Skip to main content

Hamiltonian cycles in delaunay complexes

  • Conference paper
  • First Online:
Geometry and Robotics (GeoRob 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 391))

Included in the following conference series:

Abstract

We restate a conjecture concerning the existence of Hamiltonian cycles in graphs resulting from the Delaunay triangulation of point sets in the plane R2. We introduce the notion of Delaunay complex, the natural completion of a Delaunay triangulation. We show that Delaunay complexes are necessarily 3-connected. It remains an unsolved problem to prove that Delaunay complexes have Hamiltonian cycles, or to provide a counterexample. On the other hand, using the methods of I. Rivin and W. Thurston to specify a Delaunay triangulation by its list of hyperbolic dihedral angles, we settle a related conjecture. We provide an example to show that the Hamiltonian cycles in a Delaunay complex may not generate all non-degenerate geometric realizations of Delaunay complexes. That is, there are geometric realizations of Delaunay complexes that are not convex sums of Hamiltonian cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Jean-Daniel Boissonnat, Geometric Structures for 3-dimensional Shape Representation, ACM Transactions on Graphics 3, no. 4, 1984.

    Google Scholar 

  2. Norishige Chiba and Takao Nishizeki, The Hamiltonian Cycle Problem is Linear-time solvable for 4-connected Planar Graphs, Proceedings of ISCAS 85, 961–964.

    Google Scholar 

  3. H. Crapo, Delaunay triangulations, with Jean-Daniel Boissonnat, (extended abstract) Séminaire du Centre de Mathématique, Ecole Polytechnique, Palaiseau, January 1987.

    Google Scholar 

  4. Michael B. Dillencourt, A non-Hamiltonian, non-degenerate Delaunay Triangulation, Information Processing Letters 25 (1987), 149–151.

    Google Scholar 

  5. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

    Google Scholar 

  6. M.R. Garey, D.S. Johnson and R.E. Tarjan, The Planar Hamiltonian Circuit Problem is NP-complete, SIAM J. of Computing 5, (1976), 704–714.

    Google Scholar 

  7. D. Gouyou-Beauchamps, The Hamiltonian Circuit Problem is Polynomial for 4-connected Planar Graphs, SIAM J. of Computing 11 (1982), 529–539.

    Google Scholar 

  8. Branko Grünbaum, Convex Polytopes, John Wiley & Sons, Inc., 1967.

    Google Scholar 

  9. David Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publ. Co., New York, 1952.

    Google Scholar 

  10. Jean-Paul Laumond, Connectivity and the Hamiltonian Circuit Problem for Delaunay Triangulations, LAAS (CNRS) internal report #87414, Toulouse, December 1987.

    Google Scholar 

  11. F.P. Preparata and M.I. Shamos, Computational Geometry, an Introduction, Springer-Verlag, 1985.

    Google Scholar 

  12. Ivor Rivin, On the Geometry of Convex Polyhedra in Hyperbolic 3-space, Ph.D. thesis, Princeton University, June 1986, supervised by W. Thurston.

    Google Scholar 

  13. J. Steiner, Gesammelte Werke (2 volumes), Berlin 1881, 1882.

    Google Scholar 

  14. E. Steinitz, Über isoperimetrische Probleme bei konvexen Polyedern, J. reine angew. Math. (Crelle), 158(1927), 129–153, 159 (1928), 133–143.

    Google Scholar 

  15. William Thurston, private communication, June 1985.

    Google Scholar 

  16. W. T. Tutte, A Theorem on Planar Graphs, Trans. Amer. Math. Soc. 82 (1956), 99–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. -D. Boissonnat J. -P. Laumond

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crapo, H., Laumond, JP. (1989). Hamiltonian cycles in delaunay complexes. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-51683-2_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51683-5

  • Online ISBN: 978-3-540-46748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics