
Argonaute: Graphical Description, Semantics and
Verification of Reactive Systems by Using a Process

Algebra

Florence Maraninchi
LGI, IMAG-CAMPUS~ BP 53X

3 8 0 4 1 GRENOBLE c e d e x

FRANCE

e-mai l : maraninx¢imag, imag. fr

A b s t r a c t

The ARGONAUTE system is specifically designed to describe, specify and verify reactive
systems such as communication protocols, real-time applications, man-machine inter-
faces, . . . It is based upon the ARGos graphical language, whose syntax relies on the
Higraphs formalism by D. Harel [HAR88], and whose semantics is given by using a process
algebra. Automata form the basic notion of the language, and hierarchical or parallel
decompositions are given by using operators of the algebra. The complete formalization
of the language inherits notions from both classical process algebras such as c c s [MILS0],
and existing programming languages used in the same field such as ESTEREL [BGS8] or
the STATEC~IARTS formalism [HAR87]. Concerning complex system description, ARGOS
allows to describe intrinsic states directly - - with the basic automaton notion - - and only
them: connections between components need no extra-state. The ARGONAUTE system
allows to describe reactive systems graphically, to specify properties by means of tempo-
ral logic formulas, to produce a model on which logic formulas can be evaluated and to
simulate an execution of the system described, by using the external graphical form to
show evolutions. We present the global structure and functionalities of the AItGONAUTE
system, and the theoretical basis of the ARGOS language.

1 I n t r o d u c t i o n

We are interested in the general field of the validation of reactive systems, so called by
D. Harel and A. Pnueli [HP85]. Reactive systems include real-time applications, commu-
nication protocols, or man-machine interfaces. Dealing with reactive system validation
includes describing them with some appropriate description language, simulating execu-
tions, and specifying the expected behaviour. These various aims are considered as more
or less important when building a tool for the validation of reactive systems.

39

1.1 V a l i d a t i o n o f r e a c t i v e s y s t e m s

The languages for the description of reactive systems follow different approaches.

Some languages, like ESTEREL [BG88], are aimed at programming reactive kernels of
complex systems. ESTEI~EL offers high level design concepts and modular development.
Validation includes simulation and verification by graph reduction methods.

Other languages are aimed at describing complex systems in the most readable way.
The state-transition approach and the graphical one fall into this part. In describing
communication protocols, for instance, one often starts drawing automata, which have
to be translated into authorized constructions of a language. A language in which direct
automata descriptions are authorized constructions is therefore interesting. However,
human design of complex and large automata is impractical. For instance, the CCITT
SDL [SDL] for communication protocols deals with one level concurrency between ma-
chines. There is no way to introduce hierarchic design, and even simple protocols have
complex graphical descriptions. An interesting language following the same approach is
the STATECHARTS formalism [HAR87]. Here, the state-transition formalism is extended
to allow hierarchic representation with oa or A N D decompositions of states. Since au-
tomata can be represented in a concise manner, complex systems with numerous states
can be described. However, the design is not really modular, and the complete figure is
needed to understand the behavlour ,,~f a system. This is a great limitation to the ap-
proach. The STATECHARTS formalism is the fundation of the STATEMATE visual working
environment for the design of complex systems [STMA]. The STATEMATE environment
allows interactive building of systems, and provides a good tool for the simulation of
executions, or various evaluations. Moreover, the language is given a formal semantics,
and global properties such as the absence of deadlock can be verified for the system
described.

Finally, concerning the validation, an interesting approach is the specification by means of
temporal logic formulas which describe the expected behaviour of a system. A finite state
graph model is built from the description of the system with some appropriate description
language, and the logical formulas are evaluated on this model. The description language
must have a formal semantics to allow automatic generation of the state graph model.
Moreover, when a specification formula is false, it is interesting to provide the user
with a diagnostic relating this result with the external form of the description language.
Xv.SAR [XES] and CAEsAR[GAR89] follow this approach. The description languages
of CA~S~.R and XESAR are respectively LOTOS [LOT] and ESTELLI~/R, a variant of
ESTELLE lEST86]. As these languages were not designed while taking into account the
model checking approach, they must be adapted in order to allow the user to relate the
system descriptions with the specification formulas. In XESAR, when a formula is false, a
specific tool called CLEO [RAS88] can give a diagnostic of the form: "the formula is false
because the system can reach a state that do not verify it, by executing the following
sequence of actions". The states involved in a diagnostic are states of the model, which
can be hard to relate with the description of the system in ESTELLE/R. On the other
hand, the two languages lack high level design concepts that could allow to describe a
system by successive refinement stages.

