Skip to main content

Curves and computer algebra

  • Conference paper
  • First Online:
Geometry and Robotics (GeoRob 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 391))

Included in the following conference series:

  • 214 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Bochnak, M. Coste, M.-F. Roy: Géométrie algébrique réelle. Ergebnisse der Mathematik vol. 12. Berlin Heidelberg New York: Springer (1986).

    Google Scholar 

  2. G. Collins: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Lecture Notes in Computer Science, vol. 33, 134–183.

    Google Scholar 

  3. M. Coste: Effective semi-algebraic geometry (1988). This volume.

    Google Scholar 

  4. M. Coste, M.-F. Roy: Thom's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets. J. Symbolic Computation 5 (1988) 121–129.

    Google Scholar 

  5. F. Cucker, L. M. Pardo, M. Raimondo, T. Recio, M.-F. Roy: On the computation of the local and global analytic branches of real algebraic curves. To appear in AAECC Minorca (1987).

    Google Scholar 

  6. J. Davenport, Y. Siret, E. Tournier: Calcul formel. Paris: Masson (1986).

    Google Scholar 

  7. C. Dicrescenzo, D. Duval: Computation with algebraic numbers-the D5 system. Preprint (1987)

    Google Scholar 

  8. D. Duval: Rational puiseux expansions. Preprint (1987).

    Google Scholar 

  9. P. Gianni, C. Traverso: Shape determination for real curves and surfaces. Ann. Univ. Ferrara vol. XXIX 87–109 (1983).

    Google Scholar 

  10. L. Gonzalez, M. Ollazabal, M.-F. Roy: Real algebraic numbers by Thom's lemma: an implementation. Preprint (1988).

    Google Scholar 

  11. M.-F. Roy: Computation of the topology of a real algebraic curve. To appear in Sevilla's congress on Computational Topology and Geometry (1987).

    Google Scholar 

  12. B. Trager: Integration of algebraic functions. Thèse M.I.T. (1984).

    Google Scholar 

  13. R. Walker: Algebraic curves. Berlin Heidelberg New York: Springer (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. -D. Boissonnat J. -P. Laumond

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duval, D., Roy, M.F. (1989). Curves and computer algebra. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-51683-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51683-5

  • Online ISBN: 978-3-540-46748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics