPL, pages 238–252, 1977.
P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: Mathematical foundations. ACM Sigplan Notices, 12:1–12, 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages 269–282, 1979.
R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 34:83–133, 1984.
C. A. R. Hoare and H. Jifeng. Data refinement in a categorical setting. Technical report, Oxford University, Computing Laboratory, Programming Research Group, February 1988.
J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica, 7:309–317, 1975.
R. Milner. Fully abstract models of typed lambda calculi. Theoretical Computer Science, 4:1–22, 1977.
A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative Programs. PhD thesis, Edinburgh Univ., Dept. of Comp. Sci., 1981.
A. Mycroft and F. Nielson. Strong abstract interpretation using power domains. In ICALP '83, pages 536–547. LNCS 154, 1983.
F. Nielson. Abstract interpretation of denotational definitions. In STACS '86, pages 1–20. LNCS 210, 1986.
F. Nielson. A bibliography on abstract interpretations. ACM Sigplan Notices, 21:31–38, 1986.
F. Nielson. Strictness analysis and denotational abstract interpretation. In 14th POPL, pages 120–131, Munich, West-Germany, 1987.
H. R. Nielson and F. Nielson. Pragmatic aspects of two-level denotational meta-languages. In ESOP '86, pages 133–143. LNCS 213, 1986.
B. K. Rosen, M. N. Wegmann, and F. K. Zadeck. Global value numbers and redundant computations. In 15th POPL, pages 12–27, San Diego, California, 1988.
D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifications. Journal of Computer and System Sciences, pages 150–178, 1987.
B. Steffen. Abstrakte Interpretationen beim Optimieren von Programmlaufzeiten. Ein Optimalitätskonzept und seine Anwendung. PhD thesis, Christian-Albrechts-Universität Kiel, 1987.
B. Steffen. Optimal run time optimization — proved by a new look at abstract interpretations. In TAPSOFT '87, pages 52–68. LNCS 249, 1987.
B. Steffen and M. Mendler. Compositional characterization of observable program properties. LFCS report series, LFCS, Edinburgh Univ., Dept. of Comp. Sci., 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Steffen, B. (1989). Optimal data flow analysis via observational equivalence. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_95
Download citation
DOI: https://doi.org/10.1007/3-540-51486-4_95
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51486-2
Online ISBN: 978-3-540-48176-8
eBook Packages: Springer Book Archive