
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

409

A. Buchmann Ο. Günther
T.R.Smith Y.-F.Wang (Eds.)

Design and Implementation
of Large Spatial Databases
First Symposium SSD '89
Santa Barbara, California, July 17/18, 1989
Proceedings

Berlin Heidelberg New York London Paris Tokyo Hong Kong

Springer-Verlag

Contents

Data Structures

Invited Talk:
7 + 2 Criteria for Assessing and Comparing Spatial Data Structures
J . Nievergelt, ΕΤΗ Zürich, Switzerland 3

The Fieldtree: A Data Structure for Geographic Information Systems
A U. Frank, R. Barrera, University of Maine, USA 29

A Full Resolution Elevation Representation Requiring Three
Bits per Pixel
C. A Shaffer, Virginia Polytechnic Institute, USA 45

System and Performance Issues

The DASDBS GEO-Kerael: Concepts, Experiences, and the
Second Step

A. Wolf, ΕΤΗ Zürich, Switzerland 67

Performance Comparison of Point and Spatial Access Methods
if.-P. Kriegel, M. Schiwietz, R. Schneider, B. Seeger,
University of Bremen, FRG 89

Strategies for Optimizing the Use of Redundancy in Spatial Databases
A Orenstein, Object Design, Inc., Cambridge, Massachusetts, USA.... 115

VIII

Geographie Applications

Invited Talk:
Tiling Large Geographical Databases
M. F. Goodchild, University of California, Santa Barbara, USA 137

Extending a Database to Support the Handling of Environmental
Measurement Data
L . Neugebauer, University of Stuttgart, FRG 147

Thematic Map Modeling

M. Scholl, A. Voisard, INRIA, Chesnay, France 167

Quadtrees

Invited Talk:
Hierarchical Spatial Data Structures
Κ Samet, University of Maryland, USA 193

Distributed Quadtree Processing

C. H. Chien, T. Kanade, Carnegie-Mellon University, Pittsburgh, USA... 213

Node Distribution in a PR Quadtree
C.-H. Ang, Κ Samet, University of Maryland, USA 233

Modeling and Data Structures

An Object-Oriented Approach to the Design of Geographic
Information Systems
P. van Oosterom, 7. van den Bos, University of Leiden, The Netherlands.. 255

IX

A Topological Data Model for Spatial Databases
M. J. Egenhofer, A U Frank, J. P . Jacteon, University of Maine, USA... 271

A Weil-Behaved File Structure for the Storage of Spatial Objects
M. W. Freeston, European Computer-Industry Research Center,
Munich, FRG 287

Spatial Reasoning

Invited Talk:
The Design of Pictorial Databases Based upon the Theory
of Symbolic Projections
S.-K Chang, E. Jungert, Y. Li, University of Pittsburgh, USA 303

Reasoning on Space with Object-Centered Knowledge Representations
L . Buisson, Laboratoire Artemis/Imag, Grenoble, France 325

Qualitative Spatial Reasoning: A Semi-Quantitative Approach
Using Fuzzy Logic
S. Dutta, University of California, Berkeley, USA 345

Performance Comparison of

Point and Spatial Access Methods *

Hans-Peter Kriegel, Michael Schiwietz

Ralf Schneider, Bernhard Seeger

Praktische Informatik, University of Bremen, D-2800 Bremen 33, West Germany

Abstract

In the past few years a large number of multidimensional point access methods, also called

multiattribute index structures, has been suggested, all of them claiming good performance. Since no

performance comparison of these structures under arbitrary (strongly correlated nonuniform, short

"ugly") data distributions and under various types of queries has been performed, database

researchers and designers were hesitant to use any of these new point access methods. As shown in

a recent paper, such point access methods are not only important in traditional database applications.

In new applications such as CAD/CIM and geographic or environmental information systems, access

methods for spatial objects are needed. As recently shown such access methods are based on point

access methods in terms of functionality and performance. Our performance comparison naturally

consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in

part I I spatial access methods for rectangles w i l l be compared. In part I we present a survey and

classification of existing point access methods. Then we carefully select the following four methods

for implementation and performance comparison under seven different data files (distributions) and

various types of queries: the 2-level grid file, the B A N G file, the hB-tree and a new scheme, called

the B U D D Y hash tree. We were surprised to see one method to be the clear winner which was the

B U D D Y hash tree. It exhibits an at least 20 % better average performance than its competitors and is

robust under ugly data and queries. In part I I we compare spatial access methods for rectangles.

After presenting a survey and classification of existing spatial access methods we carefully selected

the following four methods for implementation and performance comparison under six different data

files (distributions) and various types of queries: the R-tree, the B A N G file, PLOP hashing and the

B U D D Y hash tree. The result presented two winners: the B A N G file and the B U D D Y hash tree.

This comparison is a first step towards a standardized testbed or benchmark. We offer our data and

query files to each designer of a new point or spatial access method such that he can run his

implementation in our testbed.

Keywords : access methods, performance comparison, spatial database systems

* This work was supported by grant no. Kr 670/4-2 from the Deutsche Forschungsgemeinschaft

(German Research Society) and by the Ministry of Environmental an Urban Planning of Bremen

90

1. Introduction

Access methods for secondary storage which allow efficient manipulation of large amounts of

records are an essential part of a data base management system (DBMS). In traditional applications,

objects are represented by records, which are d-dimensional points, d > 1, and thus point access

methods (PAMs) are required. We distinguish access methods for primary keys (one-dimensional

points) and access methods for secondary keys (multidimensional points). A large number of

multidimensional PAMs, also called multiattribute index structures, has been suggested in the past

few years. Many of these PAMs claim to be "very efficient for arbitrary queries", to be "robust,

coping well wi th arbitrary distributions", to "exhibit almost the same retrieval performance for

independent nonuniform data distributions as for uniform distributions", or to "gracefully adapt to

the actual data". However, no performance comparison of these structures under strongly correlated

nonuniform data distributions and under various types of queries has been performed, simply

because for many of these PAMs no implementations are available. In 1984 we have reported on a

performance comparison of four PAMs, the grid file, two variants of multidimensional B-trees and

the traditional inverted file, see [Kr i 84]. However, all of these PAMs are outdated.

In this paper, we w i l l present a performance comparison of the most promising PAMs under

skewed data and under various types of queries. Our goal w i l l eventually be to develop a

standardized testbed or benchmark such that each designer of a new P A M may implement her or his

method and run i t against this benchmark. Such a performance comparison of PAMs wi l l be the

fundamentals of automatic physical database design tools that would choose a physical schema and

then monitor the performance of the schema making changes as necessary.

