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A b s t r a c t  

The ARGONAUTE system is specifically designed to describe, specify and verify reactive 
systems such as communication protocols, real-time applications, man-machine inter- 
faces, . . .  It is based upon the ARGos graphical language, whose syntax relies on the 
Higraphs formalism by D. Harel [HAR88], and whose semantics is given by using a process 
algebra. Automata form the basic notion of the language, and hierarchical or parallel 
decompositions are given by using operators of the algebra. The complete formalization 
of the language inherits notions from both classical process algebras such as c c s  [MILS0], 
and existing programming languages used in the same field such as ESTEREL [BGS8] or 
the STATEC~IARTS formalism [HAR87]. Concerning complex system description, ARGOS 
allows to describe intrinsic states directly - -  with the basic automaton notion - -  and only 
them: connections between components need no extra-state. The ARGONAUTE system 
allows to describe reactive systems graphically, to specify properties by means of tempo- 
ral logic formulas, to produce a model on which logic formulas can be evaluated and to 
simulate an execution of the system described, by using the external graphical form to 
show evolutions. We present the global structure and functionalities of the AItGONAUTE 
system, and the theoretical basis of the ARGOS language. 

1 I n t r o d u c t i o n  

We are interested in the general field of the validation of reactive systems, so called by 
D. Harel and A. Pnueli [HP85]. Reactive systems include real-time applications, commu- 
nication protocols, or man-machine interfaces. Dealing with reactive system validation 
includes describing them with some appropriate description language, simulating execu- 
tions, and specifying the expected behaviour. These various aims are considered as more 
or less important when building a tool for the validation of reactive systems. 
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1.1 V a l i d a t i o n  o f  r e a c t i v e  s y s t e m s  

The languages for the description of reactive systems follow different approaches. 

Some languages, like ESTEREL [BG88], are aimed at programming reactive kernels of 
complex systems. ESTEI~EL offers high level design concepts and modular development. 
Validation includes simulation and verification by graph reduction methods. 

Other languages are aimed at describing complex systems in the most readable way. 
The state-transition approach and the graphical one fall into this part. In describing 
communication protocols, for instance, one often starts drawing automata, which have 
to be translated into authorized constructions of a language. A language in which direct 
automata descriptions are authorized constructions is therefore interesting. However, 
human design of complex and large automata is impractical. For instance, the CCITT 
SDL [SDL] for communication protocols deals with one level concurrency between ma- 
chines. There is no way to introduce hierarchic design, and even simple protocols have 
complex graphical descriptions. An interesting language following the same approach is 
the STATECHARTS formalism [HAR87]. Here, the state-transition formalism is extended 
to allow hierarchic representation with oa or A N D  decompositions of states. Since au- 
tomata can be represented in a concise manner, complex systems with numerous states 
can be described. However, the design is not really modular, and the complete figure is 
needed to understand the behavlour ,,~f a system. This is a great limitation to the ap- 
proach. The STATECHARTS formalism is the fundation of the STATEMATE visual working 
environment for the design of complex systems [STMA]. The STATEMATE environment 
allows interactive building of systems, and provides a good tool for the simulation of 
executions, or various evaluations. Moreover, the language is given a formal semantics, 
and global properties such as the absence of deadlock can be verified for the system 
described. 

Finally, concerning the validation, an interesting approach is the specification by means of 
temporal logic formulas which describe the expected behaviour of a system. A finite state 
graph model is built from the description of the system with some appropriate description 
language, and the logical formulas are evaluated on this model. The description language 
must have a formal semantics to allow automatic generation of the state graph model. 
Moreover, when a specification formula is false, it is interesting to provide the user 
with a diagnostic relating this result with the external form of the description language. 
Xv.SAR [XES] and CAEsAR[GAR89] follow this approach. The description languages 
of CA~S~.R and XESAR are respectively LOTOS [LOT] and ESTELLI~/R, a variant of 
ESTELLE lEST86]. As these languages were not designed while taking into account the 
model checking approach, they must be adapted in order to allow the user to relate the 
system descriptions with the specification formulas. In XESAR, when a formula is false, a 
specific tool called CLEO [RAS88] can give a diagnostic of the form: "the formula is false 
because the system can reach a state that do not verify it, by executing the following 
sequence of actions". The states involved in a diagnostic are states of the model, which 
can be hard to relate with the description of the system in ESTELLE/R. On the other 
hand, the two languages lack high level design concepts that could allow to describe a 
system by successive refinement stages. 
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Figure 1: Describing intrinsic states only 

1.2 Main  object ives  for a descr ip t ion language 

We are mostly interested in the specification of reactive systems with model checking 
based methods. We want to design a description language by taking into account the 
characteristics of such languages required in a specification environment like Xl~s~tR, as 
stated above. Moreover, the language must have good properties for the designer. This 
includes readability, as intented by the automata based graphical languages, and high 
level design concepts such as hierarchical decomposition. 

In the model checking approach, the first objective is to limit ate, if possible, the size 
of the model generated. Indeed, finite models have been proved interesting, especially 
for protocol validation, but  complex systems cart lead to very large models, therefore 
limiting the interest of the model checking approach. This phenomenon has several rea- 
sons, among which the intrinsic complexity of the problem described. But with classical 
description languages, states can appear in the description, which do not correspond to 
intrinsic, states of the system. We call them extra-states. 

We are interested in the state-transition approach, with graphical syntax. An automata  
based language allows to describe intrinsic states of basic behaviours directly. The ba- 
sic automaton notion is used together with powerful constructs such as hierarchical or 
parallel composition, which are given a graphical syntax too, and a compositional se- 
mantics. This is the only way to provide modular development and splitted graphical 
representation. But,  when trying to introduce those high level concepts, one must keep 
in mind that we want to describe intrinsic states of the systems only. Constructs like par- 
allel composition must not need adding "extra"-states in order to express links between 
components. 

Let us observe a modulo 4 a counter. The intrinsic states of this system correspond to 
the four possibles values of the counter: 0, 1, 2 and 3. When describing such a system 
in a state-transltion frame, two approaches can be followed. We can represent the four 
intrinsic states directly, and build a single automaton with the four expected transitions. 
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(see figure 1, a). We stated above that this solution cannot be used when the system 
has numerous states. We can also decompose the set of states. Figure l(b) shows the 
decomposition of the counter into two bits. With these two bits, we want to build two 
automata,  and to compose them with an appropriate operator in order to obtain the 
global behaviour described in (a). 

Here, the state decomposition correspond to the usual parallel concept. But if the parallel 
operator semantics is not well chosen, we cannot build (a) with two automata containing 
only the states of (b). For instance, when describing the counter with the asynchronous 
model of cos,  one is led to introduce an extra-state AT, and an internal event fl in or- 
der to express the communication between the two automata. (see c). The counter is 
described by (bitB I bitA)\fl  where bitA -- c~crfl bitA and bitB -- tiff bitB. The corre- 
sponding state graph is given by (d): it contains two extra-states ATB0 et ATB1. This 
situation is neither particular to our example, nor due to the way it is modelled, and 
appears currently with formalisms like ccs.  

The above remarks show a way to design a description language that takes into account 
the main requirements of specification environments. The basic notion is automata,  with 
graphical syntax. Operations provide a way to structure complex systems descriptions. 
They must be carefully defined to meet four aims: they can be used without leading the 
designer to introduce extra-states in the basic behaviours, in order to express their links; 
their relation with informal design concepts is clear; their semantics is well defined; they 
possess a readable graphical syntax. 

1 . 3  T h e  ARGOS l a n g u a g e  a n d  t h e  ARGONAUTE s y s t e m  

We propose the ARGOS language and the ARGONAUTE system, for the description and the 
validation of reactive systems. ARGOS has a graphical syntax derived from the Higraphs 
formalism proposed by D. Harel [HAR88] and used in the STATECHARTS formalism. 
However, ARGOS is not an attempt to give another formal semantics of the STATECHARTS, 
as it can be found in [HGR88]. The formal definition of this new language relies on a 
process algebra, whose basic terms describe automata and whose operators capture the 
high level design concepts of parallel or hierarchical composition. The latter cannot 
be taken from classical process algebras, since they lack hierarchical concepts. They 
must be adapted from notions of other languages, such as ESTEREL. Each operator 
allows to express communication between components which contain intrinsic states only. 
Moreover~ the underlying process algebra gives good properties to the graphical language: 
it allows to describe complex systems by several figures, since the design can be really 
modular. 

