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Abs t rac t .  The cellular automata technique has proven to be useful for direct simulation 
of fluid flow experiments in both two and three dimensions. We will present a method 
to impose boundary conditions on complex geometries, consistently with the microscopic 
behaviour of a cellular automaton. Furthermore we will show how the three dimensional 
model can be implemented on a MIMD machine with local memory. 

1 Introduction 

Both the invention of the cellular automata technique [1] and the development of parallel 
computers, gave a new impact for direct fluid flow simulation. Characteristic for the 
cellular automata technique is its explicit nature. A flow is simulated by computing the 
position of many fluid particles on a finite lattice for a period of time, rather than solving 
a set of continuous partial diiTerential equations. All macroscopic quantities, such as local 
density, velocity and pressure can be derived directly from the particle configuration in 
the lattice. 

Studying a flow with the cellular automata technique is very sinfilar to doing a real 
physical flow experiment. Boundary conditions of any complexity (e.g. porous media) can 
be constructed explicitly in the lattice. Multi-phase flow can be simulated by colouring 
the individual particles [2, 3] Also solid-fluid suspensions have been modeled successfully. 
The advantages of a computer simulation over doing a real experiment are obvious. The 
experimentator has full control over the conditions under which the experiment is run, 
and all features of the flow can be observed at any time. 

The complexity of the flow (characterized by the Reynolds number Re) fully deter- 
mines the amount of fluid particles involved in the computation. To be specific, for three 
dimensional flow this amount is proportional to Re 3. Without the possibility of massively 
parallel computation the cellular automata technique would he of no practical use. 

Massively parallel computing at very low cost, is available in a transputer system. 
The transputer is a parallel processor with floating point hardware, communication prim- 
itives and some memory~ all integrated on a single chip [4]. Many transputers can be 
connected in a network, to build a parallel computer of desk-top size with a processing 
power that outperforms a mainframe. 

This paper reports how the cellular automata technique can be used for desk-top 
fluid flow simulation. The second section gives a short overview of the basics of the tech- 
nique. In the third section it is shown, how boundary conditions can be imposed. We 
have found an elegant way to transform macroscopic Dirichtet conditions into relations 
between the discrete variables on the microscopic teveL Finally the implementation of 
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the technique on a transputer system is discussed. We will present a parallel composi- 
tion theorem that  has helped us to construct a massively parallel algorithm without any 
sequential bottleneck. 

2 Basics  of  a ce l lu lar  a u t o m a t o n  

A cellular automaton models a fluid by a simple microscopic world, satisfying only a few 
fundamental conservation laws. Fluid particles with unit mass are assumed to move with 
unit speed in a cellular lattice from one cell into neighbouring cells in unit time. All 
particle movements are synchronized, such that  at any t ime  a cell may contain at most 
one particle for each possible nearest neighbour direction. 

Figure 1 shows a typical configuration of particles on a hexagonal lattice. Each 
cell in this lattice is surrounded by six nearest neighbours, so it may contain at most six 
different particles with velocities ei, 

/7£ . /71" 
e, = (cos -~-, sm ~-), 0 < i < 6 .  

Figure 1: A typical partical configuration on a hexagonal lattice. 

The configuration of particles in a single cell defines its state at a certain point in time. 

S ~ (.~0~ 8 1 , 3 2 ,  33, .$4~ 85) 

s~ = 1 indicates the presence of a particle with velocity ei 

si = 0 indicates the absence of a particle with velocity el 

We can express local density p and tocal momentum pU in a cell in terms of its state. 

p = (1)  
i 

pU = ~ s l e i  

It is clear that  cells will change state due to the propagation of the particles in time. 
Beyond this, collision of the particles within a celt may also change its state. Only those 
collisions are allowed, which conserve local density and local momentum. Examples of 
such state transitions for the hexagonal lattice are 
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(I, O, O, i, O, O) -~ (0, i, O, O, i, 0), p=2, pU=O 
(I, O, i, O, i, O) -* (0, I, O, i, O, I), p=3, pU=O 
and all rotation symmetric equivalents. 