Now, considering new applications such as Computer Aided Design/Computer Integrated

Manufacturing (C A D / C I M) , image processing and geographic or environmental information

systems, PAMs are not sufficient. In particular, new access methods are necessary for the

organization of multidimensional spatial objects, like rectangles, polygons etc. We call these

methods spatial access methods (SAMs). Additionally, queries asking for spatial objects seem to be

more complex than queries asking for points. For instance a typical spatial query is the point query:

Given a point, find all spatial objects that contain the point.

The significance of efficient PAMs is underligned by the following facts. In [SK 88] we have

shown that known SAMs for simple spatial objects (rectangles, intervals, etc.) are based on an

underlying P A M using one o f the following three techniques: clipping, overlapping regions and

transformation. The better the underlying P A M , the better w i l l be the performance of the resulting

S A M . The distribution of objects which the underlying P A M handles is in almost all spatial

applications nonuniform and strongly correlated; extremely correlated i f the technique of

transformation is used. As an underlying P A M we used in [SK 88] the most efficient

multidimensional dynamic hashing scheme (MDH) without directory which is PLOP-Hashing [KS

88], mainly because it supports a nice adaption of the three different techniques. In this paper, we

91

w i l l compare in part I I the R-Tree, PLOP-Hashing, the B A N G file and the B U D D Y hash tree, all

storing rectangles.

This paper is organized as follows. Part I deals with PAMs and consists of sections 2-5. In section

2 we w i l l give a survey and classification of existing PAMs and we w i l l justify our selection of

PAMs for the performance comparison. In the third section we describe how we implemented the

selected PAMs and we specify the general experimental setup for our comparisons. The result of the

experiments are reported in section 4. In the following section 5 those results are interpreted.

Furthermore, from the attempt to explain bad performance of the different PAMs, suggestions for

improvements for most PAMs are made. Part I I compares SAMs for rectangles and covers sections

6-8. In section 6 a brief survey and classification of existing SAMs for rectangles is presented. In

the fol lowing section 7, we describe our general experimental setup and the selected SAMs. The

results of the experiments are then reported in section 8. Section 9 concludes the paper.

Part I: Performance comparison of multidimensional point access
methods (PAMs)

2. Classification and selection of PAMs

Even for someone working in this area, it is difficult to keep track of all multidimensional PAMs

suggested until today. Most important for the performance of a multidimensional P A M under

arbitrary (nonuniform correlated) data is the partitioning process, how the P A M adapts to the

particular data distribution. Therefore, we w i l l present a classification of existing multidimensional

PAMs according to the way they partition the d-dimensional data space D . In the following

classification we w i l l not consider PAMs based on binary trees, such as kd-trees, since they are not

suitable for the organization of data in secondary storage. Furthermore, we w i l l omit variants of

multidimensional Β-trees [K r i 84] from our classification, because they cluster data according to a

lexicographical ordering, instead of according to proximity in data space.

The basic principle of all multidimensional PAMs is to partition the data space into page regions,

shortly regions, such that all records in one region are stored in one and the same data page. We wi l l

classify according to the following three properties of regions: the regions are pairwise disjoint or

not, the regions are rectangular or not and the partition into regions is complete or not, i.e. the union

of all regions spans the complete data space or not. Obviously, this classification yields six classes,

four of which are filled with known PAMs.

92

class
property

P A M class
rectangular complete disjoint

P A M

(CI) X X X

interpolation hashing [Bur 83], MOLHPE [KS 86],
quantile hashing [KS 87], PLOP-hashing [KS 88],
k-d-B tree [Rob 81], multidimensional extendible
hashing [Tarn 82,Oto 84], balanced multidimensional
extendible hash tree [Oto 86], grid file [NHS 84],
2-level grid file [Hin 85], interpolation-based
grid file [Ouk 85]

(C2) X X twin grid tile [HSW 88]

(C3) X X buddy hash tree [SFK 89], multilevel grid file [WK 85]

(C4) X X
B+-tree with z-order [OM 84], BANG file [Fre 87],
hB-tree [LS 89]

Table 1 : Classification of multidimensional PAMs.

As mentioned before our goal is to find PAMs with a good overall performance under nonuniform

correlated data. Since it was not feasible to implement and compare all of the structures in the above

classification, we selected the following 4 PAMs for implementation and comparison: the 2-level

grid file, the B A N G file, the hB-tree and the buddy hash tree. Before describing the selected PAMs

in more detail, we w i l l justify why we restricted our comparison to these four structures.

Considering class C 1, the most promising structures definitely are the interpolation-based grid file

and the balanced multidimensional extendible hash tree. However, both structures can be obtained as

a special case of the buddy hash tree by restricting the properties of the regions. Therefore these two

PAMs need not to be implemented. We do not include the best multidimensional dynamic hashing

scheme without directory, PLOP hashing, since it is efficient only for weakly correlated data, but not

for strongly correlated data. From class C 1 we selected the 2-level grid file because it is generally

accepted to be "the measuring stick" and because its efficient Modula-2 implementation by Klaus

Hinrichs [Hin 85] was available to us which we thankfully acknowledge.

From class C 4 we omitted the B +-tree storing z-values from our comparison, because both

implemented PAMs, the B A N G file and the hB-tree are improvements of the basic B +-tree storing

z-values. We decided to implement the buddy hash tree (class C 3) due to its non-complete partition

of the data space thus avoiding to partition empty data space. Since the concept of the twin grid file

(class C 2) of organizing two dependent grid files at the same time is generally applicable to any

P A M , we did not include it in our comparison. It might be worth investigating the application of this

principle to the winners of our comparison.

In the following, we w i l l present a short description of the selected PAMs. This description is

93

slightly longer in case of the latest P A M , the buddy hash tree, since its paper might not be readily

available.

The 2-level grid file was first suggested in the original grid file publication [NHS 84] and then

described in detail and implemented in [Hin 85]. The basic idea is to manage the grid directory with

another grid file. This 1 st level grid directory is a scaled-down version of the original grid directory

in which the limit of resolution is significantly coarser. Since the 2nd level grid files are independent

from each other, this 2-level approach supports a better adaption to nonuniform distributions than the

original 1-level grid file. However, the 1st level grid directory still grows superlinearly, just starting

its superlinear growth later. Let us emphasize that the regions in the 2-level grid file are rectangular.

In order to adapt to the clustering of points in the data space, Freeston has suggested the BANG

file (Balanced and Nested Grid file) [Fre 87] using the concept of nested regions. As in the 2-level

grid file the data space is partitioned by rectangular shaped basic regions. However, contrary to the

2-level grid file, regions may be formed from these basic regions using the difference operation. The

difference operation is applied to nondisjoint basic regions where one of them completely contains

the others. Thus this operation supports a process of nesting which produces non-rectangular shaped

logical regions. This process of nesting is applied to data pages and equivalently to directory pages.

Obviously the motivation of the BANG file was a graceful adaption to object distributions where

almost all of the data occurs in a few relatively small cluster points.

Conceptually similar to the B A N G file, the hB-tree (holey brick tree) [LS 89] allows

non-rectangular shaped regions on the level of data pages and more important on the level of

directory pages. Contrary to the B A N G file, such a region is generated by union of rectangular

shaped basic regions. This potentially more efficient constructive method (versus the descriptive

method in the B A N G file), however, trades in again one of the basic disadvantages o f the 2-level

grid file: a logical region may need more than one directory entry.

Both, the B A N G file and the hB-tree use a balanced search tree structure for the directory. The

B A N G file directory organizes a hash-based partition of the data space, whereas the hB-tree uses a

kd-tree-type node organization in the directory, to reflect a median-based partitioning. Thus the

B A N G file is a hashing scheme with a tree-structured directory, hash tree for short, organizing the

embedding data space, whereas the hB-tree is a search tree, organizing the specific set of data. To be

precise, the hB-tree is actually a search graph due to its duplicate directory entries.

For none of the two structures a deletion algorithm has been specified. From our experience having

implemented both of them, we believe that an efficient deletion algorithm w i l l be especially hard to

design for the hB-tree.

A l l existing PAMs including the 2-level grid file, the B A N G file and the hB-tree have the following

property in common: they partition the complete data space. More exactly, the union of all

partitioning blocks spans the complete data space. Consequently empty data space is partitioned,

94

even i f i t is partitioned efficiently as in the case of the B A N G file.

The goal of the buddy hash tree [SFK 89] is not to partition empty data space at all, even more, to

partition the data space into nearly minimal bounding rectangles o f objects. As the name says, it is,

similar to the B A N G file, a dynamic hashing scheme with a tree-structured directory where the

leaves of the directory point to the data pages. A (page) node of the directory contains a list of entries

(R, P) where R Q D is a d-dimensional rectangle in the data space D and Ρ is a pointer to a subtree

containing all points (records) in R. R is the minimal bounding rectangle of the points and

subrectangles obtained by recursive hairing of the data space. The partitioning hyperplanes are

parallel to the axis of the data space.

Consider an entry (R, P) in a directory node where Ρ refers to a son ((S^ Pj), (S k , P k)),

k > 1. Then the following two conditions are fulfilled:

(i) S i n S j = 0 V i e j € { 1, ... k } , i 9ft j

k
(ii) U Sj c R

i= 1

Condition (ii) implies the important property of the buddy hash tree that it does not have to partition

the complete data space. Together with the concept of minimal bounding rectangles condition (ii)

implies that empty data space is not partitioned at all. Conditions (i) and (i i) have already been

incorporated in the multilevel grid file [W K 85]. However, additionally to the multilevel grid file the

buddy hashtree exhibits the following performance improving properties:

(1) Each directory node contains at least two entries.

(2) A n overfilled page (data page or directory page) is always split in a minimal way i.e. the

"minimal bounding rectangle property" is not destroyed by page splitting.

(3) Except for the root of the directory, there is exactly one pointer referring to each directory

page.

(4) Let (R, P) be an entry in a leaf of the directory, i.e. Ρ points to a data page. Then there may

exist other pointers P 1 ? . . . P k , and accordingly directory entries (Rj , Pj) , ... (R k , P k) ,

k > 1, i f f

(a) the rectangle R contains less than b/2 records (points), where b is the capacity of a

directory page

(b) the entries (Rv P{)A < i < k, are accomodated in the same leaf of the directory as (R, P).

The balanced multidimensional extendible hash tree and the multilevel grid file are artificially

balanced by allowing one entry in a directory page. Due to property (1) the buddy hash tree shortens

paths by omitting directory pages with one entry. Thus the buddy hash tree is not balanced, i.e. the

leaves of the directory may be on different levels of the tree. We would like to emphasize that this is

a performance improvement for all operations (queries and updates) compared to the balanced

95

competitors of the buddy hash tree. An important performance measure for a tree-structured

directory is the maximum height of the directory. The maximum height h m a x of the buddy hash tree

is:
(η λ w — log2 b

h m a x < l o g b / 2 {-ςγ2 ~ W J + b ' w n e r e : n is the number of records

b is the capacity of a directory page

I D I = 2 W

Obviously , {-ςη-^ ~ W J <K n a n c * g < ^ * s fulfilled for most applications.

Property (2) guarantees that for answering queries no pages are accessed and searched which do

not contain an answer. Properties (1) and (3) imply that the directory grows linearly in the number of

records under all circumstances. Property (4) results in a high storage utilization. However, the most

important of these properties is property (2), the minimal bounding rectangle property which avoids

partitioning empty data space.

Implementation specific details as well as the general experimental setup for our comparisons are

described in the next section.

3. Experimental setup

We ran the performance comparisons on SUN workstations (3/50 and 3/60) under U N I X using

Modula-2 implementations of the selected PAMs. We w i l l first describe in more detail how we

implemented these PAMs.

As mentioned before, there exists an efficient fine-tuned and well-tested Modula-2 implementation

of the 2-level grid file [Hin 85], in the following tables and figures abbreviated by GRID. We are

thankful to Klaus Hinrichs for making this implementation available to us. Since we use GRID as a

measiring stick for the other PAMs, we w i l l standardize the number of page accesses for range

queries and partial match queries of GRID to 100 % for the sake of an easier comparability.

Cortrary to the 2-level grid file, the B A N G file implementation is not publicly available from the

ECRC, Munich, West Germany (European Computer-Indus try Research Centre). Thus we had to

implement the B A N G file, in the following comparisons abbreviated by B A N G , on our own. In

[Fre Ώ] the search path in an exact match query may be longer than the height of the tree. This

resulis in a performance penalty particularly for range queries with small volume. This phenomenon

is caised by the fact that the original B A N G file suggestion does not fulf i l l the so-called "spanning

property" which requires each directory node and thus each region to be completely spanned by its

entries. Our implementation is according to the original B A N G file concept [Fre 87] and does not yet

include the spanning property. We are presently incorporating this spanning property in our

96

implementation and we w i l l investigate the potential improvement. Furthermore, we are presently

extending our implementation from fixed-length to variable-length directory entries which is

incorporated in B A N G * .

When we decided in September 1988 to include the hB-tree in our comparison of PAMs, no

implementation was available. Our implementation of the hB-tree, denoted H B in the following

figures and tables, gracefully follows the specification in [LS 89]. Addit ionally, we have

implemented an optimized choice of the split axis which minimizes the margins of the regions in

order to improve range query performance.

Obviously we had to implement the buddy hash tree [SFK 89] on our own. The implementation of

the directory is very general, i.e. it is prepared to support a neighbor system. Since we decided for a

special case of the neighbor system, the buddy system, there is room for improvement in the

directory implementation which may easily result in an increase of the average branching factor of at

least 40 %. To be fully dynamic we have incorporated a deadlock algorithm which contrary to the

2-level grid file is not a "must" in the buddy hash tree. Underfilled regions of highly varying sizes

may not be merged in the original buddy hash tree because only rectangular regions are permissible.

Thus it is possible to pack (merge) data pages such that the pointers to those data pages originate

from one and the same directory page. For the sake of avoiding an unlimited number of indirect

splits we have restricted "packing" to data pages. We have implemented the unpacked version,

abbreviated by B U D D Y in the comparison, and we have generated the packed version, called

BUDDY"*", by computation and simulation from the B U D D Y implementation.

In order to compare the performance of the PAMs, we generated seven 2-dimensional datafiles

(F l) - (F7) where (F l) - (F6) consists of 100 000 records without duplicates. (F7) consists of real

cartography data and actually contains 81 549 records without duplicates. We consider records

whose keys are in the unitcube [0,1) d , since some of the PAMs require this. In the following,

N(m,v) denotes a Gaussian distribution with mean value m and variance v. Below we wi l l give a

specification of the data files (F l) - (F7) which are additionally depicted in figure 3.1:

(F l) "Diagonal" :

The records follow a uniform distribution on the main diagonal.

(F2) "Sinus Distribution" :

The records follow a sinus curve, more precisely the x-values are uniformly distributed and

the y-values follow a Gaussian distribution with mean value sin(x) and variance 0.1.

(F3) "Bit Distribution" :

The records follow a bit distribution bit(z) with parameter z, 0 < ζ < 1. Each key component

Κ can be represented as a bitstring (b 1 ? b 2 , . . .) , where

97

K = X b j - 2 -
"J

The key component Κ follows a bit distribution bit(z) with parameter z, i f for any j , the bit

bj satisfies Pb(bj =1) = z, where Pb(X) denotes the probability that event X is true. For our

testfile we have chosen ζ = 0.15.

,F4) "x-Parallel" :

the x-values are uniformly distributed and the y-values follow an N(0.5,0.01) distribution.

(F5) "Cluster Points" :

The records follow a 2-dimensional independent Gaussian distribution with variance 0.05

(in x- and y-direction) around the centers of the cluster points as mean values and the

records are inserted finishing one cluster point before starting the next.

(F6) "Uniform Distribution" :

The records follow a 2-dimensional independent uniform distribution. Since there is no

need, this distribution is not depicted in figure 3.1.

(F7) "Real Data" :

Consists of real cartography data representing the elevation lines in a "rolling-hill-type" area

in the Sauerland, West Germany. The points are obtained as interpolation points of the

elevation lines. Since the data is originally stored in a quad-tree, i t is inserted in a sorted

sequence which is due to the partitioning sequence of the quad-tree. We thankfully

acknowledge receiving this data from the Landesvermessungsamt NRW, Bonn, West

Germany.

For e;ch of the files (F l) - (F7) we generated the following five query files for comparing the

selectee PAMs:

(RQ1 20 quadratic range queries with volume 0.1 %, where the center of the square follows a

uniform distribution.

(RQ2 20 quadratic range queries with volume 1 %, where the center of the square follows a

uniform distribution.

(RQ3 20 quadratic range queries with volume 10 %, where the center of the square follows a

uniform distribution.

(PMG) 20 partial match queries where the specified x-value is uniformly distributed and the

y-value is unspecified.

(PMG) 20 partial match queries where the specified y-value is uniformly distributed and the

x-value is unspecified.

Here ie volume of a range query is the volume of the specified range divided by the volume of the

data spcte. For these queries we have computed the average number of disk accesses per query

where ie average is taken over 20 queries.

98

(Fl) Diagonal (F2) Sinus Distribution

(F5) Cluster Points (F6) Real Data

Fig. 3.1 : Data - Distributions

99

As mentioned before, for the BANG-f i le and the hB-tree no deletion algorithms have been

specified. Therefore, for our comparison we only consider the case of the growing file.

In order to keep the performance comparison manageable (we already had more than 2.7 billion

insertions), we have chosen the page size for data pages and directory pages to be 512 bytes which

is at the lower end of realistic page sizes. Using small page sizes, we obtain similar performance

results as for much larger file sizes, e.g. a doubling of the page size can accomodate an eight times

higher file size within the same directory height for tree-based directories (BANG, H B , B U D D Y) .

We want to emphasize that for the 2-level grid file the 1st level grid directory is always kept in main

memory whereas for the other methods with their tree-based directories only the root page is main

memory resident. Since the 1st level grid directory grows superlinearly, this may become infeasible

(e.g. we had to keep up to 45 directory pages in main memory for only 100 000 records).

Furthermore, in order to support update operations, in tree-based directories we additionally store

the last accessed search path in a buffer and analogously for the 2-level grid file the last two accessed

pages. Naturally this buffer for the search path is dynamically growing and shrinking according to

the height of the tree.

Summarizing we can state that the performance results in the next section of B A N G , HB and

B U D D Y hold as well for much larger file sizes whereas GRID w i l l perform worse for larger file

sizes due to its superlinear growth of the 1st level directory for nonuniform distributions.

4. Results of the experiments

As mentioned before, for the query types (RQ1) - (RQ3) and (PMQ1), (PMQ2) we w i l l report the

average number o f disk accesses per query in the fol lowing tables. For the sake of an easier

comparability, we have standardized the average number of page accesses for these queries in GRID

to 100 %. Under the considerations of real-life applications and robustness, we have further

visualized our results for the datafiles "Real Data", "Cluster" and "Diagonal".

During and after building up each datafile from empty, the following parameters were measured:

1. the storage utilization, denoted by stor.

2. the ratio of directory pages to data pages, denoted by dir/data.

3. the average number o f disk accesses for an insertion (read and write) averaged over all 100000

or 81 549 insertions, denoted by insert.

4. the height of the directory after completely building up the file, denoted by h.

The results of the experiments are reported in the following figures and tables:

100

Real Data

x-spec. partial query y-spec. partial query
(100% - 45 3 disk accesses) (100% - 67 6 disk a c c e s s e s)

Diagonal
0.1 % range query 1.0 % range query 10 % range query

HB B A N G G R I D B U D D Y B U D D Y + KB B A N G G R I D B U D D Y B U D D Y + m B A N G G R I D B U D D Y B U D D Y +

x-spec. partial query y-spec. partial query

HB BANG G R I D B U D D Y B U D D Y + HB BANG G R I D BUDDY BUDDY"*"

101

Cluster Points
0.1 % range query 1.0 % range query 10 % range query

(100% - 5.7 disk a c c e s s e s) (100% - 6.7 disk a c c e s s e s) (100% - 285.2 disk a c c e s s e s)

tmm,

HB B A N G G R I D B U D D Y B U D D Y + HB B A N G G R I D B U D D Y B U D D Y + HB B A N G G R I D B U D D Y B U D D Y +

x-spec. partial query
: 24 6 disk accesses)

y-spec. partial query
(100% = 27 4 disk accesses)

1 0 0 -
s t o r d i r / d a t a i n s e r t h

HB 69.2 3.88 2.78 3

B A N G 68.8 2.30 2.56 3

G R I D 62.1 2.24 2.44 2

B U D D Y 67.1 4.00 2.66 3

BUDDY"* 71.5 4.25 3

HB BANG G R I D BUDDY BUDDY + HB BANG G R I D BUDDY B U D D Y +

Uniform Distribution
range query partial query

s t o r d i r / d a t a i n s e r t h
0 . 1 % 1 . 0 % 1 0 % x - s p e c y - s p e c

s t o r d i r / d a t a i n s e r t

HB 1 1 3 . 3 1 0 4 . 3 1 0 3 . 9 1 3 7 . 3 92.7 6 9 . 9 3 . 5 3 3 . 2 9 3

BANG 1 1 3 . 9 1 0 5 . 8 101 .9 1 10 .6 1 0 3 . 5 70 .1 2 . 3 5 3 . 0 6 3

GRID 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 0 . 2 1 .12 2 . 9 0 2

BUDDY 101 .7 1 0 2 . 7 1 0 1 . 2 1 0 8 . 3 1 0 0 . 0 7 0 . 2 2 . 2 8 3 . 1 9 2

BUDDY+ 101 .2 1 0 0 . 5 96.8 1 0 7 . 4 99.6 7 4 . 5 2 . 4 2 2

Sinus Distribution
range query partial query

s t o r d i r / d a t a i n s e r t h
0 . 1 % 1 . 0 % 1 0 % x - s p e c . y - s p e c .

s t o r d i r / d a t a i n s e r t

HB 105.4 103.4 100.2 121.2 97.5 69.1 3.77 3.29 3

BANG 139.2 109.5 100.1 1 11.9 107.3 69.6 2.33 2.95 3

GRID 100.0 100.0 100.0 100.0 100.0 68.2 1 .67 2.97 2

BUDDY 97.1 98.4 98.3 92.2 91.9 68.8 2.10 3.21 2

B U D D Y 4 96.6 95.1 93.8 89.8 90.3 72.9 2.22 2

Bit Distribution
range query partial query

s t o r d i r / d a t a i n s e r t h
0 . 1 % 1 .0% 1 0 % x - s p e c . y - s p e c .

s t o r d i r / d a t a i n s e r t

HB 77.1 61.2 59.2 52.7 50.8 69.5 3.72 3.28 3

BANG 145.0 84.3 64.0 44.8 64.5 67.3 2.42 2.96 3

GRID 100.0 100.0 100.0 100.0 100.0 42.4 2.75 3.03 2

BUDDY 1 15.6 105.6 99.2 48.4 69.7 43.0 5.10 3.62 3

BUDDY"4" 105.5 89.6 67.5 46.1 66.5 71 .0 8.42 3

x-Parallel
range query partial query

s t o r d i r / d a t a i n s e r t h
0 . 1 % 1 . 0 % 1 0% x - s p e c . y - s p e c .

s t o r d i r / d a t a i n s e r t

HB 94.9 89.2 91.1 132.4 59.6 69.6 3.62 3.29 3

BANG 126.5 100.1 95.8 83.6 114.7 65.4 2.19 3.03 3

GRID 100.0 100.0 100.0 100.0 100.0 62.9 3.77 3.01 2

BUDDY 74.5 83.1 92.3 72.8 50.4 67.2 2.45 3.21 2

BUDDY"1" 72.4 78.5 87.3 72.6 50.0 71 .1 2.60 2

103

5. Interpretation of the results

Obviously, a physical database designer or a user of a database system can select from the above

distribution mix those distributions which are typical and representative in his application. He w i l l

then choose the winner in those typical distributions. As a decision support for someone aiming for

robustness and good average performance we present the following table 5.1. As mentioned before,

our B A N G file implementation incorporates fixed-length directory entries. For curiosity and as

originally intended, we have generated a variable-length version, called B A N G * , by simulation from

the B A N G implementation. We w i l l only present the averaged results of B A N G * in the following

two tables 5.1 and 5.2.

In table 5.1 for the parameters stor and insert we computed the unweighted average over all seven

distributions (datafiles). As an indicator for the average query performance we present the parameter

query average which is averaged (unweighted) over all five query types for each distribution and

then averaged over all seven distributions. The goal of this indicator is to help make things more

clear, at first glance; however, we are aware that such an average implies a loss of information. The

loss of information is considerably less in table 5.2 where the parameter query is displayed for each

distribution as an average over all five types of queries.

query
averaqe s t o r i n s e r t

H B 1 1 0 . 9 6 8 . 6 2 . 8 0

B A N G 1 0 2 . 6 6 7 . 9 2 . 4 3

B A N G * 9 5 . 8 6 7 . 9 2 . 4 9

G R I D 1 0 0 . 0 5 8 . 3 2 . 5 6

B U D D Y 8 0 . 2 6 4 . 9 2 . 7 8

B U D D Y * 7 6 . 6 7 2 . 5

Table 5.1: unweighted average over all 7 distributions

uniform s inus bit x - p a r . real data diagonal c luster

H B 1 1 0 . 3 1 0 5 . 5 60.2 93.4 1 2 7 . 4 1 0 5 . 0 1 7 4 . 2

B A N G 1 0 7 . 1 1 1 3 . 6 80:5 1 0 4 . 1 1 3 5 . 0 78.4 99.4

B A N G * 1 0 0 . 2 1 0 8 . 0 72.8 99.8 1 3 1 . 8 68.2 90.1

G R I D 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

B U D D Y 1 0 2 . 8 95.6 87.7 74.6 99.4 28.4 73.0

B U D D Y " 1 0 1 . 1 93.1 75.0 72.2 97.6 27.8 69.2

Table 5.2 : unweighted average over all 5 types of queries depending on the distribution

104

In the following, we w i l l discuss the performance of each P A M in the sequence in which they

appear in the tables focussing on the average over the 5 types of queries.