Concerning the system functionalities, ARGONAUTE is similar to XI~SAR [XES] or CAE- 
SAR [GARB9]. The formal semantics leads to an automatic model generation tool that 
builds only the intrinsic states of the system described. Moreover, diagnostics produced 
by the evaluation of logical formulas can be related easily to the external graphical form 
of the system. 

In the following sections, we first present the ARGOS language informally. Then we 
give some details about its formal semantics, by comparing it with existing algebras and 
languages. We end with an overall description of the ARGONAUTE system functionalities. 
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Figure 2: Automaton description 

2 Informal descript ion of ARGOS 

We describe the basic automaton notion first; then we describe the constructs of ARGOS, 
which give composed objects called processes. 

2 .1  A u t o m a t a  

As above mentioned, au tomata  constitute the basic notion of the language. One can 
describe them by giving explicit states and labeled transitions. The graphical syntax of 
au tomata  is given by figure 2. The initial state of the automaton is marked by a little 
arrow without label. 

Labels describe events which determine the evolution of the system modeled by the 
automaton.  Events, like events in process algebras, are abstract  notion, and one can give 
them various meanings, such as: "acknowledgement is passed from the medium to the 
emitter" or "a larm beep is activated" or "connection a t tempt  ends correctly", and so on. 
In particular~ events may represent input or output  of the system as well. A transition 
leading from state A to state B with label a means: by taking into account event a the 
systems evolves from state A to state B.  

We show in section 2.2 that  label can be structured in two fields, the toggle event field, 
and the generated events field, in order to control interactions between automata .  

2 .2  Parallel composition 

Parallel composition is a powerful design concept which appears in classical process 
algebras as the parallel operator. In ARGOS, it has a particular semantics chosen by 
taking into account the objectives of section 1.2. 

Figure 3 shows a modelization of the mutual  exclusion. Two users, represented by two 
au tomata  User1 and User2, compete for the use of a resource, represented by the au- 
tomaton  resource. User1 can request the use of the resource with request1 and liberate 
it by  frcel. The behaviour of User2 is symmetrical.  The resource can leave state FREE 
to enter state USEr) by taking into account request1 or request2. Then it can reenter 
the FRI~ state by free1 or free2. The global system is a process built with the parallel 
operator from the three automata:  the parallel components. A state of the global process 
is a configuration of states of the components,  for instance R1/FREE/R2. 
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Figure 3: The mutual exclusion example 

The behaviour of the process is as follows: 
The initial state is given by the initial states of the components: R1/FREE/R2. 

For each event ez, all components where ez appears must evolve together by ~ or not. 
These evolutions are independent from those of the components where a does not appear. 
The result is the evolution of the global system by ¢x. In our example, starting from the 
initial state, one request, say request1, can be taken into account. The system then enters 
global state U1/USED/R2. Then, a request from the second user cannot be taken into 
account, since the resource cannot execute request2. The only possible action is free1, 
which leads to the initial state. 

This describes n-ary rendez-vous. The parallel operator has good properties such as 
commutat ivi ty or associativity, which are fundamental when dealing with a graphical 
language, where unassociative operators needing explicit parenthesis are uneasy to draw. 

However, our definition has two major drawbacks: First, the structure of synchronization 
is rigid, because each occurrence of an event a must synchronize always or never with 
each occurrence of the same event in another component. There is no way to specify that  
some occurrences must give way to synchronization, and some other must not. 

On the other hand, the definition is symmetrical. The situation where two components 
are blocked on an a transition - -  as in the mutual  exclusion example - -  is a particular 
one. In other situations, it is very difficult to express that one component is blocked, 
while the other is not, by using our symmetrical definition of parallel composition. 

This can lead to introduce extra-states. However, to force synchronization is never easy 
if it is not a built-in feature. Rigidity of our definition is therefore sometimes the good 
tool. We can keep this definition if another feature allows to describe situations where 
the synchronization is less rigid. 

The generated events field of transition labels mentioned in section 2.1 provides this 
feature. It supprcsses the drawbacks of parallel composition defined with rendez-vous 
only. It allows to build the transitions of a composed system from those of its components 
without being bound to introduce extra-states in those components. 