40

"~ 0 (AOBO)

(A1BI) 1 (A1B0)

a ' N , / / a
(A0m) 2

BO Ao /

B1 A1

(b)

(c)

(a)

AOB0~ AtBI* A1B1

A1BG ~AtB0 ~AOB1
a 7- 1

(d/

/

A c~

1

Figure 1: Describing intrinsic states only

1.2 Main object ives for a descr ip t ion language

We are mostly interested in the specification of reactive systems with model checking
based methods. We want to design a description language by taking into account the
characteristics of such languages required in a specification environment like Xl~s~tR, as
stated above. Moreover, the language must have good properties for the designer. This
includes readability, as intented by the automata based graphical languages, and high
level design concepts such as hierarchical decomposition.

In the model checking approach, the first objective is to limit ate, if possible, the size
of the model generated. Indeed, finite models have been proved interesting, especially
for protocol validation, but complex systems cart lead to very large models, therefore
limiting the interest of the model checking approach. This phenomenon has several rea-
sons, among which the intrinsic complexity of the problem described. But with classical
description languages, states can appear in the description, which do not correspond to
intrinsic, states of the system. We call them extra-states.

We are interested in the state-transition approach, with graphical syntax. An automata
based language allows to describe intrinsic states of basic behaviours directly. The ba-
sic automaton notion is used together with powerful constructs such as hierarchical or
parallel composition, which are given a graphical syntax too, and a compositional se-
mantics. This is the only way to provide modular development and splitted graphical
representation. But, when trying to introduce those high level concepts, one must keep
in mind that we want to describe intrinsic states of the systems only. Constructs like par-
allel composition must not need adding "extra"-states in order to express links between
components.

Let us observe a modulo 4 a counter. The intrinsic states of this system correspond to
the four possibles values of the counter: 0, 1, 2 and 3. When describing such a system
in a state-transltion frame, two approaches can be followed. We can represent the four
intrinsic states directly, and build a single automaton with the four expected transitions.

41

(see figure 1, a). We stated above that this solution cannot be used when the system
has numerous states. We can also decompose the set of states. Figure l(b) shows the
decomposition of the counter into two bits. With these two bits, we want to build two
automata, and to compose them with an appropriate operator in order to obtain the
global behaviour described in (a).

Here, the state decomposition correspond to the usual parallel concept. But if the parallel
operator semantics is not well chosen, we cannot build (a) with two automata containing
only the states of (b). For instance, when describing the counter with the asynchronous
model of cos, one is led to introduce an extra-state AT, and an internal event fl in or-
der to express the communication between the two automata. (see c). The counter is
described by (bitB I bitA)\fl where bitA -- c~crfl bitA and bitB -- tiff bitB. The corre-
sponding state graph is given by (d): it contains two extra-states ATB0 et ATB1. This
situation is neither particular to our example, nor due to the way it is modelled, and
appears currently with formalisms like ccs.

The above remarks show a way to design a description language that takes into account
the main requirements of specification environments. The basic notion is automata, with
graphical syntax. Operations provide a way to structure complex systems descriptions.
They must be carefully defined to meet four aims: they can be used without leading the
designer to introduce extra-states in the basic behaviours, in order to express their links;
their relation with informal design concepts is clear; their semantics is well defined; they
possess a readable graphical syntax.

1 . 3 T h e ARGOS l a n g u a g e a n d t h e ARGONAUTE s y s t e m

We propose the ARGOS language and the ARGONAUTE system, for the description and the
validation of reactive systems. ARGOS has a graphical syntax derived from the Higraphs
formalism proposed by D. Harel [HAR88] and used in the STATECHARTS formalism.
However, ARGOS is not an attempt to give another formal semantics of the STATECHARTS,
as it can be found in [HGR88]. The formal definition of this new language relies on a
process algebra, whose basic terms describe automata and whose operators capture the
high level design concepts of parallel or hierarchical composition. The latter cannot
be taken from classical process algebras, since they lack hierarchical concepts. They
must be adapted from notions of other languages, such as ESTEREL. Each operator
allows to express communication between components which contain intrinsic states only.
Moreover~ the underlying process algebra gives good properties to the graphical language:
it allows to describe complex systems by several figures, since the design can be really
modular.