Now we have defined all ingredients to formalize the synchronous operation of a cellular 
automaton. Each timestep consists of a propagation part and a collision part. In the 
propagation part a cell at position X in the lattice gathers the particles moving in from 
its nearest neighbours at positions X - e,, 

~gat(x) := s?ld(x - e,), 0 < i < 6. (2) 

In the collision part a cell at position X in the lattice scatters the particles towards its 
nearest neigbonrs at positions X + el, following state transitions conserving mass and 
momentum. 

snew(x) := COLLISION(sgat(x)) (3) 

It has been shown [1, 5, 8] that the overall behaviour of such a cellular automaton statisfies 
the incompressible Navier Stokes equation at low Mach number, provided that enough 
symmetry is available in the lattice to establish macroscopic isotropy. 

In two dimensions the hexagonal lattice with or without additional stationary 
particles in the centre of the ceil has been proven successful [6]. in three dimensions a 
lattice is used, that consists of two three dimensional layers of the four dimensional face- 
centered-hypercube (FCHC), with periodic boundary conditions in the fourth dimension 
[7]. In this lattice each cell may contain up to 24 particles, moving with the following four 
dimensional velocities e,, 

{ei} = { ( i l , ± l , 0 , 0 ) ,  (±1,0,=t=1,0), (0,±1,:t=1,0), 

(=E1,0,0,=t=I), (0,±I,0,±i), (0,0,±I,±I)}. 

Figure 2: A single cell of the three dimensional FCHC lattice. The thick lines indicate 
edges with a non-zero component in the fourth dimension. 
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3 B o u n d a r y  cond i t ions  

Regular operation of the cellular automaton, as proposed in (2,3) is impossible at the 
boundary of the lattice, unless special provisions are made. The problem is that a cell at 
the boundary cannot gather the incoming particles from a non-existent neighbour. In a 
real flow the behaviour at the boundary is defined by its boundary conditions. Examples 
of the most common boundary conditions are 

no-slip This condition is found near fixed objects. 

velocity Establishes a predefined velocity on the boundary. The no-slip boundary is a 
special case of a zero velocity boundary. 

density This condition is generally used where a flow leaves the experiment. The density 
is specified together with the velocity parallel to the boundary. 

mirror Reflects the incoming flow. This analytic boundary can be used for reducing 
computation in a symmetrical experiment. 

absorption Absorbs all outgoing mass. It can be used to model a leak in a solid wall 

We will show that the degrees of freedom, that are available through the missing nearest 
neighbours at the boundary are just sufficient to impose the boundary conditions. 

The macroscopic behaviour of a cellular automaton can be derived from the average 
local population Ni of particles with velocity el. These populations are given by  the 
following Fermi Dirac equilibrium distribution [8], 

1 
I + exp(h + q- el)' 

where h and q are non-linear functions depending on p and U only. The solutions for 
h and q can be obtained using the symmetry of the lattice and the definition of the 
microscopically conserved quantities (I). Under the assumption that U << 1 (which is the 
case for low Much number flows) these average populations can be expanded in powers 
of U. For the hexagona ! lattice with one stationary particle the expansion up to second 
order in U yields 

Ni -- "~ l + g e i . U +  1 - -8 (72~ t ( e i . U)  2 -  U2] , 0 _ < i < 6  (4) 

7P{ 7(7-2p) } 
N s  : 1 . 

We will use these approximations to translate the macroscopic two dimensional Navier 
Stokes boundary conditions into microscopic equations. Consider a velocity direction i 
from a missing neighbour cell into the flow area. Let IN, denote the average inflow of 
particles along ei and OUT_i the outflow along - e+  Now using equation (4) the following 
relations between INi and OUT_i can be derived up till second order in U, 

IN/+ OUT_, 2p{  49(7 - 2p) ~ } 
= -~- 1 +  l ~ - - p ' ) [ ( e " U ) ' -  U ' ]  (5 )  

INi - OUT_I 2p - e i  • U 
3 
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The latter equation shows immediately how in general velocity boundary conditions can 
be imposed. A special case of a velocity boundary condition is the no-slip solid wall. 
Substitution of U = 0 in equation (5) validates, that solid walls indeed can be modelled 
with the bounce back condition. The boundary equation specifies that the inflow of 
particles along e, should be equal to the outflow along -e i .  