We describe informally the global behaviour of the system shown by figure 4. The initial 
state is A / C / E .  When event a occurs, the first component reaches state B and generates 
event ft. This means that  this occurrence of a must synchronize, if possible, with a fl- 
labeled transition somewhere in the remainder of the system. Here the remainder is in 
state C / E ,  where event fl can be taken into account. Therefore, the global evolution 
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Figure 4: A simple example for the use of generated events, and the 2-bit a counter 

is from state A / C / E  to state B / D / F  by a : all components who are able to react do. 
This is the definition of the broadcast of/3. In state B / D / F ,  when a occurs, the first 
component reaches state A and generates 7. (This occurrence of a has not the same 
effect as the other). The second component is in state D and cannot react to 7' Hence 
the third component cannot react neither, because of the parallel operator definition. 
The global evolution is from B / D / F  to A / D / F  by a.  

Figure 4 shows the description of the two-bit a counter with generated events. The global 
behaviour is as expected, and contains only the four intrinsic states. To our opinion, the 
generated event feature allows to use parallel composition freely in order to express global 
states of a system in a concise manner. All behaviours of the global system (i.e. sets 
of transitions between global states) can be obtained without introducing extra-states in 
the basic components. 

The generated events feature is similar to the emitted signals of ESTEItI~L or the generated 
events of the STATECHARTS formalism. Our semantics is based upon the synchrony 
hypothesis adopted by ESTErtEL, although we show that  the problem is not the same in 
this language and in ARGOS. In the STATECHARTS formalism, semantics of generated 
events is computed non-deterministically, which considerably limits the cases in which it 
could help, see [HPSS86] and [HGR88]. Section 3 give details on semantics of generated 
events, relations between this feature and determinism, differences between ARGOS and 
ESTERI~L. 

2.3 An operator for the hierarchical design concept 

This feature is inspired originally by the refinement operation of the STATECHARTS for- 
malism, which is related with high level concepts as top-down or bot tom-up problem 
analysis. It has no equivalent in classical process algebras. 

When trying to build an algebra operator to capture the intuitive semantics of the re- 
finement operation, one must solve several problems, since the refinement of the STAT- 
ECHARTS is much more an economy in drawing edges of a global automaton than a 
conceptual decomposition into processes. These problems happen to be crucial for the 
development of the ARGOS language. The main idea of our definition is to involve two 
processes, a controller and a controlled one, in an asymmetrical control operation. The 
graphical syntax shows the representation of the controlled process in the box which cor- 
responds to the state of the controller being "refined". That  is, the state which defines 
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SETWATCH ~ NORMAL 

Figure 5: Example  of the asymmetrical  control operation: a simple wristwatch 

CONNECTION ATTEMPTS established .[DATA TRANSFER 

error • DISCONNECTION 

Figure 6: Example of asymmetrical  control: a communication protocol 

how the controller performs its control. 

Let us observe figure 5. The controller maintains the states of a wristwatch interface: 
NORMAL mode, SETWATCH mode . . .  The controlled process refines the SETWATCH mode,  
to show HOUR setting, MINUTE setting and SECONDE setting. 

Each transit ion of the controller with target  SETWATCH starts the controlled process in its 
initial state, that  is MINUTE setting. On our example, this is done by taking into account 
event a ,  related to one but ton of the wristwatch. The three states of the controlled 
process form a cycle which can be run over with another button,  related to event ~. 
Each event fl is taken into account by the controlled process to let the user run over the 
cycle, while the controller remains in SETWATCH state. When event a occurs, no mat te r  
what  the internal s tate of SETWATCH mode is, the wristwatch leaves this s tate to reenter 
NORMAL one: the controller executes a transition which leaves the control state, and 
therefore kills the controlled process: it can no longer take events into account, and the 
information about  its s tate is lost. 

Now, let us observe another example, see figure 6. It  shows a simple communication 
protocol,  with connection and disconnection. The protocol data  units are CR (connection 
request), CC (connection confirmation) and dt (data transfer). The service data  units 
are ConReq (connection request) and ConConf (connection confirmation). The main 
process, called Transaction, maintains the states of the protocol with respect to the 
connection being established or not: CONNECTION ATTEMPTS, DATA TRANSFER, ERROR 
AND DISCONNECTION. The CONNECTION ATTEMPTS state controls a sequential process 
called ConnAtt in charge to establish the connections. Once it has been started, this 
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process evolves by ConReq, CR, CC, ConConf and dt while the controller remains in the 
control state, since these events cannot make it leave this state. When the controlled 
process ConnAtt reaches the state E where the connection is established, it generates 
the event established. This transition must  synchronize, if possible, with a transition 
labeled by established of another process. This is possible, because the controller and the 
controlled process can evolve together. The transitions labeled by ConConf/established 
and established are executed simultaneously, and give a transition labeled by ConConf 
from CONNECTION ATTEMPTS/E to DATA TRANSFER. The state of the controlled process 
is then irrelevant, since it has been killed by the controller leaving the control state. The 
global system behaviour is similar when dt occurs in state C : ConnAtt reaches state F, 
while generating event error. Transaction, by taking into account event error, reaches 
state DISCONNECTION. 

The asymmetrical  control operator allows to decompose the set of the global intrinsic 
s t a t e s  of  a system with a notion of top-down analysis, as in the STATECHARTS philosophy 
of system description. The semantics of the operator,  and the generated events feature, 
then allow to express all kinds of global behaviours by relating two processes. In the 
first example (figure 5), the controlled process has a infinite behaviour; in the second one  

(figure 6), it has a terminat ing behaviour. This captures the STATECHARTS inter-level 
transition too. The generated events feature gives a way to relate a particular termination 
of the controlled process with a particular transition of the controller. See figure 6, 
with the two termination causes : established and error. Moreover, the compositionnal 
semantics of the new operator  allows to represent the two levels separately in a readable 
way. 

As above defined, the asymmetrical  control introduces the UPTO construction of ES- 
TEItEL [BG88] as an algebra operator. When an event labeling a transition occurs, the 
source state of the transition is exited, no mat ter  what the present state of the con- 
trolled process is. Notice that  the controlled process reacts at the instant when this 
event occurs. Indeed, we rely on this choice to realize inter-level transitions by means 
of generated events. However, it is possible to give the asymmetrical  control operator  
a semantics where the controlled process does not react when an event which exits the 
control state occurs.  We must  distinguish two kinds of au tomata  transitions. For the first 
kind, the semantics of the operator is as previously defined; conversely, when a transition 
of the second kind is taken, the process controlled by its source state does not react. 
With these two kinds of transitions, we are provided with a way to express local priority 
b e t w e e n  events: the event which causes a control state to be exited has priority upon all 
possible events from the present state of the controlled process. 

2.4 Interna l  events  

When using generated events, we say: "execute generated event if this is possible some- 
where in the system". This states implicitly that  the generated event is broadcasted into 
the whole system, and must  be taken into account everywhere in it. It  is sometimes de- 
sirable to limit the broadcast to some par t  of a system. For this purpose, we introduce a 
new operator, which allows to declare an event to be internal to some par t  of the system. 
We give this operator a graphical syntax by using a rectangular box. See figure 7. The 
new operator has two effects. 
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Figure 7: The two bits a counter, declaring event fl to be internal 

When fl is generated within the scope of the operator which declares it as internal, we 
must  t ry  to execute it in this scope only. If it isn't  possible, fl is simply lost. The 
transition which generates it cannot be synchronized with a fl-labeled transition out of 
the scope. This limits the broadcast.  

In the scope where fl is declared as internal, it cannot be executed if not generated by 
a local transition whose toggle event is not ft. Since the name/3  disappears when it is 
made internal, it is no more visible out of the scope. 

The internal event operator  provides as an algebra operator the ESTEREL notion of local 
signals. 

3 D e t e r m i n i s m  and causality 

When dealing with generated events, causality problems arise. The non-deterministic 
solution adopted in the STATECHARTS for all causality problems cannot be applied here. 
Indeed, we relie on the determinism of our language constructs to met  the aim of de- 
scribing only intrinsic states of the system. We present first the main ideas of the model 
generation, as detailed in [MAR89]. Then we give the causality problems, and show how 
they are solved. 

3 . 1  G e n e r a t i o n  o f  t h e  m o d e l  

The formal operational semantics defines how the state graph model is obtained from 
a set of au tomata  descriptions, and a te rm of the algebra which describes a structure 
involving those automata .  The model of an au tomaton  is given by the automaton itself, 
considered as a state graph. The states of the model are state configurations built from 
the au tomata  which compose the system described. The transitions of the model are 
labeled by F / A ,  where F and A are some sets of events defined below. The complete 
state graph model is defined by a set of rewrite rules ~ la Plotkin. 