Concerning the system functionalities, ARGONAUTE is similar to XI~SAR [XES] or CAE-
SAR [GARB9]. The formal semantics leads to an automatic model generation tool that
builds only the intrinsic states of the system described. Moreover, diagnostics produced
by the evaluation of logical formulas can be related easily to the external graphical form
of the system.

In the following sections, we first present the ARGOS language informally. Then we
give some details about its formal semantics, by comparing it with existing algebras and
languages. We end with an overall description of the ARGONAUTE system functionalities.

42

Figure 2: Automaton description

2 Informal descript ion of ARGOS

We describe the basic automaton notion first; then we describe the constructs of ARGOS,
which give composed objects called processes.

2 .1 A u t o m a t a

As above mentioned, au tomata constitute the basic notion of the language. One can
describe them by giving explicit states and labeled transitions. The graphical syntax of
au tomata is given by figure 2. The initial state of the automaton is marked by a little
arrow without label.

Labels describe events which determine the evolution of the system modeled by the
automaton. Events, like events in process algebras, are abstract notion, and one can give
them various meanings, such as: "acknowledgement is passed from the medium to the
emitter" or "a larm beep is activated" or "connection a t tempt ends correctly", and so on.
In particular~ events may represent input or output of the system as well. A transition
leading from state A to state B with label a means: by taking into account event a the
systems evolves from state A to state B.

We show in section 2.2 that label can be structured in two fields, the toggle event field,
and the generated events field, in order to control interactions between automata .

2 .2 Parallel composition

Parallel composition is a powerful design concept which appears in classical process
algebras as the parallel operator. In ARGOS, it has a particular semantics chosen by
taking into account the objectives of section 1.2.

Figure 3 shows a modelization of the mutual exclusion. Two users, represented by two
au tomata User1 and User2, compete for the use of a resource, represented by the au-
tomaton resource. User1 can request the use of the resource with request1 and liberate
it by frcel. The behaviour of User2 is symmetrical. The resource can leave state FREE
to enter state USEr) by taking into account request1 or request2. Then it can reenter
the FRI~ state by free1 or free2. The global system is a process built with the parallel
operator from the three automata: the parallel components. A state of the global process
is a configuration of states of the components, for instance R1/FREE/R2.

reVUes1
43

f r ~ e s t l
f r ~ u e s t 2 free~Uest 2

Figure 3: The mutual exclusion example

The behaviour of the process is as follows:
The initial state is given by the initial states of the components: R1/FREE/R2.

For each event ez, all components where ez appears must evolve together by ~ or not.
These evolutions are independent from those of the components where a does not appear.
The result is the evolution of the global system by ¢x. In our example, starting from the
initial state, one request, say request1, can be taken into account. The system then enters
global state U1/USED/R2. Then, a request from the second user cannot be taken into
account, since the resource cannot execute request2. The only possible action is free1,
which leads to the initial state.

This describes n-ary rendez-vous. The parallel operator has good properties such as
commutat ivi ty or associativity, which are fundamental when dealing with a graphical
language, where unassociative operators needing explicit parenthesis are uneasy to draw.

However, our definition has two major drawbacks: First, the structure of synchronization
is rigid, because each occurrence of an event a must synchronize always or never with
each occurrence of the same event in another component. There is no way to specify that
some occurrences must give way to synchronization, and some other must not.

On the other hand, the definition is symmetrical. The situation where two components
are blocked on an a transition - - as in the mutual exclusion example - - is a particular
one. In other situations, it is very difficult to express that one component is blocked,
while the other is not, by using our symmetrical definition of parallel composition.

This can lead to introduce extra-states. However, to force synchronization is never easy
if it is not a built-in feature. Rigidity of our definition is therefore sometimes the good
tool. We can keep this definition if another feature allows to describe situations where
the synchronization is less rigid.

The generated events field of transition labels mentioned in section 2.1 provides this
feature. It supprcsses the drawbacks of parallel composition defined with rendez-vous
only. It allows to build the transitions of a composed system from those of its components
without being bound to introduce extra-states in those components.

We describe informally the global behaviour of the system shown by figure 4. The initial
state is A / C / E . When event a occurs, the first component reaches state B and generates
event ft. This means that this occurrence of a must synchronize, if possible, with a fl-
labeled transition somewhere in the remainder of the system. Here the remainder is in
state C / E , where event fl can be taken into account. Therefore, the global evolution

44

T

Figure 4: A simple example for the use of generated events, and the 2-bit a counter

is from state A / C / E to state B / D / F by a : all components who are able to react do.
This is the definition of the broadcast of/3. In state B / D / F , when a occurs, the first
component reaches state A and generates 7. (This occurrence of a has not the same
effect as the other). The second component is in state D and cannot react to 7' Hence
the third component cannot react neither, because of the parallel operator definition.
The global evolution is from B / D / F to A / D / F by a.

Figure 4 shows the description of the two-bit a counter with generated events. The global
behaviour is as expected, and contains only the four intrinsic states. To our opinion, the
generated event feature allows to use parallel composition freely in order to express global
states of a system in a concise manner. All behaviours of the global system (i.e. sets
of transitions between global states) can be obtained without introducing extra-states in
the basic components.

The generated events feature is similar to the emitted signals of ESTEItI~L or the generated
events of the STATECHARTS formalism. Our semantics is based upon the synchrony
hypothesis adopted by ESTErtEL, although we show that the problem is not the same in
this language and in ARGOS. In the STATECHARTS formalism, semantics of generated
events is computed non-deterministically, which considerably limits the cases in which it
could help, see [HPSS86] and [HGR88]. Section 3 give details on semantics of generated
events, relations between this feature and determinism, differences between ARGOS and
ESTERI~L.

2.3 An operator for the hierarchical design concept

This feature is inspired originally by the refinement operation of the STATECHARTS for-
malism, which is related with high level concepts as top-down or bot tom-up problem
analysis. It has no equivalent in classical process algebras.

When trying to build an algebra operator to capture the intuitive semantics of the re-
finement operation, one must solve several problems, since the refinement of the STAT-
ECHARTS is much more an economy in drawing edges of a global automaton than a
conceptual decomposition into processes. These problems happen to be crucial for the
development of the ARGOS language. The main idea of our definition is to involve two
processes, a controller and a controlled one, in an asymmetrical control operation. The
graphical syntax shows the representation of the controlled process in the box which cor-
responds to the state of the controller being "refined". That is, the state which defines

45

SETWATCH ~ NORMAL

Figure 5: Example of the asymmetrical control operation: a simple wristwatch

CONNECTION ATTEMPTS established .[DATA TRANSFER

error • DISCONNECTION

Figure 6: Example of asymmetrical control: a communication protocol

how the controller performs its control.

Let us observe figure 5. The controller maintains the states of a wristwatch interface:
NORMAL mode, SETWATCH mode . . . The controlled process refines the SETWATCH mode,
to show HOUR setting, MINUTE setting and SECONDE setting.

Each transit ion of the controller with target SETWATCH starts the controlled process in its
initial state, that is MINUTE setting. On our example, this is done by taking into account
event a , related to one but ton of the wristwatch. The three states of the controlled
process form a cycle which can be run over with another button, related to event ~.
Each event fl is taken into account by the controlled process to let the user run over the
cycle, while the controller remains in SETWATCH state. When event a occurs, no mat te r
what the internal s tate of SETWATCH mode is, the wristwatch leaves this s tate to reenter
NORMAL one: the controller executes a transition which leaves the control state, and
therefore kills the controlled process: it can no longer take events into account, and the
information about its s tate is lost.

Now, let us observe another example, see figure 6. It shows a simple communication
protocol, with connection and disconnection. The protocol data units are CR (connection
request), CC (connection confirmation) and dt (data transfer). The service data units
are ConReq (connection request) and ConConf (connection confirmation). The main
process, called Transaction, maintains the states of the protocol with respect to the
connection being established or not: CONNECTION ATTEMPTS, DATA TRANSFER, ERROR
AND DISCONNECTION. The CONNECTION ATTEMPTS state controls a sequential process
called ConnAtt in charge to establish the connections. Once it has been started, this

46

process evolves by ConReq, CR, CC, ConConf and dt while the controller remains in the
control state, since these events cannot make it leave this state. When the controlled
process ConnAtt reaches the state E where the connection is established, it generates
the event established. This transition must synchronize, if possible, with a transition
labeled by established of another process. This is possible, because the controller and the
controlled process can evolve together. The transitions labeled by ConConf/established
and established are executed simultaneously, and give a transition labeled by ConConf
from CONNECTION ATTEMPTS/E to DATA TRANSFER. The state of the controlled process
is then irrelevant, since it has been killed by the controller leaving the control state. The
global system behaviour is similar when dt occurs in state C : ConnAtt reaches state F,
while generating event error. Transaction, by taking into account event error, reaches
state DISCONNECTION.

The asymmetrical control operator allows to decompose the set of the global intrinsic
s t a t e s of a system with a notion of top-down analysis, as in the STATECHARTS philosophy
of system description. The semantics of the operator, and the generated events feature,
then allow to express all kinds of global behaviours by relating two processes. In the
first example (figure 5), the controlled process has a infinite behaviour; in the second one

(figure 6), it has a terminat ing behaviour. This captures the STATECHARTS inter-level
transition too. The generated events feature gives a way to relate a particular termination
of the controlled process with a particular transition of the controller. See figure 6,
with the two termination causes : established and error. Moreover, the compositionnal
semantics of the new operator allows to represent the two levels separately in a readable
way.

As above defined, the asymmetrical control introduces the UPTO construction of ES-
TEItEL [BG88] as an algebra operator. When an event labeling a transition occurs, the
source state of the transition is exited, no mat ter what the present state of the con-
trolled process is. Notice that the controlled process reacts at the instant when this
event occurs. Indeed, we rely on this choice to realize inter-level transitions by means
of generated events. However, it is possible to give the asymmetrical control operator
a semantics where the controlled process does not react when an event which exits the
control state occurs. We must distinguish two kinds of au tomata transitions. For the first
kind, the semantics of the operator is as previously defined; conversely, when a transition
of the second kind is taken, the process controlled by its source state does not react.
With these two kinds of transitions, we are provided with a way to express local priority
b e t w e e n events: the event which causes a control state to be exited has priority upon all
possible events from the present state of the controlled process.

2.4 Interna l events

When using generated events, we say: "execute generated event if this is possible some-
where in the system". This states implicitly that the generated event is broadcasted into
the whole system, and must be taken into account everywhere in it. It is sometimes de-
sirable to limit the broadcast to some par t of a system. For this purpose, we introduce a
new operator, which allows to declare an event to be internal to some par t of the system.
We give this operator a graphical syntax by using a rectangular box. See figure 7. The
new operator has two effects.

47

Figure 7: The two bits a counter, declaring event fl to be internal

When fl is generated within the scope of the operator which declares it as internal, we
must t ry to execute it in this scope only. If it isn't possible, fl is simply lost. The
transition which generates it cannot be synchronized with a fl-labeled transition out of
the scope. This limits the broadcast.

In the scope where fl is declared as internal, it cannot be executed if not generated by
a local transition whose toggle event is not ft. Since the name/3 disappears when it is
made internal, it is no more visible out of the scope.

The internal event operator provides as an algebra operator the ESTEREL notion of local
signals.

3 D e t e r m i n i s m and causality

When dealing with generated events, causality problems arise. The non-deterministic
solution adopted in the STATECHARTS for all causality problems cannot be applied here.
Indeed, we relie on the determinism of our language constructs to met the aim of de-
scribing only intrinsic states of the system. We present first the main ideas of the model
generation, as detailed in [MAR89]. Then we give the causality problems, and show how
they are solved.

3 . 1 G e n e r a t i o n o f t h e m o d e l

The formal operational semantics defines how the state graph model is obtained from
a set of au tomata descriptions, and a te rm of the algebra which describes a structure
involving those automata . The model of an au tomaton is given by the automaton itself,
considered as a state graph. The states of the model are state configurations built from
the au tomata which compose the system described. The transitions of the model are
labeled by F / A , where F and A are some sets of events defined below. The complete
state graph model is defined by a set of rewrite rules ~ la Plotkin.

