Abstract
This paper addresses two aspects of the navigation problem for a two d.o.f mobile robot (non holomic system): trajectory planning and motion control. Trajectory planning concerns the existence and the generation of a feasible collision-free trajectory, and motion control the actual execution of this trajectory.
The problem has to be solved in constrained and non-constrained environment. We summarize some results previously obtained in non constrained space and develop a general approach for finding feasible trajectory in constrained space. This method is based on a result which characterizes the existence of a feasible trajectory by means of the existence of a connected open component in the admissible configuration space. Its current implementation, based on a configuration space structured into hyper-parallelepipeds, is described.
The trajectory is then analyzed in order to smooth it when possible, using clothoid curves. Its execution is controlled by means of comparing sensor readings with the local environment model along it.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Avnaim and J-D. Boissonnat. A practical exact motion planning algorithm for polygonal objects admist polygonal obstacles. In IEEE, International Conference on Robotics and Automation, Philadelphia (USA), 1988.
Zhang Bo, Zhang Ling, and Zhang Jianwei. An efficient algorithm for findpath with rotation. Report Department of Computer Science, Beijing Univ., 1986.
M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Perez, and M.T. Mason. Robot motion: planning and control. MIT Press, 1982.
R. A. Brooks. Solving the find-path problem by good representation of free space. IEEE journal on Systems, Man and Cybernetics, 2(13), 1983.
R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with rotation. IEEE journal on Systems, Man and Cybernetics, 2(15), 1985.
R. Chatila. Path planning and environment learning in a mobile robot system. In ECAI, Orsay (France), Juillet 1982.
R. Chatila and G. Giralt. Task and path planning for mobile robots. In NATO ARW on Machine Intelligence and Knowledge Engineering, Maratea (Italy), Mai 1986.
H. Chochon and Leconte B. Etude d'un module de locomotion pour un robot mobile. Rapport de fin d'étude ENSAE, Laboratoire d'Automatique et d'Analyse des Systèmes (C.N.R.S.), Toulouse (France), Juin 1983.
B. Faverjon. Object level programming of industrial robots. In IEEE, International Conference on Robotics and Automation, San Francisco (USA), 1986.
B. Faverjon and P. Tournassoud. A local based approach for path planning of manipulators with a high number of degrees of freedom. In IEEE, International Conference on Robotics and Automation, Raleigh (USA), 1987.
S. Fortune and G.T. Wilfong. Planning constrained motion. Technical Report, ATT Bell Laboratories, Murray Hill, Mai 1988.
L. Gouzènes. Strategies for solving collision-free trajectories problems for mobile or manipulator robot. International Journal of Robotics Research, 3(4), Winter 1984.
L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry. IEEE Symp. on FOCS, 1983.
Y. Kanayama and N. Miyake. Trajectory generation for mobile robots. In G. Giralt O. Faugeras Eds., Robotics Research 3, MIT Press, 1986.
O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 1(5), 1986.
A. Khoumsi. Pilotage, asservissement sensoriel et localisation d'un robot mobile autonome. Thèse de l'Université Paul Sabatier, Toulouse (France), Laboratoire d'Automatique et d'Analyse des Systèmes (C.N.R.S.), Toulouse (France), Juin 1988.
J. P. Laumond. Obstacle growing in a nonpolygonal world. Information Processing Letters, 25(1), Avril 1987.
J.P. Laumond. Feasible trajectories for mobile robots with kinematic and environment constraints. In F. C. A. Groen L. O. Hertzberger, editor, Intelligent Autonomous Systems, North Holland, 1987.
J.P. Laumond. Finding collision-free smooth trajectories for a non-holonomic mobile robot. In 10th IJCAI, Milan (Italy), 1987.
T. Lozano-Perez. A simple motion planning algorithm for general robot manipulators. Robotics Research: The Third International Symposium, O. Faugeras and G. Giralt Eds., MIT Press, 1986.
T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE Transaction Computer, 32(2), 1983.
B. Mysliwetz and E.D. Dickmanns. A vision system with active gaze control for real-time interpretation of well structured dynamic scenes. In F. C. A. Groen L. O. Hertzberger, editor, Intelligent Autonomous Systems, North Holland, 1987.
O'Dunlaing and C. Yap. A retraction method for planning a motion of a disk. J. of Algorithms, 6:104–111, 1985.
J. Reif. Complexity of mover's problem and generalizations. In IEEE Symposium on FOCS pages 421–427, 1979.
J. T. Schwartz and M. Sharir. On the piano mover: the case of a two dimensional rigid polynomial body moving amidst polygonal barriers. Communication on Pure and Applied Math, (36), 83.
J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry and Complexity of Robot Motion. Artificial Intelligence, Ablex Pub., 1987.
T. Siméon. Collision-Free Trajectories Planning using a Configuration Space Approach. (In this book)
P. Tournassoud. Motion planning for a mobile robot with a kinematic constraint. In IEEE Int. Conf. on Robotics and Automation, 1988.
R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. Kanade. Progress in robot road-following. In IEEE Int. Conf. on Robotics and Automation, 1986.
E.T. Whittaker. A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press, 4th Ed., 1965.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laumond, J.P., Simeon, T., Chatila, R., Giralt, G. (1989). Trajectory planning and motion control for mobile robots. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_28
Download citation
DOI: https://doi.org/10.1007/3-540-51683-2_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51683-5
Online ISBN: 978-3-540-46748-9
eBook Packages: Springer Book Archive