The first idea is to build multi-event transitions, from the basic au tomata  transitions. 
A label a/[3 means that  we must  t ry to execute a and fl simultaneously. Therefore, 
we must  define evolutions of a system by {a,fl}.  Since au tomata  labels only provide 
{a} transitions, the only way to produce a transition labeled by {a,fl} is to take an 
a-labeled transition in one component  and a fl-labeled one in another component.  These 
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Figure 8: A parallel composition with generated events, possible multi-event evolutions 
from initial state 

components can be parallel components~ or the controlled process and the controller 
involved in an asymmetrical  control operation. Figure 8 shows the multi-event transitions 
built from the transitions of the two au tomata  involved in the parallel composition of 
figure 8. 

The second idea concerns the last operator: when declaring an event a to be internal, 
we can take into account the effects of generating a within the scope of its declaration. 
No information about  further components  is needed, since a is made local. 

The system in which we declare a as internal has global transitions r / A  of three kinds: 

a E A , a  ~ r (see figure 8, AB to CB b y / 3 / a ) .  
We must t ry to execute a and/3 simultaneously from state AB. This is possible if 
and only if there exists a transition {a,fl}/A from AB (it has been produced when 
computing the parallel composition). There exists AS to CD by {a,/3}/{a,~}. 
Therefore we produce a transition AB to CD b y / 3 / 7  for the system where a is 
internal. 

a e r (see transitions AB to AD by a/7 and AB to CD by {a,/3}/{a, 7})- 
These transitions cannot be taken into account, since a cannot be executed if not 
generated. The only use of such transitions is by the preceding law. 

acru . 
These transitions are not concerned by cl. They remain unchanged in the composed 
system. 

The resulting behaviour of the global system, from its initial state, is reduced to one 
transition, from AB to CD by 13/7. 

3.2 Relations between events  and model  generation 

When an a-labeled transition and a/3-labeled one have the same source star% we state 
that  events a and/3 cannot occur simultaneously, since we could not give a deterministic 
semantics for the au tomata  described. In the mutual  exclusion example of figure 3, we 
state that  request1 and request2 cannot occur simultaneously. Each au tomaton  gives 
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a set of relations a#fl meaning "a  and fl cannot occur simultaneously". This kind of 
relation can be found in the event structures of [WINS0]. The relations are global to 
the system which involves the automata.  Moreover, the user can give explicit relations 
between events, which are not induced by the automata descriptions. 

When building the transitions of a composed system from those of its components, one 
must apply two laws. First, if a#fl, we must not build transitions labeled by r / A  where 
a E r and fl E F. This reduces the size of the model generated. On the second hand, 
when we are able to build a transition labeled by F / A ,  we must check the set II = r LI A 
with respect to the global relations of the system. If there exists some relation a#fl such 
that  a E II and fl E I I ,  an error occurs. Indeed, the above relation states that events 
a and fl never occur simultaneously, while the transition we are trying to build requires 
all the events of II to be executed simultaneously. Detecting such an error refuses the 
composed system as non well-formed. 

3 . 3  C a u s a l i t y  p r o b l e m s  

A causality problem is encountered when the composition of several transitions labeled 
Fi/Ai leads to a global label U~ F~/(.J~ Ai where [.Jl F~ U (j~ Ai contains two events a,  

involved in a relation. We stated above that  such a situation leads to the system 
being refused. Let us observe the above example (see figure 8). If events fl and 7 are 
defined informally by: "the signal a is not present and the signal b is" and "the signal a 
is present",  then we have the classic causality problem where by supposing that  signal a 
is not present, we are led to generate it, see [BG88]. In ESTEREL, the user can label its 
transitions by a and -~a A b explicitly. The relation between a and -~a is known by the 
language and used to refuse situations which lead to causality problems. In ARGOS, the 
language knows fl and 7 only. The user must then state explicitly that  f l #7 .  By giving 
this relation, he allows the language to detect the causality problem, and to reject the 
system. 

Our solution to the causality problem is based upon the ESTEREL notion of relation 
between events, with a slight difference. As events are an abstract notion, unstructured, 
internal causality problems occur with relations given by automata descriptions only. If  
the user does not give more information about the informal meaning of events, by using 
relations, the system composed is causally correct. 

4 The  ARGONAUTE sys tem functionalit ies  

Figure 9 shows general organization of the system. The graphical interactive environment 
of AItOONAUTE allows to manipulate the graphical description of a system on the screen. 
It can be used to build systems and formulas as well, or to show evolutions during a 
simulation. 

The system description editor provides interactive building and step by step control of the 
contextual syntax of the language. One starts building automata by assembling states 
and transitions, naming the ones and labeling the others. No control is performed during 
this phase. When an automaton description is finished, the user can request the system 
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Figure 9: Overall description of ARGONAUTE 

to control it, with respect to the contextual syntax defined formally for automata.  The 
system answers by giving a diagnostic if the automaton is not correct, or by marking it 
as usable for further constructs, if it is correct. The user can build complex structures, 
by using operators of the algebra. Each operation can require a control of the contextual 
syntax, depending on the nature of the operator employed. Each process or automaton 
of the session is presented in a window, which can be manipulated by the user according 
to classical window-manager functionalities (moving, resizing, exposing.. .  ). The system 
uses a global menu to provide file operations, or operations concerning all the processes 
of the session, and an icon menu which allows to build automata starting from boxes and 
arrows. A system description is saved by using the textual format argos. 

Temporal logic formulas are built with temporal operators, like POT or INEV, classical 
logic operators and basic predicates. Basic predicates express properties of the current 
state of a system description, as variable values, or situation with respect to the execution 
of transitions. They must be expressed by using the external form of the description 
language, i.e. exact names of variables (including paths if there is a notion of scope), or 
transition names. In ESTELLE/R, an variant of ESTELLE has to be made to allow the user 
to designate and name certain transitions. On the other hand, editing basic predicates 
can be done by looking at the system description to build by hand the complete names 
of the objects to be referred to, but this is not an easy task. As the internal and the 
external forms of ARGOS are close, states and transitions are notions of the external 
form too. This provides an easy way to express basic predicates such as at(state A) 
or enable(trans t). Moreover, the ARGONAUTE system provides a formula editor, in 
which basic predicates can be built by designating objects on the graphical description 
of a system. For instance, the basic predicate at(state A) is produced when the user 
chooses interactively the state A on the graphical description of his system. If needed, 
ARGONAUTE automatically produces the complete name of the object designated, or 
whatever information to be added to the internal form of the formulas in order to ensure 
unambiguity. The formulas are saved according to the form format, which is chosen to 
allow easy adaptation of the XESAR toolkit formula evaluator. When a formula is false, 
both states and transitions appearing in the basic predicates of the diagnostic are related 
easily to the external form of the language. 

When the system is compiled, tile resulting state graph model is save with the state graph 
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format. It is used by the formula evaluator and by the graphical simulator. It can also 
be used as an entry by the ALDEBARAN reduction tool [FER88], which allows reductions 
according to various equivalence and congruence relations. 

5 C o n c l u s i o n  

The system proposed belongs to the cwsAl~ family. But it differs from other tools: 
the description language has been especially designed while keeping in mind special 
constraints of the model checking approach, as the size of the model produced or the 
need of informative diagnostic when a formula is false. These two aims are taken into 
account when building a language whose internal and external forms are close. Moreover, 
concerning the first aim, we think that  our language allows to describe a complex system 
(whose intrinsic states are yet numerous) without introducing "false" states due to inter- 
process communication. 

On the other hand, the language and its semantics have been designed together. Formal 
semantics is well defined, and leads to a tool for the automatic generation of the state 
graph model. 

As far as theoretical work is concerned, AI~Gos can be viewed as an a t tempt  to build a 
language with both formal concepts of process algebras and high level concepts of existing 
programming languages. This work seems fructuous as regards to the language designed, 
and also with respect to the formal definition of high level, but informal, concepts like 
bot tom-up analysis. 

F u r t h e r  t h e o r e t i c a l  w o r k  

Further  theoretical work has two major areas: extending the langage kernel, and pro- 
riding the user with higher level constructs which can be built easily with the present 
kernel. 

To extend the language kernel, we can think about introducing event values, such as signal 
values of ESTERI~L, or shared variables which can be tested and set by components. On 
the other hand, we mentionned in section 2.3 the introduction of a basic mechanism to 
allow local priority between events. 