The first idea is to build multi-event transitions, from the basic au tomata transitions.
A label a/[3 means that we must t ry to execute a and fl simultaneously. Therefore,
we must define evolutions of a system by {a,fl}. Since au tomata labels only provide
{a} transitions, the only way to produce a transition labeled by {a,fl} is to take an
a-labeled transition in one component and a fl-labeled one in another component. These

~/~ ~/'r
48

Z/'~ [~ <~/~'

Figure 8: A parallel composition with generated events, possible multi-event evolutions
from initial state

components can be parallel components~ or the controlled process and the controller
involved in an asymmetrical control operation. Figure 8 shows the multi-event transitions
built from the transitions of the two au tomata involved in the parallel composition of
figure 8.

The second idea concerns the last operator: when declaring an event a to be internal,
we can take into account the effects of generating a within the scope of its declaration.
No information about further components is needed, since a is made local.

The system in which we declare a as internal has global transitions r / A of three kinds:

a E A , a ~ r (see figure 8, AB to CB b y / 3 / a) .
We must t ry to execute a and/3 simultaneously from state AB. This is possible if
and only if there exists a transition {a,fl}/A from AB (it has been produced when
computing the parallel composition). There exists AS to CD by {a,/3}/{a,~}.
Therefore we produce a transition AB to CD b y / 3 / 7 for the system where a is
internal.

a e r (see transitions AB to AD by a/7 and AB to CD by {a,/3}/{a, 7})-
These transitions cannot be taken into account, since a cannot be executed if not
generated. The only use of such transitions is by the preceding law.

acru .
These transitions are not concerned by cl. They remain unchanged in the composed
system.

The resulting behaviour of the global system, from its initial state, is reduced to one
transition, from AB to CD by 13/7.

3.2 Relations between events and model generation

When an a-labeled transition and a/3-labeled one have the same source star% we state
that events a and/3 cannot occur simultaneously, since we could not give a deterministic
semantics for the au tomata described. In the mutual exclusion example of figure 3, we
state that request1 and request2 cannot occur simultaneously. Each au tomaton gives

49

a set of relations a#fl meaning "a and fl cannot occur simultaneously". This kind of
relation can be found in the event structures of [WINS0]. The relations are global to
the system which involves the automata. Moreover, the user can give explicit relations
between events, which are not induced by the automata descriptions.

When building the transitions of a composed system from those of its components, one
must apply two laws. First, if a#fl, we must not build transitions labeled by r / A where
a E r and fl E F. This reduces the size of the model generated. On the second hand,
when we are able to build a transition labeled by F / A , we must check the set II = r LI A
with respect to the global relations of the system. If there exists some relation a#fl such
that a E II and fl E I I , an error occurs. Indeed, the above relation states that events
a and fl never occur simultaneously, while the transition we are trying to build requires
all the events of II to be executed simultaneously. Detecting such an error refuses the
composed system as non well-formed.

3 . 3 C a u s a l i t y p r o b l e m s

A causality problem is encountered when the composition of several transitions labeled
Fi/Ai leads to a global label U~ F~/(.J~ Ai where [.Jl F~ U (j~ Ai contains two events a,

involved in a relation. We stated above that such a situation leads to the system
being refused. Let us observe the above example (see figure 8). If events fl and 7 are
defined informally by: "the signal a is not present and the signal b is" and "the signal a
is present", then we have the classic causality problem where by supposing that signal a
is not present, we are led to generate it, see [BG88]. In ESTEREL, the user can label its
transitions by a and -~a A b explicitly. The relation between a and -~a is known by the
language and used to refuse situations which lead to causality problems. In ARGOS, the
language knows fl and 7 only. The user must then state explicitly that f l #7 . By giving
this relation, he allows the language to detect the causality problem, and to reject the
system.

Our solution to the causality problem is based upon the ESTEREL notion of relation
between events, with a slight difference. As events are an abstract notion, unstructured,
internal causality problems occur with relations given by automata descriptions only. If
the user does not give more information about the informal meaning of events, by using
relations, the system composed is causally correct.

4 The ARGONAUTE sys tem functionalit ies

Figure 9 shows general organization of the system. The graphical interactive environment
of AItOONAUTE allows to manipulate the graphical description of a system on the screen.
It can be used to build systems and formulas as well, or to show evolutions during a
simulation.

