Abstract
A presentation of the quantifier elimination problem, and other problems connected to it, such as the "piano mover's problem", is followed by the state of the art on the question. Afterwards are explained Schwartz', Sharir's and Collins' algorithm, based on the cylindrical algebraic decomposition, and two applications to bring out its possibilities and limitations. The tracks and views of development in this research domain, which is a useful tool for algebraic geometry, are lastly indicated. Its limitation, due to a very high cost, is an actual obstacle, which is to be removed, for its use for many classes of concrete geometric and algebraic problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
D.S. Arnon, B. Buchberger, Algorithms in Real Algebraic Geometry, Reprinted from the Journal of Symbolic Computation, vol 5, number 1–2, Academic Press, 1988.
J. Davenport, Y. Siret, E. Tournier, Calcul formel: systèmes et algorithmes de manipulations algébriques, Masson, Paris, 1987.
J. Bochnak, M. Coste, M-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin, 1987.
B. Buchberger, G.E. Collins, R. Loos, Computer algebra. Symbolic and Algebraic Computation, Springer-Verlag, New-York, 1982.
J. Della-Dora, M-F. Roy, J-J. Risler, Calcul Formel et outils algébriques pour la modélisation géométrique, Actes du Séminaire, CNRS, 1988.
G.E. Collins, Quantifier elimination for real closed fields by Cylindrical Algebraic Decomposition, Lecture Notes in Comp. Sc., vol 33, pp 134–183, Springer-Verlag, 1975.
D.S. Arnon, G.E. Collins, S. Mc Callum, Cylindrical Algebraic Decomposition I: the basic algorithm, SIAM J. Computations, vol 13, pp 865–877, 1984.
D.S. Arnon, G.E. Collins, S. Mc Callum, Cylindrical Algebraic Decomposition II: an adjacency algorithm for the plane, SIAM J. Computations, vol 13, pp 878–889, 1984.
S. Mc Callum, An improved projection operator for Cylindrical Algebraic Decomposition, Ph.D. Thesis, University of Wisconsin-Madison, 1984.
D.S. Arnon, G.E. Collins, S. Mc Callum, An adjacency algorithm for Cylindrical Algebraic Decompositions of three-dimensional space, Proc. EUROCAL 85 Vol. 2, Lecture Notes in Computer Science, vol 204, pp 246–261, Springer-Verlag, 1985.
D.S. Arnon, A cluster-based cylindrical algebraic decomposition algorithm, Proc. EUROCAL 85 Vol. 2, Lecture Notes in Computer Science, vol 204, pp 262–269, Springer-Verlag, 1985.
A. Paugam, Comparaison entre trois algorithmes d'élimination des quantificateurs sur les corps réels clos, Thèse de troisième cycle, Université de Rennes I, 1986.
M. Coste, M-F. Coste-Roy, Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, Journal of Symbolic Computation, vol 5, number 1–2, pp 121–129, Academic Press,1988.
M-F. Roy, Computation of the topology of a real curve, IRMAR, Université de Rennes I.
M-F. Roy, Aviva Szpirglas, Complexity of the computation on real algebraic numbers, IRMAR, Université de Rennes I, to appear.
J. Davenport, Computer algebra for Cylindrical Algebraic Decomposition, TRITA-NA-8511, NADA, KTH, Stockholm, 1985.
J-J. Risler, About the piano mover's problem, Université de Paris VI, to appear.
M. Merle, Le problème du déménageur, Ecole Polytechnique, Palaiseau, 1987.
J.T. Schwartz, M. Sharir, On the piano mover's problem, I, II, III, V, Comm. Pure Appl. Math, vol 36 & 37, 1983 & 1984 et Adv. Appl. math., vol 4, 1983.
E. Ariel-Sheffi, M. Sharir, On the piano mover's problem, IV, Comm. Pure Appl. Math, vol 37, 1984.
M. Sharir, S. Sifroni, A new efficient motion planning algorithm for a rod in polygonal space, ACM, 1986.
F. Ollivier, Implantation d'un algorithme de M. Sharir et S. Sifroni pour le déplacement d'une tige dans un espace polygonal, Université de Paris VI, Rapport de DEA-LAP, 1987.
O'Dunlaing, Yap, The Voronï method for motion planning: I. The case of a disc, Robotics Research, Technical Reports, Courant Institute, N.Y. University, 1983.
O'Dunlaing, M. Sharir, Yap, Generalized Voronoï diagrams for motion a ladder: I, II, Robotics Research, Technical Reports, Courant Institute, N.Y. University, 1984.
R. Loos, The Algorithmic Description Language: ALDES, Universität 675, Kaiserslautern.
L. Langemyr, Converting SAC2-Code to Lisp, SIGSAM Bulletin, vol 20.4, pp 11–13, 1986.
R.D. Jenks, A primer: 11 keys for a new SCRATCHPAD, Proc. EUROSAM 84, Lecture Notes in Computer Science, vol 174, pp 123–147, Springer-Verlag, 1984.
M-C. Gontard, Une première approche de la sémantique du langage de calcul formel Scratchpad II, Université de Paris VI, Rapport de DEA-LAP, 1987.
J. Della-Dora, C. Dicrescenzo, D. Duval, About a new method for computing in algebraic number fields, Proc. EUROCAL 85 Vol.2, Lecture Notes in Computer Science, vol 204, pp 289–290, Springer-Verlag, 1985.
J. Davenport, A “piano mover's” problem, SIGSAM Bulletin, vol 20.1&2, pp 15–17, 1986.
D. Lazard, Quantifier elimination: optimal solutions for two classical examples, Journal of Symbolic Computation, vol 5, number 1–2, pp 261–266, Academic Press, 1988.
D.S. Arnon, On mechanical quantifier elimination for elementary algebra and geometry: solution of a nontrivial problem, Proc. EUROCAL 85 Vol. 2, Lecture Notes in Computer Science, vol 204, pp 270–271, Springer-Verlag, 1985.
C. Champetier, J-F. Magni, Commande nodale par retour statique de sortie: méthode algébrique, Rapport C.E.R.T, Toulouse, 1987.
A. Ben Cherifa, Preuves de terminaison des systèmes de réécriture. Un outil fondé sur les interprétations polynomiales, Thèse de doctorat, Université de Nancy I, 1986.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marchand, J. (1989). The algorithm by schwartz, sharir and collins on the piano mover's problem. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_24
Download citation
DOI: https://doi.org/10.1007/3-540-51683-2_24
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51683-5
Online ISBN: 978-3-540-46748-9
eBook Packages: Springer Book Archive