
A Paral le l Ce l lu lar A u t o m a t a I m p l e m e n t a t i o n on a
T r a n s p u t e r N e t w o r k for t h e S i m u l a t i o n o f
Smal l Scale F lu id F l o w E x p e r i m e n t s

J.A. Somers, P.C. Rem,

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.)
Postbus 3003, 1003 AA Amsterdam, The Netherlands.

Abs t rac t . The cellular automata technique has proven to be useful for direct simulation
of fluid flow experiments in both two and three dimensions. We will present a method
to impose boundary conditions on complex geometries, consistently with the microscopic
behaviour of a cellular automaton. Furthermore we will show how the three dimensional
model can be implemented on a MIMD machine with local memory.

1 Introduction

Both the invention of the cellular automata technique [1] and the development of parallel
computers, gave a new impact for direct fluid flow simulation. Characteristic for the
cellular automata technique is its explicit nature. A flow is simulated by computing the
position of many fluid particles on a finite lattice for a period of time, rather than solving
a set of continuous partial diiTerential equations. All macroscopic quantities, such as local
density, velocity and pressure can be derived directly from the particle configuration in
the lattice.

Studying a flow with the cellular automata technique is very sinfilar to doing a real
physical flow experiment. Boundary conditions of any complexity (e.g. porous media) can
be constructed explicitly in the lattice. Multi-phase flow can be simulated by colouring
the individual particles [2, 3] Also solid-fluid suspensions have been modeled successfully.
The advantages of a computer simulation over doing a real experiment are obvious. The
experimentator has full control over the conditions under which the experiment is run,
and all features of the flow can be observed at any time.

The complexity of the flow (characterized by the Reynolds number Re) fully deter-
mines the amount of fluid particles involved in the computation. To be specific, for three
dimensional flow this amount is proportional to Re 3. Without the possibility of massively
parallel computation the cellular automata technique would he of no practical use.

Massively parallel computing at very low cost, is available in a transputer system.
The transputer is a parallel processor with floating point hardware, communication prim-
itives and some memory~ all integrated on a single chip [4]. Many transputers can be
connected in a network, to build a parallel computer of desk-top size with a processing
power that outperforms a mainframe.

This paper reports how the cellular automata technique can be used for desk-top
fluid flow simulation. The second section gives a short overview of the basics of the tech-
nique. In the third section it is shown, how boundary conditions can be imposed. We
have found an elegant way to transform macroscopic Dirichtet conditions into relations
between the discrete variables on the microscopic teveL Finally the implementation of

117

the technique on a transputer system is discussed. We will present a parallel composi-
tion theorem that has helped us to construct a massively parallel algorithm without any
sequential bottleneck.

2 Basics of a ce l lu lar a u t o m a t o n

A cellular automaton models a fluid by a simple microscopic world, satisfying only a few
fundamental conservation laws. Fluid particles with unit mass are assumed to move with
unit speed in a cellular lattice from one cell into neighbouring cells in unit time. All
particle movements are synchronized, such that at any t ime a cell may contain at most
one particle for each possible nearest neighbour direction.

Figure 1 shows a typical configuration of particles on a hexagonal lattice. Each
cell in this lattice is surrounded by six nearest neighbours, so it may contain at most six
different particles with velocities ei,

/7£ . /71"
e, = (cos -~-, sm ~-), 0 < i < 6 .

Figure 1: A typical partical configuration on a hexagonal lattice.

The configuration of particles in a single cell defines its state at a certain point in time.

S ~ (.~0~ 8 1 , 3 2 , 33, .$4~ 85)

s~ = 1 indicates the presence of a particle with velocity ei

si = 0 indicates the absence of a particle with velocity el

We can express local density p and tocal momentum pU in a cell in terms of its state.

p = (1)
i

pU = ~ s l e i

It is clear that cells will change state due to the propagation of the particles in time.
Beyond this, collision of the particles within a celt may also change its state. Only those
collisions are allowed, which conserve local density and local momentum. Examples of
such state transitions for the hexagonal lattice are

118

(I, O, O, i, O, O) -~ (0, i, O, O, i, 0), p=2, pU=O
(I, O, i, O, i, O) -* (0, I, O, i, O, I), p=3, pU=O
and all rotation symmetric equivalents.

Now we have defined all ingredients to formalize the synchronous operation of a cellular
automaton. Each timestep consists of a propagation part and a collision part. In the
propagation part a cell at position X in the lattice gathers the particles moving in from
its nearest neighbours at positions X - e,,

~gat(x) := s?ld(x - e,), 0 < i < 6. (2)

In the collision part a cell at position X in the lattice scatters the particles towards its
nearest neigbonrs at positions X + el, following state transitions conserving mass and
momentum.

snew(x) := COLLISION(sgat(x)) (3)

It has been shown [1, 5, 8] that the overall behaviour of such a cellular automaton statisfies
the incompressible Navier Stokes equation at low Mach number, provided that enough
symmetry is available in the lattice to establish macroscopic isotropy.

In two dimensions the hexagonal lattice with or without additional stationary
particles in the centre of the ceil has been proven successful [6]. in three dimensions a
lattice is used, that consists of two three dimensional layers of the four dimensional face-
centered-hypercube (FCHC), with periodic boundary conditions in the fourth dimension
[7]. In this lattice each cell may contain up to 24 particles, moving with the following four
dimensional velocities e,,

{ei} = { (i l , ± l , 0 , 0) , (±1,0,=t=1,0), (0,±1,:t=1,0),

(=E1,0,0,=t=I), (0,±I,0,±i), (0,0,±I,±I)}.

Figure 2: A single cell of the three dimensional FCHC lattice. The thick lines indicate
edges with a non-zero component in the fourth dimension.

119

3 B o u n d a r y cond i t ions

Regular operation of the cellular automaton, as proposed in (2,3) is impossible at the
boundary of the lattice, unless special provisions are made. The problem is that a cell at
the boundary cannot gather the incoming particles from a non-existent neighbour. In a
real flow the behaviour at the boundary is defined by its boundary conditions. Examples
of the most common boundary conditions are

no-slip This condition is found near fixed objects.

velocity Establishes a predefined velocity on the boundary. The no-slip boundary is a
special case of a zero velocity boundary.

density This condition is generally used where a flow leaves the experiment. The density
is specified together with the velocity parallel to the boundary.

mirror Reflects the incoming flow. This analytic boundary can be used for reducing
computation in a symmetrical experiment.

absorption Absorbs all outgoing mass. It can be used to model a leak in a solid wall

We will show that the degrees of freedom, that are available through the missing nearest
neighbours at the boundary are just sufficient to impose the boundary conditions.

The macroscopic behaviour of a cellular automaton can be derived from the average
local population Ni of particles with velocity el. These populations are given by the
following Fermi Dirac equilibrium distribution [8],

1
I + exp(h + q- el)'

where h and q are non-linear functions depending on p and U only. The solutions for
h and q can be obtained using the symmetry of the lattice and the definition of the
microscopically conserved quantities (I). Under the assumption that U << 1 (which is the
case for low Much number flows) these average populations can be expanded in powers
of U. For the hexagona ! lattice with one stationary particle the expansion up to second
order in U yields

Ni -- "~ l + g e i . U + 1 - -8 (72~ t (e i . U) 2 - U2] , 0 _ < i < 6 (4)

7P{ 7(7-2p) }
N s : 1 .

We will use these approximations to translate the macroscopic two dimensional Navier
Stokes boundary conditions into microscopic equations. Consider a velocity direction i
from a missing neighbour cell into the flow area. Let IN, denote the average inflow of
particles along ei and OUT_i the outflow along - e+ Now using equation (4) the following
relations between INi and OUT_i can be derived up till second order in U,

IN/+ OUT_, 2p{ 49(7 - 2p) ~ }
= -~- 1 + l ~ - - p ') [(e " U) ' - U '] (5)

INi - OUT_I 2p - e i • U
3

120

The latter equation shows immediately how in general velocity boundary conditions can
be imposed. A special case of a velocity boundary condition is the no-slip solid wall.
Substitution of U = 0 in equation (5) validates, that solid walls indeed can be modelled
with the bounce back condition. The boundary equation specifies that the inflow of
particles along e, should be equal to the outflow along -e i .