A similar approach can be followed, to obtain an explicit relation between IN, 
and OUT_i, imposing a density boundary condition. Let U I and U_L denote respectively 
the velocity components parallel and perpendicular to the boundary geometry. It is well 
known that the specification of p and U/at the boundary is sufficient to define the solution 
of the flow in the whole region, while e.g. specification of p and U_L at the boundary might 
occur inconsistently with the Navier Stokes equation. It should not surpise the reader, 
that also the cellular automaton technique does not allow a simultaneous specification of 
p and U_L at the boundary, as this may lead to inconsistency in equation (5). 

A very useful boundary condition, for instance to specify an outlet of a flow, is a 
constant pressure (or density) and U I = 0 boundary. If we apply this to (5), the following 
quadratic equation for IN, will be obtained. 

w ,  + OUT_, 2p - OUT_,)  = 0 7 p(7-p)'-- '  

The positive root of this equation should be taken, and a Taylor expansion around U = 0 
(OUT_i = ~), yields the desired explicit relation between inflow and outflow up till second 
order terms. 

INi 2p OUT_, + 4(-~7~--2 2~P,)(OUT_, = T -  p ~ , - p )  - P  ~7) (6) 

However, this equation cannot be used directly in the implementation on a microscopic 
level, as it expresses the relation between the average inflow and the average outflow. At 
each timestep we only measure a realization of the outflow, which surely will deviate from 
the average. These fluctuations do not play any role in the linear term of equation (6), 
because they may assumed to annihilate. But the quadratic term should indeed be cor- 
rected with the standard deviation in the particle outflow, in order to obtain the correct 
boundary behaviour. 

We have presented in detail a way to impose boundary conditions for the two 
dimensional hexagonal lattice gas only. However it should be clear that a very similar 
approach leads to boundary conditions for the three dimensional FCHO cellular automa- 
ton. The only difference, that should be taken into account is the form of the expansion 
of the Fermi Dirac particle distribution (4). For the three dimensional FCHC lattice this 
expansion (up till second order in U) is given by 

{ X + 2 e , . U +  2(24-2--;P)[(ei.U)2-~U2]} 
N i =  .~ p (24 p) 

Figure 3 shows experimental results of the three dimensional boundary conditions. A 
velocity boundary is used to impose a steady inflow. A density boundary provides an 
outlet that maintains a constant pressure. The object in the flow is implemented with 
ordinary bounce-back conditions. 
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Figure 3: External three dimensionaI flow around a solid disk. The main flow is directed 
from the left to the right. At the left, a velocity boundary condition is imposed. The 
outflow is realized by a constant density boundary condition (p = 7.0) at the right end. 
The simulation area measures 128 × 114 x 114 cells. Figure (a) shows the velocity field 
in an xz-ptane through the centre of the disk. Figure (b) shows the density profile in the 
same plane. The Reynolds number of this experiment is 50. 
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4 A mass ive ly  parallel implementat ion  on a transputer  network 

A massively parallel algorithm is a parallel algorithm, which imposes no restrictions on the 
number of processors that can be used efficiently for its execution, provided a sufficiently 
large problem instance is submitted. Massively parallel algorithms can only be guaranteed 
to execute efficiently, if the various parallel components do not share variables, and have 
constant storage requirements. These considerations are based upon the fact that for any 
hardware the amount of memory per processing element is limited, as well as the number 
of processors that can access shared memory. 

Two machine architectures are known to support massive parallelism, i.e. the 
MIMD model with distributed memory and the SIMD model. An SIMD machine executes 
highly synchronously a regular parallel composition of idententical components. For the 
cellular automaton implementation we prefer to use the MIMD model, as this allows us 
to deal with various irregularities on a microscopic level of the algorithm asynchronously. 
However, on a higher level of abstraction we will synchronize the parallel components 
explicitly, as this is the only way to maintain global invariants. 

We have incorporated the functionality of the three dimensional FCHC cellular 
automaton algorithm into a small set of elementary procedures. The user can run a fluid 
flow simu]ation by submitting a sequence of procedure calls. All features of the flow can 
be expressed in the parameters of the procedures. Below we give a short summary of the 
most essential elementary procedures, and the specification of their parameters. 

PROCEDURE DEFINE_UNIVERSE(Base,Width : coordinates) 

Only a finite substructure of the infinite cellular automaton lattice can actually 
be simulated. The parameters Base and Width specify the base coordinates 
and the size of a rectangular CA-universe. Periodic boundary conditions will be 
assumed along all three coordinate axes. 

PROCEDURE INITIALIZE( (Base, Width, Grain) : window; 
Rho,Ux,Uy,Uz: real function) 

Any part of the CA-universe can be initialized inhomogeneously. The initial 
values for the density gho and the velocity components Ux, Uy and Uz may vary 
in space. The window parameter specifies which part of the automaton should be 
initialized, and which gra in  size should be used for the evaluation of the initial 
value functions. 

PROCEDURE SET_0BJECT( (Base,Width, Grain) : window; 
Geometry: boolean function) 

Solid objects in the flow can be specified with a boolean function of the space 
coordinates, which evaluates TRUE for each point within the flow, and FALSE 
for points outside the simulation area. The object's boundary condition is estab- 
lished in between cells which participate in the flow, and cells that became part 
of the object. 

PROCEDURE SET_BOUNDARY ( (Base, Width, Grain) : window ; 
Type: (density,velocity) ; 
Geometry: boolean function; 
Condition: real function) 
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Currently, the dens i ty  and v e l o c i t y  profile type of boundary conditions have 
been implemented on plane geometries only. Again the condi t ion  may vary in 
space. 

PROCEDURE D0_TIMESTEPS (Timesteps, Samples : number; 
(Base, Width, Grain, Overlap) : window ; 
Kho,Ux,Uy,Uz~ a r ray  of voxel averages) 

Probably most computation time will be spent for the state transitions of the 
cellular automaton. A single Ti~estep involves propagation of the fluid particles, 
adjustments according to the boundary conditions and state transitions due to 
particle collisions. Furthermor% average values of the conserved quantities will 
be extracted regularly. The Grain size and the Overlap factor in the window 
specification determine the size of a single volume element (voxel), that is used 
for obtaining one instance of the density and velocity variables. Averaging over a 
large voxel size and many timesteps (Samples) will indeed decrease the standard 
deviation in the voxel's data, but however reduces also the resolution of the 
output. 

The following theorem is used for the construction of a massively parallel imple- 
mentation, that provides the functionality of any sequential composition of elementary 
procedure calls. 

Let P0,P1,Q0,Q1 denote arbritrary processes. 
Let interaction by means of shared variables only occur 

between P0 and Q0, and between P1 and Q1 respectively. 
Let interaction by means of point to point communication only occur 

between P0 and P1, and between Q0 and Q1 respectively. 
Then 

((P0 I[ P I ) ;  (Q0 t[ Q1)) = ((P0 ; Q0)II (P1 ;Q1)) 
where 11 and ; denote parallel and sequential composition respectively. 

So the parallel implementation of our cellular automaton algorithm is based upon the 
parallel implementation of each function of the automaton, and the distribution of se- 
quential composition over the parallel components. It is important, that indeed each of 
these procedures allows for a massively parallel implementation. If only one of them is 
limited in its parallelism, it will bound the scalability of the whole algorithm. 

