Skip to main content

Effective semialgebraic geometry

  • Conference paper
  • First Online:
Geometry and Robotics (GeoRob 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 391))

Included in the following conference series:

Abstract

The first part of the paper introduces the decision problem and the quantifier elimination problem for elementary algebra. Tarski's algorithm, which is based on criteria for the existence of solutions of systems of polynomial equations and inequalities generalizing Sturm's theorem, is presented. Then the text is devoted to the cylindrical algebraic decomposition algorithm of Collins, which relies on the basic methods of the theory of semialgebraic sets initiated by Lojasiewicz. Special attention is paid to the topological aspect of the cylindrical algebraic decomposition, which provides a general method (surely too general to be efficient in practice) for robot motion planning. The techniques and results presented here have no pretention to originality. The references given at the end of the paper are just a sample of the literature on the subject, far from being exhaustive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.S. Arnon, B. Buchberger, ed., Algorithms in real algebraic geometry, Academic Press (1988).

    Google Scholar 

  2. D.S. Arnon, A cluster-based cylindrical algebraic decomposition algorithm, pp. 189–212 in [AB].

    Google Scholar 

  3. D.S. Arnon, G.E. Collins, S. McCallum, Cylindrical algebraic decomposition I: the basic algorithm, SIAM J. Comp 13 (1984), 865–877.

    Google Scholar 

  4. D.S. Arnon, G.E. Collins, S. McCallum, Cylindrical algebraic decomposition II: an adjacency algorithm for the plane, SIAM J. Comp 13 (1984), 878–889.

    Google Scholar 

  5. D.S. Arnon, G.E. Collins, S. McCallum, An adjacency algorithm for cylindrical algebraic decompositions of three-dimensional space, pp. 163–188 in [AB].

    Google Scholar 

  6. D. Arnon, M. Mignotte, On mechanical quantifier elimination for elementary algebra and geometry, pp 237–260 in [AB].

    Google Scholar 

  7. M. Ben-Or, D. Kozen, J. Reif, The complexity of elementary algebra and geometry, J. of Comput. and System Sci. 32 (1986) 251–264.

    Google Scholar 

  8. J. Bochnak, M. Coste, M-F. Roy, Géométrie algébrique réele, Ergebnisse der Math. 12, Springer-Verlag (1987).

    Google Scholar 

  9. G.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Proc. 2nd GI Conf. Automata Theory & Formal Languages, Springer, Lecture Notes in Computer Science 33 (1985), 134–183.

    Google Scholar 

  10. M. Coste, M-F. Roy, Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semialgebraic sets, pp. 121–130 in [AB].

    Google Scholar 

  11. J.H. Davenport, Computer algebra for cylindric algebraic decomposition, TRITA-NA-8511, NADA, KTH, Stockholm (1985).

    Google Scholar 

  12. J.H. Davenport, A "piano movers" problem, preprint (1985).

    Google Scholar 

  13. J.H. Davenport, J. Heintz, Real quantifier elimination is doubly exponential, pp. 29–36 in [AB].

    Google Scholar 

  14. N. Fitchas, A. Galligo, J. Morgenstern, Algorithmes rapides en séquentiel et en parallèle pour l'élimination de quantificateurs en géométrie élémentaire, Séminaire Structures Algébriques Ordonnées, Univ. Paris VII (1987)

    Google Scholar 

  15. D. Lazard, Quantifier elimination: optimal solution for two classical examples, pp. 261–266 in [AB].

    Google Scholar 

  16. S. Lojasiewicz, Ensembles semi-analytiques, multigraphed, I.H.E.S. (1965).

    Google Scholar 

  17. D.J. Grigoriev, Complexity of deciding Tarski algebra, pp. 65–108 in [AB].

    Google Scholar 

  18. R.G.K. Loos, Generalized polynomial remainder sequences, Computer Algebra — Symbolic and algebraic computation, Springer-Verlag (1982)

    Google Scholar 

  19. J. Marchand, Elimination des quantificateurs et décomposition algébrique cylindrique, in Séminaire "Calcul formel et outils algébriques pour la modélisation géométrique", C.N.R.S. (1988).

    Google Scholar 

  20. S. McCallum, An improved projection operation for cylindric algebraic decomposition, Computer Science Tech. Report 548, Univ. Wisconsin at Madison (1985), see also pp. 141–162 in [AB].

    Google Scholar 

  21. A. Paugam, Comparaison entre 3 algorithmes d'élimination des quantificateurs sur les corps réels clos, Thèse, Univ. Rennes 1 (1986).

    Google Scholar 

  22. J-J. Risler, About the piano mover's problem, preprint (1987).

    Google Scholar 

  23. J. Schwartz, M. Sharir, On the "piano movers" problem II. General techniques for computing topological properties of real algebraic manifolds, Advances in Applied Mathematics 4 (1983), 298–351.

    Google Scholar 

  24. A. Seidenberg, A new decision method for elementary algebra, Annals of Math. 60 (1954) 365–371.

    Google Scholar 

  25. A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. -D. Boissonnat J. -P. Laumond

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coste, M. (1989). Effective semialgebraic geometry. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-51683-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51683-5

  • Online ISBN: 978-3-540-46748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics