Abstract
We restate a conjecture concerning the existence of Hamiltonian cycles in graphs resulting from the Delaunay triangulation of point sets in the plane R2. We introduce the notion of Delaunay complex, the natural completion of a Delaunay triangulation. We show that Delaunay complexes are necessarily 3-connected. It remains an unsolved problem to prove that Delaunay complexes have Hamiltonian cycles, or to provide a counterexample. On the other hand, using the methods of I. Rivin and W. Thurston to specify a Delaunay triangulation by its list of hyperbolic dihedral angles, we settle a related conjecture. We provide an example to show that the Hamiltonian cycles in a Delaunay complex may not generate all non-degenerate geometric realizations of Delaunay complexes. That is, there are geometric realizations of Delaunay complexes that are not convex sums of Hamiltonian cycles.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
Jean-Daniel Boissonnat, Geometric Structures for 3-dimensional Shape Representation, ACM Transactions on Graphics 3, no. 4, 1984.
Norishige Chiba and Takao Nishizeki, The Hamiltonian Cycle Problem is Linear-time solvable for 4-connected Planar Graphs, Proceedings of ISCAS 85, 961–964.
H. Crapo, Delaunay triangulations, with Jean-Daniel Boissonnat, (extended abstract) Séminaire du Centre de Mathématique, Ecole Polytechnique, Palaiseau, January 1987.
Michael B. Dillencourt, A non-Hamiltonian, non-degenerate Delaunay Triangulation, Information Processing Letters 25 (1987), 149–151.
H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
M.R. Garey, D.S. Johnson and R.E. Tarjan, The Planar Hamiltonian Circuit Problem is NP-complete, SIAM J. of Computing 5, (1976), 704–714.
D. Gouyou-Beauchamps, The Hamiltonian Circuit Problem is Polynomial for 4-connected Planar Graphs, SIAM J. of Computing 11 (1982), 529–539.
Branko Grünbaum, Convex Polytopes, John Wiley & Sons, Inc., 1967.
David Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publ. Co., New York, 1952.
Jean-Paul Laumond, Connectivity and the Hamiltonian Circuit Problem for Delaunay Triangulations, LAAS (CNRS) internal report #87414, Toulouse, December 1987.
F.P. Preparata and M.I. Shamos, Computational Geometry, an Introduction, Springer-Verlag, 1985.
Ivor Rivin, On the Geometry of Convex Polyhedra in Hyperbolic 3-space, Ph.D. thesis, Princeton University, June 1986, supervised by W. Thurston.
J. Steiner, Gesammelte Werke (2 volumes), Berlin 1881, 1882.
E. Steinitz, Über isoperimetrische Probleme bei konvexen Polyedern, J. reine angew. Math. (Crelle), 158(1927), 129–153, 159 (1928), 133–143.
William Thurston, private communication, June 1985.
W. T. Tutte, A Theorem on Planar Graphs, Trans. Amer. Math. Soc. 82 (1956), 99–116.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Crapo, H., Laumond, JP. (1989). Hamiltonian cycles in delaunay complexes. In: Boissonnat, J.D., Laumond, J.P. (eds) Geometry and Robotics. GeoRob 1988. Lecture Notes in Computer Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51683-2_36
Download citation
DOI: https://doi.org/10.1007/3-540-51683-2_36
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51683-5
Online ISBN: 978-3-540-46748-9
eBook Packages: Springer Book Archive