A scalable parallellization of each of the elementary procedures is straightforward, 
using a decomposition of the lattice into blocks. Each parallel component will operate 
on a private part of the lattice. Communication between parallel components will only 
occur in the propagation part of the D0_TIMESTEP procedure, when particles move from 
one block of the lattice into another. This communication overhead can be minimized by 
tayloring the decomposition of the lattice towards the topology of the target machine. 

As our implementation will be run on a mesh-connected transputer network, we 
have split the cellular lattice along two dimensions into three dimensional bars (see fig- 
ure 4). Note that in general for machines with a moderate number of processors P, this 
partitioning is only shghtly less efficient, than the truely three dimensional decomposition, 
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since the order of the communication overhead is only ~r~ worse. However, for a trans- 
purer network, this inefficiency is even not the real problem, as a truely three dimensional 
decomposition would involve message routing. 

The actual procedure calls are initiated by a user controlled parallel procedure call 
mechanism. This mechanism accepts the sequence of elementary procedure calls from 
the user, and broadcasts them into the processor network. Procedures can be initiated 
one at the time, such that user interaction during the simulation can be supported. Each 
processing element activates its local parallel component. The local parameters are derived 
from the broadcasted global parameters, using the structure of the decomposition. 

Upon termination of the parallel component the local results are transformed into 
the global context, and routed towards the user. The control mechanism again collects and 
merges the results. This merging process is trivial, except perhaps for the D0_TIMESTEPS 
procedure. Resulting voxel data may be split among different processing elements. How- 
ever, due to the linearity of averaging~ the merging can be realized by simply accumulating 
corresponding voxel fractions. 

Figure 5 shows a schematic diagram of the user controlled parallel procedure call 
mechanism. All processing on the raw cellular automata states is distributed over the 
processor network, such that it scales with the size of the automaton. 

L ! i ] I  i ! 

Figure 4: The mapping of a three dimensional cellular automaton lattice on the mesh- 
connected transputer network. 
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Figure 5: The parallel procedure call mechanism. Explicit synchonization is realized on 
a high level of abstraction only. 

5 Conclusions 

The cellulaz automaton technique can be expected to become a competitive technique in 
the area of computational fluid dynai~fics. It does not suffer from numerical instability 
or convergence problems due to space or time discetization. It is flexible in handling 
boundary conditions, and has a great potential for two-phase flow simulation. Early 
experiments have shown that it is well possible to model surface tension, and adhesion to 
solid walls. 

As the technique deals with both space and time explicitly, it does not only re- 
solve the final numerical solution of a flow experiment, but shows also its transient be- 
haviour, all the way from the initial condition. Obviously the cost of this is computation 
time. Computation time will become an even more serious problem when flows with large 
Reynolds numbers are going to be simulated, as the size of the lattice grows cubicly with 
the Reynolds number. So we feel that eventually the cellular automaton technique will be 
practically useful to study complicated small scale fluid flow phenomena, with moderate 
Reynolds numbers, at most of order 10 3 . 

We have shown that a massively parallel cellular automaton can be implemented 
very well on a transputer network. The computational power of a single transputer allows 
that also the more difficult aspects of a cellular automaton simulation can be performed 
in parallel, such as initialization of the automaton, maintaining boundary conditions and 
extraction of macroscopic data. This makes the system a scalable system, i.e. no new 
bottlenecks will emerge when the size of the automaton is scaled up. 

Futhermore, a transputer network appears to be a good basis to develop a dedicated 
cellular automaton machine. It seems quite easy to built VLSI-systems that can perform 
the basic CA-operation very fast, but it wilt be extremely difficult to make them flexible 
with respect to boundary conditions, or to get the results out of them. On top of this, it is 
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unrealistic to think that customized VLSI can beat the performance of ordinary memory 
chips. Therefore we.feel that the ultimate dedicated cellular automaton machine will 
contain ordinary memory to store the states of the cells, dedicated processors to perform 
the basic operation, and transputer-like general purpose processing elements to execute 
the irregular and more complicated parts of the algorithm. 
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