Abstract
In this paper we show how the notion of convergence of a sequence of closed sets and that of random closed sets can be given a precise definition by means of mathematical morphological tools. Then we use these two notions on the one hand to analyze how the Delaunay triangulation enables us to get a good approximation of the skeleton of an object and on the other hand to estimate the performances of bucketing techniques in the average case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T. Asano, M. Edahiro, H. Imai, and M. Iri. Computational Geometry, chapter Practical Use of Bucketing Techniques in Computational Geometry. Elsevier Science Publishers B.V. (North Holland), 1985.
J.D. Boissonnat, O.D. Faugeras, and E. Le Bras-Mehlman. Representing Stereo Data with the Delaunay Triangulation. Technical Report 788, INRIA, February 1988.
L. Calabi and J.A. Riley. The Skeletons of Stable plane Sets. Technical Report AF 19 (628-5711), Parke Math. Lab. Inc., December 1967.
G. Choquet. Theory of capacities. Ann. Inst. Fourier, V:131–295, 1953–54.
T. Lozano-Pérez and M.A. Wesley. An algorithm for planning collision free paths among polyhedral obstacles. Comm. ACM, 22:560–570, 1979.
G. Matheron. Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, chapter Filters and Lattices. Academic Press, 1988.
G. Matheron. Random Sets and Integral Geometry. Wiley, 1975.
G. Matheron. Théorie des ensembles aléatoires. Les cahiers du Centre de Morphologie Mathématique, Ecole des Mines de Paris, 1969.
F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction. Springer Verlag, 1985.
F. Prêteux and M. Schmitt. Analyse et synthèse de fonctions booléennes: théorèmes de caractérisation et démonstrations. Technical Report 34/87/MM, CGMM, Ecole des Mines, 1987.
L.A. Santalo. Integral Geometry and Geometric Probability. Addison Wesley, 1976.
J. Serra. Eléments de théorie pour l'optique morphologique. Thèse d'Etat, Université de Paris VI, 1986.
J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmitt, M. (1989). Some examples of algorithms analysis in computational geometry by means of mathematical morphological techniques. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_33
Download citation
DOI: https://doi.org/10.1007/3-540-51683-2_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51683-5
Online ISBN: 978-3-540-46748-9
eBook Packages: Springer Book Archive