A similar approach can be followed, to obtain an explicit relation between IN,
and OUT_i, imposing a density boundary condition. Let U I and U_L denote respectively
the velocity components parallel and perpendicular to the boundary geometry. It is well
known that the specification of p and U/at the boundary is sufficient to define the solution
of the flow in the whole region, while e.g. specification of p and U_L at the boundary might
occur inconsistently with the Navier Stokes equation. It should not surpise the reader,
that also the cellular automaton technique does not allow a simultaneous specification of
p and U_L at the boundary, as this may lead to inconsistency in equation (5).

A very useful boundary condition, for instance to specify an outlet of a flow, is a
constant pressure (or density) and U I = 0 boundary. If we apply this to (5), the following
quadratic equation for IN, will be obtained.

w , + OUT_, 2p - OUT_,) = 0 7 p(7-p)'-- '

The positive root of this equation should be taken, and a Taylor expansion around U = 0
(OUT_i = ~), yields the desired explicit relation between inflow and outflow up till second
order terms.

INi 2p OUT_, + 4(-~7~--2 2~P,)(OUT_, = T - p ~ , - p) - P ~7) (6)

However, this equation cannot be used directly in the implementation on a microscopic
level, as it expresses the relation between the average inflow and the average outflow. At
each timestep we only measure a realization of the outflow, which surely will deviate from
the average. These fluctuations do not play any role in the linear term of equation (6),
because they may assumed to annihilate. But the quadratic term should indeed be cor-
rected with the standard deviation in the particle outflow, in order to obtain the correct
boundary behaviour.

We have presented in detail a way to impose boundary conditions for the two
dimensional hexagonal lattice gas only. However it should be clear that a very similar
approach leads to boundary conditions for the three dimensional FCHO cellular automa-
ton. The only difference, that should be taken into account is the form of the expansion
of the Fermi Dirac particle distribution (4). For the three dimensional FCHC lattice this
expansion (up till second order in U) is given by

{ X + 2 e , . U + 2(24-2--;P)[(ei.U)2-~U2]}
N i = .~ p (24 p)

Figure 3 shows experimental results of the three dimensional boundary conditions. A
velocity boundary is used to impose a steady inflow. A density boundary provides an
outlet that maintains a constant pressure. The object in the flow is implemented with
ordinary bounce-back conditions.

121

(a)

(b)

" 1 " t - -
/ 7 f " ' . " - " ~ ' ~ ' ~ ~ - ~ - - ' - - ' ~

' 7 / 7 r

i - - .%
J

cO

Figure 3: External three dimensionaI flow around a solid disk. The main flow is directed
from the left to the right. At the left, a velocity boundary condition is imposed. The
outflow is realized by a constant density boundary condition (p = 7.0) at the right end.
The simulation area measures 128 × 114 x 114 cells. Figure (a) shows the velocity field
in an xz-ptane through the centre of the disk. Figure (b) shows the density profile in the
same plane. The Reynolds number of this experiment is 50.

122

4 A mass ive ly parallel implementat ion on a transputer network

A massively parallel algorithm is a parallel algorithm, which imposes no restrictions on the
number of processors that can be used efficiently for its execution, provided a sufficiently
large problem instance is submitted. Massively parallel algorithms can only be guaranteed
to execute efficiently, if the various parallel components do not share variables, and have
constant storage requirements. These considerations are based upon the fact that for any
hardware the amount of memory per processing element is limited, as well as the number
of processors that can access shared memory.

Two machine architectures are known to support massive parallelism, i.e. the
MIMD model with distributed memory and the SIMD model. An SIMD machine executes
highly synchronously a regular parallel composition of idententical components. For the
cellular automaton implementation we prefer to use the MIMD model, as this allows us
to deal with various irregularities on a microscopic level of the algorithm asynchronously.
However, on a higher level of abstraction we will synchronize the parallel components
explicitly, as this is the only way to maintain global invariants.

We have incorporated the functionality of the three dimensional FCHC cellular
automaton algorithm into a small set of elementary procedures. The user can run a fluid
flow simu]ation by submitting a sequence of procedure calls. All features of the flow can
be expressed in the parameters of the procedures. Below we give a short summary of the
most essential elementary procedures, and the specification of their parameters.

PROCEDURE DEFINE_UNIVERSE(Base,Width : coordinates)

Only a finite substructure of the infinite cellular automaton lattice can actually
be simulated. The parameters Base and Width specify the base coordinates
and the size of a rectangular CA-universe. Periodic boundary conditions will be
assumed along all three coordinate axes.

PROCEDURE INITIALIZE((Base, Width, Grain) : window;
Rho,Ux,Uy,Uz: real function)

Any part of the CA-universe can be initialized inhomogeneously. The initial
values for the density gho and the velocity components Ux, Uy and Uz may vary
in space. The window parameter specifies which part of the automaton should be
initialized, and which gra in size should be used for the evaluation of the initial
value functions.

PROCEDURE SET_0BJECT((Base,Width, Grain) : window;
Geometry: boolean function)

Solid objects in the flow can be specified with a boolean function of the space
coordinates, which evaluates TRUE for each point within the flow, and FALSE
for points outside the simulation area. The object's boundary condition is estab-
lished in between cells which participate in the flow, and cells that became part
of the object.

PROCEDURE SET_BOUNDARY ((Base, Width, Grain) : window ;
Type: (density,velocity) ;
Geometry: boolean function;
Condition: real function)

123

Currently, the dens i ty and v e l o c i t y profile type of boundary conditions have
been implemented on plane geometries only. Again the condi t ion may vary in
space.

PROCEDURE D0_TIMESTEPS (Timesteps, Samples : number;
(Base, Width, Grain, Overlap) : window ;
Kho,Ux,Uy,Uz~ a r ray of voxel averages)

Probably most computation time will be spent for the state transitions of the
cellular automaton. A single Ti~estep involves propagation of the fluid particles,
adjustments according to the boundary conditions and state transitions due to
particle collisions. Furthermor% average values of the conserved quantities will
be extracted regularly. The Grain size and the Overlap factor in the window
specification determine the size of a single volume element (voxel), that is used
for obtaining one instance of the density and velocity variables. Averaging over a
large voxel size and many timesteps (Samples) will indeed decrease the standard
deviation in the voxel's data, but however reduces also the resolution of the
output.

The following theorem is used for the construction of a massively parallel imple-
mentation, that provides the functionality of any sequential composition of elementary
procedure calls.

Let P0,P1,Q0,Q1 denote arbritrary processes.
Let interaction by means of shared variables only occur

between P0 and Q0, and between P1 and Q1 respectively.
Let interaction by means of point to point communication only occur

between P0 and P1, and between Q0 and Q1 respectively.
Then

((P0 I[P I) ; (Q0 t[Q1)) = ((P0 ; Q0)II (P1 ;Q1))
where 11 and ; denote parallel and sequential composition respectively.

So the parallel implementation of our cellular automaton algorithm is based upon the
parallel implementation of each function of the automaton, and the distribution of se-
quential composition over the parallel components. It is important, that indeed each of
these procedures allows for a massively parallel implementation. If only one of them is
limited in its parallelism, it will bound the scalability of the whole algorithm.

A scalable parallellization of each of the elementary procedures is straightforward,
using a decomposition of the lattice into blocks. Each parallel component will operate
on a private part of the lattice. Communication between parallel components will only
occur in the propagation part of the D0_TIMESTEP procedure, when particles move from
one block of the lattice into another. This communication overhead can be minimized by
tayloring the decomposition of the lattice towards the topology of the target machine.

As our implementation will be run on a mesh-connected transputer network, we
have split the cellular lattice along two dimensions into three dimensional bars (see fig-
ure 4). Note that in general for machines with a moderate number of processors P, this
partitioning is only shghtly less efficient, than the truely three dimensional decomposition,

124

since the order of the communication overhead is only ~r~ worse. However, for a trans-
purer network, this inefficiency is even not the real problem, as a truely three dimensional
decomposition would involve message routing.

The actual procedure calls are initiated by a user controlled parallel procedure call
mechanism. This mechanism accepts the sequence of elementary procedure calls from
the user, and broadcasts them into the processor network. Procedures can be initiated
one at the time, such that user interaction during the simulation can be supported. Each
processing element activates its local parallel component. The local parameters are derived
from the broadcasted global parameters, using the structure of the decomposition.

Upon termination of the parallel component the local results are transformed into
the global context, and routed towards the user. The control mechanism again collects and
merges the results. This merging process is trivial, except perhaps for the D0_TIMESTEPS
procedure. Resulting voxel data may be split among different processing elements. How-
ever, due to the linearity of averaging~ the merging can be realized by simply accumulating
corresponding voxel fractions.