As far as high level constructs are concerned, it is already possible to define state temporal  
constraints proposed by D. Harel [HAP~84] and modeled explicitly in [MAR87], by using 
the generated event feature. However, one must keep in mind that several advantages due 
to the proximity of the internal and the external forms of the language, may disappear if 
the user is provided with high level constructs whose semantics is given via a translation 
into lower level operators. More accurately, the external form of an internal state could 
be hard to build. Nevertheless, if the new constructs still express intrinsic states, and 
the internal communication generating no state is not called in question again, the major 
advantage of ARGOS does not disappear: states of the model really correspond to intrinsic 
states. 
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System improvement 

The present version of the ARGONAUTE system is a prototype. We wanted to get expe- 
rience about programming graphically, in order to define what tools must be available 
in such an environment. This work has made obvious that complete graphical represen- 
tations of complex systems is impractical. However, our language has good properties 
w.r.t, compositional design, and should therefore be usable to describe systems by giving 
separately the graphical descriptions of automata, and the structure in which they are in- 
volved. Graphical description and the notion of area are worth looking for pure automata 
or asymmetrical control operations, but they could be avoided for parallel composition. 
In all cases, our definition of the kernel constructs allows one to understand the global 
behaviour of a system without being bound to get the whole graphical representation. 

R e f e r e n c e s  

[BGS8] G. B~RR¥, G. GONTHIER, The ESTEREL Synchronous Programming 
Language: Design, Semantics, Implementation, ENSMP-INRIA, Sophia- 
Antipolis, 06565 Valbonne - France (1988). 

lEST86] Estelle: A Formal Description Technique Based on an Extended State Tran- 
sition Model, ISO/TC97/SC21 (1986). 

[F as8] J.C. FERNANDEZ, Aldebaran : un systdme de vdriflcation par rgduction de 
processus communicants, th~se, Universit6 Joseph Fourier Grenoble (1988). 

[GAR89] H. GARAVEL, Compilation et vdrification du langage Lotos, th~se, Univer- 
sit~ Joseph Fourier Grenoble, to appear in 1989. 

~IAR84] D. HAREL, Statecharts: A Visual Approach to Complex Systems, First ver- 
sion, Dept. of Applied Math., Weizmann Institute of Science, Rehovot, Is- 
rael (1984). 

[HAP 7] D. HAREL, StateCharts : A visual Approach to Complex Systems, Science 
of Computer Programming, Vol. 8-3, pp. 231-275 (1987). 

[HAR88] D. HAREL, On Visual Formalisms, CACM vol. 31, no 5 (1988). 

[HGRSS] C. HUIZING, R. GERTH, W.P.  DE ROEVER, Modelling Statechart8 Be. 
haviour in a Fully Abstract Way, 13 th CAAP, LNCS 299, Springer Verlag, 
(1988). 

[HP85] D. HAREL, A. PNUELI, On the Development of Reactive Systems, Logic and 
Models of Concurrent Systems, Proc. NATO Advanced Study Institute on 
Logics and Models for Verification and Specification of Concurrent Systems, 
NATO ASI Series F, vol. 13, Springer-Verlag (1985). 

[HPSSS6] D. HAREL, A. PNUELI, J .P.  SCHMIDT, R. SHERMAN., On the Formal 
Semantics of Statecharts, Proc. Symposium on Logic in Computer Science 
(LICS) pp 54-64 (1986). 



53 

[LOT] 

]MARS7] 

]MARS0] 

[MIL80] 

[RASS8] 

[SDL] 

[STMA] 

]WINS0] 

[xEs] 

LOTOS: A Formal Description Technique, ISO/TC97/WG16-1 (1984). 

F. MARANINCttI, Statecharts: sdmantique et application d la spdcification 
de systdmes, DEA, INP Grenoble (1987). 

F. MARANINCHI, Sdmantique du langage ARGOS, unpublished (1989). 

R. MILNER, A Calculus of Communicating Systems, Sprlnger-Verlag, LNCS 
92 (1980). 

A. RASSE, CLEO, Interprgtation de la non-correction de programmes sur 
un module, RT C10, Spectre project, LGI-IMAG Grenoble (1988). 

CCITT SDL: overview, Computer Networks and ISDN Systems, vol. 13, 
Number 2 (1986). 

The STATEMATE Working Environment for System Development, AD 
CAD Ltd., Rehovot, Israel (1987). 

G. WINSKEL, Events in Computations, PhD Thesis, University of Edin- 
burgh (1980). 

J.L. RICHIER AND C. RODRIGUEZ AND J. SIFAKIS AND J. VOIRON, XE- 
SAR: A Tool]or Protocol Validation. User's Guide, LGI-Imag (1987). 