The system description editor provides interactive building and step by step control of the
contextual syntax of the language. One starts building automata by assembling states
and transitions, naming the ones and labeling the others. No control is performed during
this phase. When an automaton description is finished, the user can request the system

50

ystem descriptio~ I
editor]

r L
Simulator

formula
editor

graphical
envlrnnment

" ~ "[Compile r

I

, Aldeb~an ,1

Eval at°r 't

Figure 9: Overall description of ARGONAUTE

to control it, with respect to the contextual syntax defined formally for automata. The
system answers by giving a diagnostic if the automaton is not correct, or by marking it
as usable for further constructs, if it is correct. The user can build complex structures,
by using operators of the algebra. Each operation can require a control of the contextual
syntax, depending on the nature of the operator employed. Each process or automaton
of the session is presented in a window, which can be manipulated by the user according
to classical window-manager functionalities (moving, resizing, exposing.. .). The system
uses a global menu to provide file operations, or operations concerning all the processes
of the session, and an icon menu which allows to build automata starting from boxes and
arrows. A system description is saved by using the textual format argos.

Temporal logic formulas are built with temporal operators, like POT or INEV, classical
logic operators and basic predicates. Basic predicates express properties of the current
state of a system description, as variable values, or situation with respect to the execution
of transitions. They must be expressed by using the external form of the description
language, i.e. exact names of variables (including paths if there is a notion of scope), or
transition names. In ESTELLE/R, an variant of ESTELLE has to be made to allow the user
to designate and name certain transitions. On the other hand, editing basic predicates
can be done by looking at the system description to build by hand the complete names
of the objects to be referred to, but this is not an easy task. As the internal and the
external forms of ARGOS are close, states and transitions are notions of the external
form too. This provides an easy way to express basic predicates such as at(state A)
or enable(trans t). Moreover, the ARGONAUTE system provides a formula editor, in
which basic predicates can be built by designating objects on the graphical description
of a system. For instance, the basic predicate at(state A) is produced when the user
chooses interactively the state A on the graphical description of his system. If needed,
ARGONAUTE automatically produces the complete name of the object designated, or
whatever information to be added to the internal form of the formulas in order to ensure
unambiguity. The formulas are saved according to the form format, which is chosen to
allow easy adaptation of the XESAR toolkit formula evaluator. When a formula is false,
both states and transitions appearing in the basic predicates of the diagnostic are related
easily to the external form of the language.

When the system is compiled, tile resulting state graph model is save with the state graph

51

format. It is used by the formula evaluator and by the graphical simulator. It can also
be used as an entry by the ALDEBARAN reduction tool [FER88], which allows reductions
according to various equivalence and congruence relations.

5 C o n c l u s i o n

The system proposed belongs to the cwsAl~ family. But it differs from other tools:
the description language has been especially designed while keeping in mind special
constraints of the model checking approach, as the size of the model produced or the
need of informative diagnostic when a formula is false. These two aims are taken into
account when building a language whose internal and external forms are close. Moreover,
concerning the first aim, we think that our language allows to describe a complex system
(whose intrinsic states are yet numerous) without introducing "false" states due to inter-
process communication.

On the other hand, the language and its semantics have been designed together. Formal
semantics is well defined, and leads to a tool for the automatic generation of the state
graph model.

As far as theoretical work is concerned, AI~Gos can be viewed as an a t tempt to build a
language with both formal concepts of process algebras and high level concepts of existing
programming languages. This work seems fructuous as regards to the language designed,
and also with respect to the formal definition of high level, but informal, concepts like
bot tom-up analysis.

F u r t h e r t h e o r e t i c a l w o r k

Further theoretical work has two major areas: extending the langage kernel, and pro-
riding the user with higher level constructs which can be built easily with the present
kernel.

To extend the language kernel, we can think about introducing event values, such as signal
values of ESTERI~L, or shared variables which can be tested and set by components. On
the other hand, we mentionned in section 2.3 the introduction of a basic mechanism to
allow local priority between events.