Figure 5 shows a schematic diagram of the user controlled parallel procedure call
mechanism. All processing on the raw cellular automata states is distributed over the
processor network, such that it scales with the size of the automaton.

L ! i] I i !

Figure 4: The mapping of a three dimensional cellular automaton lattice on the mesh-
connected transputer network.

125

Host Processor

Voxel data

Graphics PROC-s 1
User Interface

I
Parallel Procedur~
Can ~ec~miss I]

Processor (0,0)
CA-Universe-part
Boundary elements
P~0C Initialize
PROC Set Soundary
P~OC Do_~imesteps

[Procedure Call | Lservice Process

ocessor (0,11

Processor (I,0)

CA-Universe-part
Boundary elementl
PROC Initialize
PROC Set Boundary
PROC Do Timesteps

J Procedure Call
[| [Service P r o c e s s

I Processor (I,i)

Figure 5: The parallel procedure call mechanism. Explicit synchonization is realized on
a high level of abstraction only.

5 Conclusions

The cellulaz automaton technique can be expected to become a competitive technique in
the area of computational fluid dynai~fics. It does not suffer from numerical instability
or convergence problems due to space or time discetization. It is flexible in handling
boundary conditions, and has a great potential for two-phase flow simulation. Early
experiments have shown that it is well possible to model surface tension, and adhesion to
solid walls.

As the technique deals with both space and time explicitly, it does not only re-
solve the final numerical solution of a flow experiment, but shows also its transient be-
haviour, all the way from the initial condition. Obviously the cost of this is computation
time. Computation time will become an even more serious problem when flows with large
Reynolds numbers are going to be simulated, as the size of the lattice grows cubicly with
the Reynolds number. So we feel that eventually the cellular automaton technique will be
practically useful to study complicated small scale fluid flow phenomena, with moderate
Reynolds numbers, at most of order 10 3 .

We have shown that a massively parallel cellular automaton can be implemented
very well on a transputer network. The computational power of a single transputer allows
that also the more difficult aspects of a cellular automaton simulation can be performed
in parallel, such as initialization of the automaton, maintaining boundary conditions and
extraction of macroscopic data. This makes the system a scalable system, i.e. no new
bottlenecks will emerge when the size of the automaton is scaled up.

Futhermore, a transputer network appears to be a good basis to develop a dedicated
cellular automaton machine. It seems quite easy to built VLSI-systems that can perform
the basic CA-operation very fast, but it wilt be extremely difficult to make them flexible
with respect to boundary conditions, or to get the results out of them. On top of this, it is

126

unrealistic to think that customized VLSI can beat the performance of ordinary memory
chips. Therefore we.feel that the ultimate dedicated cellular automaton machine will
contain ordinary memory to store the states of the cells, dedicated processors to perform
the basic operation, and transputer-like general purpose processing elements to execute
the irregular and more complicated parts of the algorithm.

References

[1] U. Frisch, B. Hasslacher, Y. Pomeau, "Lattice gas automata for the Navier-Stokes
equation", Phys, Rev. Left. 56, 1505-1508 (1986).

[2] D.H. Rothman, J.M. Keller, "Immiscible cellular-automata fluids", J. Star. Phys. 52,
1119-1127 (1988).

[3] P.C. Rem, J.A. Somers, "Cellular automata algorithms on a transputer network", Dis-
crete Kinematic Theory, Lattice Gas Dynamics, and foundations of Hydrodynamics,
R. Monaco ed. 268-275 (World Scient. 1989)

I4] INMOS Ltd, "occam 2 Reference Manual", Prentice Hall International Series in Com-
puter Science, C.A.R. Hoare ed. (1988).

[5] S. Wolfram, "Cellular automaton fluids 1: Basic Theory", J. Stat. Phys. 45, 471-526
(1986).

[6] D. d'Humi~res, P. Lallemand, "Numerical simulations of hydrodynamics with lattice
gas automata in two dimensions", Complex Systems 1,599-632 (1987).

[7] D. d'Humi~res, P. Lallemand, U. Frisch, "Lattice gas models for 3D hydrodynamics",
Europhys. Lett. 2, 291-297 (1986).

[8] U. Frisch, D. d'Humi~res, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet, "Lat-
tice Gas Hydrodynamics in two and three dimensions", CompIe~ Systems 1,649-707
(1987).

