Abstract
Projection algebras can be interpreted as an algebraic version of ultrametric algebras, which are suitable for a formal description of parallel concurrent systems. In this paper parameterized projection specifications with free functor semantics are introduced and a revised version of simple projection specifications with initial algebra semantics is given. Both kinds of semantics are based on categorical constructions. A fixed point theorem for projection spaces is used for the definition of the semantics of recursive process specifications. Discrete projections (corresponding to the discrete metric) can be taken for data types. This allows to use projection specifications also for combined data- and process types.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.A. Arbib, E.G. Manes: Arrows, Structures and Functors, Academic Press, New York-SanFrancisco-London 1975
J.A. Bergstra, J.W. Klop: The Algebra of recursively defined processes and the algebra of regular processes, Report IW 235/83, Math. Centrum, Amsterdam 1983
J.A. Bergstra, J.W. Klop: Algebra of Communicating Processes, in: CWI Monographs I Series, Proceedings of the CWI Symposium Mathematics and Computer Science, North-Holland, p. 89–138, Amsterdam 1986
J.W.DeBakker, J.I.Zucker: Denotational semantics of concurrency Proc. 14th. ACM Symp. on Theory of Computing, p.153–158, 1982
J.W. DeBakker, J.I. Zucker: Processes and the denotational semantics of concurrency, Information and Control, Vol.54, No.1/2, p.70–120, 1982
C.Dimitrovici, H.Ehrig, M.Große-Rhode, C.Rieckhoff: Projektionsräume und Projektionsalgebren: Eine Algebraisierung von ultrametrischen Räumen, Technical Report No. 87-7, TU Berlin, 1987
H.Ehrig,W.Fey,H.Hansen: ACT ONE: An Algebraic Specification Language with Two Levels of Semantics, TUB Bericht Nr.83-01
H. Ehrig, B. Mahr: Fundamentals of Algebraic Specifications 1: Equations and Initial Semantics, Springer Verlag, Berlin-Heidelberg-New York-Tokyo 1985
H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, M. Große-Rhode: Algebraic Data Type and Process Specifications Based on Projection Spaces, Springer LNCS 332, p.23–43, 1988
H.Ehrig, F.Parisi-Presicce, P.Boehm, C.Rieckhoff, C.Dimitrovici, M.Große-Rhode: Combining Data Type and recursive Process Specifications using Projection Algebras, Theoretical Computer Science, to appear.
J.A.Goguen, J.Meseguer: An Initiality Primer, draft version, SRI International, Computer Science Laboratory 1983
M.Große-Rhode: Specification of Projection Algebras, Diploma Thesis, TU Berlin FB 3 (Mathematics), 1988
H.Herrlich, H.Ehrig: The Construct PRO of Projection Spaces: Its Internal Structure, invited paper for the workshop "Categorical Methods in Computer Sciences with aspects from Topology", FU Berlin 1988, this volume.
H.Herrlich, G.E.Strecker: Category Theory, Allyn and Bacon, Boston 1973
S.MacLane: Categories for the Working Mathematician, Springer GTM, 1971
B.Möller, W.Dosch: On the Algebraic Specification of Domains, in Recent Trends in Data Type Specification (e.d. H.J.Kreowski), Informatik Fachberichte 116, Springer Verlag 1986, 178–195
M.Nivat: Infinite words, infinite trees, infinite computations, Math. Centrum Amsterdam
Reisig: Petri Nets, Springer (Berlin Heidelberg New York) 1985
A.Tarlecki, M.Wirsing: Continuous abstract data types, Fundamenta Informaticae IX (1986) 95–126, North-Holland
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Große-Rhode, M. (1989). Parameterized data type and process specifications using projection algebras. In: Ehrig, H., Herrlich, H., Kreowski, H.J., Preuß, G. (eds) Categorical Methods in Computer Science With Aspects from Topology. Lecture Notes in Computer Science, vol 393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51722-7_11
Download citation
DOI: https://doi.org/10.1007/3-540-51722-7_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51722-1
Online ISBN: 978-3-540-46787-8
eBook Packages: Springer Book Archive