As far as high level constructs are concerned, it is already possible to define state temporal
constraints proposed by D. Harel [HAP~84] and modeled explicitly in [MAR87], by using
the generated event feature. However, one must keep in mind that several advantages due
to the proximity of the internal and the external forms of the language, may disappear if
the user is provided with high level constructs whose semantics is given via a translation
into lower level operators. More accurately, the external form of an internal state could
be hard to build. Nevertheless, if the new constructs still express intrinsic states, and
the internal communication generating no state is not called in question again, the major
advantage of ARGOS does not disappear: states of the model really correspond to intrinsic
states.

52

System improvement

The present version of the ARGONAUTE system is a prototype. We wanted to get expe-
rience about programming graphically, in order to define what tools must be available
in such an environment. This work has made obvious that complete graphical represen-
tations of complex systems is impractical. However, our language has good properties
w.r.t, compositional design, and should therefore be usable to describe systems by giving
separately the graphical descriptions of automata, and the structure in which they are in-
volved. Graphical description and the notion of area are worth looking for pure automata
or asymmetrical control operations, but they could be avoided for parallel composition.
In all cases, our definition of the kernel constructs allows one to understand the global
behaviour of a system without being bound to get the whole graphical representation.

R e f e r e n c e s

[BGS8] G. B~RR¥, G. GONTHIER, The ESTEREL Synchronous Programming
Language: Design, Semantics, Implementation, ENSMP-INRIA, Sophia-
Antipolis, 06565 Valbonne - France (1988).

lEST86] Estelle: A Formal Description Technique Based on an Extended State Tran-
sition Model, ISO/TC97/SC21 (1986).

[F as8] J.C. FERNANDEZ, Aldebaran : un systdme de vdriflcation par rgduction de
processus communicants, th~se, Universit6 Joseph Fourier Grenoble (1988).

[GAR89] H. GARAVEL, Compilation et vdrification du langage Lotos, th~se, Univer-
sit~ Joseph Fourier Grenoble, to appear in 1989.

~IAR84] D. HAREL, Statecharts: A Visual Approach to Complex Systems, First ver-
sion, Dept. of Applied Math., Weizmann Institute of Science, Rehovot, Is-
rael (1984).

[HAP 7] D. HAREL, StateCharts : A visual Approach to Complex Systems, Science
of Computer Programming, Vol. 8-3, pp. 231-275 (1987).

[HAR88] D. HAREL, On Visual Formalisms, CACM vol. 31, no 5 (1988).

[HGRSS] C. HUIZING, R. GERTH, W.P. DE ROEVER, Modelling Statechart8 Be.
haviour in a Fully Abstract Way, 13 th CAAP, LNCS 299, Springer Verlag,
(1988).

[HP85] D. HAREL, A. PNUELI, On the Development of Reactive Systems, Logic and
Models of Concurrent Systems, Proc. NATO Advanced Study Institute on
Logics and Models for Verification and Specification of Concurrent Systems,
NATO ASI Series F, vol. 13, Springer-Verlag (1985).

[HPSSS6] D. HAREL, A. PNUELI, J .P. SCHMIDT, R. SHERMAN., On the Formal
Semantics of Statecharts, Proc. Symposium on Logic in Computer Science
(LICS) pp 54-64 (1986).

53

[LOT]

]MARS7]

]MARS0]

[MIL80]

[RASS8]

[SDL]

[STMA]

]WINS0]

[xEs]

LOTOS: A Formal Description Technique, ISO/TC97/WG16-1 (1984).

F. MARANINCttI, Statecharts: sdmantique et application d la spdcification
de systdmes, DEA, INP Grenoble (1987).

F. MARANINCHI, Sdmantique du langage ARGOS, unpublished (1989).

R. MILNER, A Calculus of Communicating Systems, Sprlnger-Verlag, LNCS
92 (1980).

A. RASSE, CLEO, Interprgtation de la non-correction de programmes sur
un module, RT C10, Spectre project, LGI-IMAG Grenoble (1988).

CCITT SDL: overview, Computer Networks and ISDN Systems, vol. 13,
Number 2 (1986).

The STATEMATE Working Environment for System Development, AD
CAD Ltd., Rehovot, Israel (1987).

G. WINSKEL, Events in Computations, PhD Thesis, University of Edin-
burgh (1980).

J.L. RICHIER AND C. RODRIGUEZ AND J. SIFAKIS AND J. VOIRON, XE-
SAR: A Tool]or Protocol Validation. User's Guide, LGI-Imag (1987).