Considering the indicator query average, HB would be the looser. However, this simple approach

is not fair. For the bit distribution HB clearly outperforms its competitors and for the x-parallel HB

closely follows B U D D Y and BUDDY" 1". This good performance for the bit distribution is a

consequence of the median-based partitioning, whereas the performance for the x-parallel profits

from the additional feature of the minimized margins of the regions which was not an ingredient in

the original specification [LS 89], but was incorporated in our implementation. For all other

distributions (Real Data, Diagonal, Cluster, Sinus Distribution and Uniform Distribution) the

average over all 5 types of queries is clearly worse than the 100 % value of GRID. More

specifically, for Cluster, Diagonal and Uniform Distribution HB is the extreme looser in average

query performance with values up to 272 %. Thus HB does not guarantee robustness. Although

H B is the only P A M incorporating the efficient median-partitioning, it suffers from the following

severe disadvantages:

(i) the height of the directory is in most experiments one more than in the other PAMs.

(ii) considering the partitions of HB for all distributions we observe that H B often partitions

empty data space with unnecessarily fine granularity.

(iii) the directory may contain duplicate entries in two respects:

(a) the father of a directory node may contain subtrees of its sons

(b) different directory entries may point to one and the same page (directory or data pages).

From the above it follows that the hB-tree is actually a graph. We believe that the only way to

improve H B is to incorporate the concept of not partitioning empty data space. Wi th this and the

median partition it might become very competitive.

As mentioned before, the GRID implementation [Hin 85] always keeps the 1st level grid directory

in main memory whereas for the other PAMs only the root page of the directory is main memory

resident. Since it was crucial to change the GRID implementation to allowing only one root page of

the directory in main memory, we accepted that the relative ranking of GRID, our 100 % measuring

stick, is too good in comparison to the other structures. To clarify this: for the Diagonal Distribution

the 1st level grid directory needed 45 directory pages in main memory, which is sufficient for

B A N G , B A N G * , B U D D Y and BUDDY 4 " to keep the complete directory in main memory. Thus the

rating of GRID in a comparable environment would be considerably worse. With the available

implementation, GRID outperforms its competitors for uniform distribution as expected. I f we

exclude HB from our considerations it performs considerably worse than B A N G and BUDDY for

Diagonal, Bi t Distribution and Cluster. Our comparisons show that GRID is not robust against

arbitrary data.

Considering B A N G and B A N G * for the indicator query average, the concept of nested regions

105

seems not to imply any improvement over GRID. However, B A N G and B A N G * turn out to be

more robust towards ugly distributions than HB and especially GRID are. Looking more closely at

the different queries, we realize that B A N G performs very poorly for small range queries. This is a

direct consequence of the not incorporated "spanning property" and w i l l be improved by its

implementation. A further disadvantage in robustness of B A N G is the fact that different sequences

of insertions imply different partitions. In particular sorted insertions seem to result in low storage

utilization and poor retrieval performance.

For distributions where large portions of empty data space occur, i.e. x-Parallel, Diagonal, Sinus

Distribution and Cluster Points, B A N G and B A N G * perform considerably worse than B U D D Y .

Looking at the ingredients of both PAMs it follows that incorporating an adapted concept of

minimizing regions into BANG wi l l improve the retrieval performance to some extent.

However, a consequent minimization of regions w i l l lead to an incomplete partition of the

dataspace, i.e. not partitioning empty data space, and thus to the most performance-important

ingredient of BUDDY.

Considering the indicator query average, B U D D Y and BUDDY 4 " offer themselves to be the

winners of our comparison. It is interesting to observe that B U D D Y does not fulf i l l the often cited

rule "best storage utilization - best query performance". Even the improvement in storage utilization

of B U D D Y 4 " over B U D D Y is not adequately reflected in the improvement of the retrieval

performance. As mentioned before, we have to take a closer look at the different distributions. The

only distributions where B U D D Y and BUDDY 4 " are not the winners are the Uniform and the Bit

Distributions, see table 5.2. According to [SFK 89], the Bit Distribution bit(z), 0 < ζ < 1, is the

worst case distribution for B U D D Y and BUDDY 4 " when ζ approaches 0. Even for its worst case

distribution B U D D Y 4 " is 3rd winner for the average query performance. This underlines the

robustness of the structure. By the way, the motivation for the design of BUDDY 4 " to improve the

storage utilization stems from exactly this pathological distribution. For Uniform Distribution

B U D D Y and BUDDY 4 " are within a 3 % margin of GRID, the winner. This is surprising for a

scheme designed for nonuniform data incorporating the complex structural concept of not

partitioning empty data space.

In all distributions, with the exeption of the Uniform and Bit Distribution, B U D D Y and BUDDY 4 "

are the clear winners in the average query performance and BUDDY 4 " wins in the storage utilization

with more than 71 %. B U D D Y and BUDDY 4 " clearly outperform their competitors i f at least one of

the following two data characteristics occur:

(CI) densely populated and unpopulated areas vary over the data space,

(C2) sorted data is inserted.

Sorted insertions frequently occur in real-life applications, either sorted by some local ordering

. such as clusters or quadrants or by lexicographical ordering.

106

Whereas other PAMs suffer from characteristics (CI) and/or (C2), B U D D Y and BUDDY+ behave

robust, see distributions "Diagonal" and "Cluster Points".

Part I I : Performance comparison of spatial access methods (SAMs)

6. Classification and selection of SAMs

Even for someone working in this area, it is difficult to keep track of all SAMs suggested until

today, because every multidimensional P A M can easily be extended to a S A M using the techniques

of clipping, overlapping regions and transformation.

In this section we w i l l provide an overview of spatial access methods which are based on the

approximation of a complex spatial object by the minimal bounding rectangle (MBR) with the sides

of the rectangle parallel to the axes of the data space. The most important property of this simple

approximation is that a complex object is represented by a limited number of bytes. Although a lot

of information is lost, MBRs of spatial objects preserve the most essential geometric properties of

the object, i.e. the location of the object and the extension of the object in each axis. We do not

consider more complex approximations of spatial objects such as the cell-tree [Giin 89] in this paper.

SAMs organizing minimal bounding rectangles of objects can be classified into three groups. Each

of these groups is characterized by a special technique that allows an extension of a multidimensional

point access method (PAM) to a multidimensional S A M . Thus the performance o f such SAMs

depends on the underlying P A M and depends on the applied technique.

In the following we give a short describtion of the several techniques of extending PAMs to SAMs.

The interest reader can find these techniques explained in more detail in [SK 88]

Cl ipp ing

Clipping can easily be explained by describing the insertion of a new rectangle. Assuming a

partition of the data space into disjoint regions, an insertion of a rectangle w i l l be performed like an

insertion of a point. Problems w i l l only occur, i f a rectangle R intersects with more than one disjoint

region. Clipping of a rectangle means that R is partitioned into a minimal set of rectangles (R 1 ,

RQ}, where

R = u R\ q > 1

i=i

Every rectangle R1, 1< i < q, intersects with exactly one disjoint region. Now we can insert

these q rectangles R 1 , R q into the file.

107

Overlapping regions

Such as clipping, overlapping region schemes (OR-schemes) organize d-dimensional rectangles

using a d-dimensional P A M . For the following considerations we define the region of a bucket as

the minimal bounding box of the rectangles belonging to the bucket. Contrary to clipping,

OR-schemes allow data buckets where the corresponding regions have a common overlap. We w i l l

discuss the principle of OR-schemes by a brief summmary of the concepts of the R-tree [Gut 84],

one of the most popular SAMs.

The R-tree is a balanced tree generalizing the B+-tree concept [Com 79] to spatial objects. Storage

utilization is guaranteed to be above 50 %. Minimal bounding rectangles of spatial objects are stored

in the leaves of the tree, where each of the leaves corresponds to a data bucket. In an inner node of

the tree there are tuples (R, p), where ρ is a pointer referring to a son and R is the minimal bounding

rectangle of all rectangles in the corresponding son. Since clipping of rectangles is avoided, a

rectangle is stored in exactly one of the data blocks. Thus overlapping regions of different data

blocks are allowed for the organization of spatial objects.

The advantage of OR-schemes is that storage utilization depends only on the underlying P A M ,

since every rectangle is uniquely represented in the file. Thus the B+-tree inherits the guarantee of at

least 50 % storage utilization to the R-tree. Another nice property is that, in analogy to clipping

methods, d-dim. points and d-dim. rectangles can be organized together in one file. However,

retrieval performance heavily depends on the amount of overlap, as shown in [SFR 87].

Transformation

The basic idea of transformation-schemes (T-schemes) is to represent minimal bounding rectangles

of multidimensional spatial objects by higher dimensional points. For instance, a 2-dimensional

rectangle R wi th sides parallel to the axis is represented by a 4-dimensional point (center

representation)

(c 1 , c 2 , e 1 , e 2)

where c = (q , c 2) e [0,1) 2 is the center of the rectangle and e = (e 1 } e 2) e [0,0.5) 2 is the distance

o f the center to the sides of the rectangle. As proposed by Nievergelt and Hinrichs [N H 85], these

4-dimensional points can be organized by the grid file [NHS 84] , generally speaking by a

multidimensional PAM.

Another choice of parameters is the corner representation, where a 2-dim. rectangle can be

represented by its lower left comer (l j , 12) € [0,1) 2 and its upper right corner Uj e [l j , l) 2 , l j= l ,2 .

However, the choice of the parameters can influence performance and characteristics of the SAM.

108

7.Experimental setup

We ran the performance comparisons on SUN workstations (3/50 and 3/60) under U N I X using

Modula-2 implementations of the selected SAMs.

Not much has to be said with respect to the selection and the implementation of the SAMs. The

measuring stick in our comparison is the R-tree. Our implementation of the R-tree gracefully follows

the specification of the R-tree in [Gut 84]. According to Diane Greene's [Gre 89] implementation we

chose at first a minimum storage utilaization of 50%, but our tests showed that the R-tree exhibits

best retrieval performance for a minimum storage utilization of 30%. The "measuring stick role" of

the R-tree is particulary justified because it basically wins the performance comparison by Diane

Greene [Gre 89]. The obvious competitors are the two best PAMs in our comparison of PAMs,

B U D D Y and B A N G .

Using the technique of transformation with corner representation we extended both our B A N G

and our B U D D Y implementation to SAMs. To be precise, we used the B A N G * implementation for

rectangles, but for the sake of simplicity we w i l l denote it by B A N G . Which is the more efficient

representation to use with transformation, the corner or the center representation? In order to answer

this question Bernhard Seeger experimentally compared both representaions for B U D D Y in his PhD

thesis [See 89] for different types of queries and different distributions of rectangles. Simply

speaking the corner representation yields approximately half the number of page accesses of the

center representation. The basic reason is that for the corner representation the limits of the query

ranges (areas) are parallel to the partitioning lines of B U D D Y (and BANG) and thus the margin of

the query range intersects fewer partitioning blocks than for the center representation. Now we have

to make a statement with respect to the P A M versions of B U D D Y and B A N G on which we applied

the corner representation. The B A N G version was more refined than in our P A M comparison,

already incorporating the spanning algorithm, whereas the B U D D Y version was the first version,

even without packing. Thus the results of B U D D Y can easily be improved by incorporating packing

and other refinements whereas BANG leaves practically no more room for improvement. In the final

version of the paper we w i l l have a refined version of B U D D Y ready for our experiments.

The last S A M is based on PLOP-Hashing and uses the technique of overlapping regions as

described in [SK 88] in detail.

In order to compare the performance of the SAMs, we generated five 2-dimensional datafiles (F l) -

(F5) consisting of 100 000 rectangles without duplicates. A rectangle is characterized by its center

and its x- and y-extension from the center. We consider rectangles which are in the unitcube [0,1) 2 ,

since some of the SAMs require this. In the following, N(m,v) denotes a Gaussian distribution with

mean value m and variance v. Below we w i l l give a specification of the data files (F l) - (F5).

(F l) "Uniformsmall-Distribution" :

The centers of the rectangles follow a 2-dimensional independent uniform distribution within

[0.1) 2 . The extensions in x- and y- direction follow a uniform distribution in [0,0.005].

109

(F2) " Uniformlarge-DistributionM :

The centers of the rectangles follow a 2-dimensional independent uniform distribution within

[0.1) 2.The extensions in x- and y- direction follow a uniform distribution in [0,0.5].

(F3) "Gaussiansquare-Distribution" :

The centers of the rectangles follow a 2-dimensional independent Gaussian distribution

N(0.5,0.25) in x- and y- direction. The extensions in x- and y- direction follow a uniform

distribution in [0,0.05].

(F4) " Gaussianslim-Distribution" :

The centers of the rectangles follow a 2-dimensional independent Gaussian distribution

N(0.5,0.25) in x- and y-direction. The extension in x-direction follows a uniform

distribution in [0,0.05] and the extension in y-direction follows a uniform distribution in

[0,0.25].

(F5) "Diagonal-Distribution" :

First we generated two dimensional points which follow a uniform distribution on the main

diagonal. Then the x- and y-coordinate of these points fol low a Gaussian distribution

N(0,0.5) .The two dimensional points generated in this way are the centers of the

rectangles. The extensions in x- and y- direction follow a uniform distribution in [0,0.2].

For each of the files (F l) - (F5) we generated queries of the following four types:

"rectangle containment":

Given a d-dim. rectangle E d , find all d-dim. rectangles R in the file with R c S .

"rectangle enclosure":

Given a d-dim. rectangle SQ E d , find all d-dim. rectangles R in the file with R Ώ S.

"rectangle intersection":

Given a d-dim. rectangle E d , find all d-dim. rectangles R in the file with S n R ^ 0 .

"point query":

Given a d-dim. point Ρ e E d , find all d-dim. rectangles R in the file with P e R .

For each of the files (F l) - (F5) we performed 500 queries for each S A M . By definition, each of

the query types rectangle intersection, rectangle enclosure and rectangle containment uses a query

rectangle. Therefore we generated 160 query rectangles with uniformly distributed centers for each

of the three query types. In order to analyze the influence of the query rectangles on the

performance, we are varying their size and shape. We generate 20 "square shaped" rectangles of

sizes 0 .1% 0.5%, 1% and 5% where the length of the rectangles is uniformly distributed between

110

1/2 squareroot(size) and 3/2 squareroot(size). Analogously, we generate 20 "slim" rectangles of

sizes 0 .1%, 0.5%, 1% and 5% where the length of the rectangles is uniformly distributed between

1/10 squareroot(size) and 19/10 squareroot(size). With these 160 query rectangles we perform the

three query types rectangle intersection, rectangle enclosure and rectangle containment, thus yielding

480 queries. The remaining 20 queries are point queries, where the points follow a two dimensional

independent uniform distribution.

8. Results of the experiments

As mentioned before, we w i l l report in the following five tables the average number of disk

accesses per query for each of the five files (F l) - (F5) and the four different query types.

Qaussian?lim-Pl?trlfrutlQn Vn|fprm3mgH-Pl?trifrutton

point
query intersection enclosure containment

R-Tree

point
query intersection enclosure containment

R-Tree 189.4 472.0 34.8 472.0
R-Tree 55.9 195.8 15.0 195.8

B A N G 167.7 401.4 41.7 37.1
B A N G 52.5 177.1 17.4 61.1

B U D D Y 159.8 394.9 30.4 34.5 B U D D Y 37.0 162.8 7.2 58.5

P L O P 273.6 637.3 55.5 637.3 P L O P 41.4 172.9 6.1 172.9 273.6 637.3 55.5 637.3

Gaus$|an?quar?-P|?tril?Mtl9n Uniformlarae-Distrlbution

point
query intersection enclosure containment

point
query intersection enclosure containment

R-Tree 86.5 266.7 14.0 266.7 R-Tree 742.8 988.2 518.7 988.2
B A N G 68.8 236.3 16.0 68,2 B A N G 388.6 603.8 239.4 20.2
B U D D Y 57.6 232.6 6.4 65.7 B U D D Y 380.2 593.3 231.2 18.0

P L O P 97.2 299.2 6.8 299.2 P L O P 783.6 965.4 613.0 965.4

Diagonal-Distribution

point
query intersection enclosure containment

R-Tree 283.4 568.2 163.7 568.2
B A N G 187.8 413.3 97.2 25.6

B U D D Y 187.5 421.0 92.9 22.9

P L O P 435.2 748.1 245.5 748.1

Similar as in our P A M comparison we computed the unweighted average over all five files and

depict in the following table. In order to prevent overweighting of distributions with high number of

page accesses, such as the Uniformlarge Distribution, we normalized the distributions by replacing

the absolute values by percentage values where we use the R-tree as a 100% measuring stick.

Additionally the average storage utilization denoted by stor and the average number of disk accesses

for an insertion (read and write), averaged over all 100000 insertions when building up the file are

presented in the following table.

111

point
query intersection enclosure containment s t o r i n s e r t

R - T r e e 100.0 100.0 100.0 100.0 67.6 110.3
BANG 76.1 79.5 91.2 14.3 68.5 2.88
BUDDY 66.9 77.6 56.5 13.5 65.5 2.92
P L O P 98.1 113.0 103.4 113.0 61.0 2.74

After running the experiments for the five files (F l) - (F5) and the four different query types we

became aware that the performance comparison for rectangles is far more complex than the

comparison for points for the following reasons:

1. The objects, here rectangles, are more complex than points. Whereas points as zero-size

objects are determined by their position in dataspace, rectangles are determined by the following

parameters: position, size, shape (square or long and slim) and degree of overlap. Obviously all

of these parameters have to be extensively varied in a comparison.

2. The queries are more complex. One reason is that already the query object which is a rectangle

in rectangle containment, rectangle enclosure and rectangle intersection is more complex.

Furthermore, there are additional important operations and queries such as spatial join ("overlay

two maps") and near neighbor-type queries.

3. The access methods are more complex. A S A M for rectangles is based on a P A M and uses one

of the techniques clipping, overlapping regions and transformation. As shown in [SK 88] a

hybrid method combining two techniques and avoiding their weak points improves performance

over just using one of the techniques. Questions arise like which technique is best for which

query type? For example, in our experiments i t turned out that the technique of transformation

was always best for the rectangle containment query. An additional example for the higher

complexity of the access methods is the R-tree. Guttman's original design of the R-tree [Gut 84]

can easily be improved by improving its split condition, e.g. by using Diane Greene's split

condition [Gre 89]. Even this split condition can still considerably be improved as our

implementations of Guttman's, Greene's and our own split conditions show.

From the above reasons it is obvious, that a considerably more extensive comparison for SAMs

storing rectangles has to be performed. The presently available results indicate that B A N G and

particularly BUDDY are first choices.

9. Conclusions

In our performance comparison of point access methods, we were surprised to see one point

method to be the clear winner. We had expected a much more complex result depending on the

'particular data distribution and on the particular query type. Summarizing the outcome of our

comparisons we can state that the B U D D Y hash tree exhibits an at least 20 % better average query

112

performance than its competitors and, even more important, is more robust under ugly data and

queries. Looking at the results of the experiments and at the partitions of the data space more closely,

it turns out that the good performance of the B U D D Y hash tree is not by chance, but is due to the

concept of not partitioning the complete data space. Thus it might be worthwhile to incorporate this

performance improving concept into other methods, in particular into the B A N G file.

From our comparison of spatial access methods for rectangles i t follows that this comparison has to

be performed with a considerably higher variation of object parameters (position, size, shape and

degree of overlap), query parameters and techniques (clipping, overlapping regions and

transformation). The presently available results indicate that B A N G and particularly B U D D Y both

using transformation are first choices for spatial access methods storing rectangles.

Further work in this area should deal with performance comparisons of access methods for more

complex spatial objects, such as polygons, where only very few access methods are known.

Therefore access methods for complex spatial objects have to be designed and compared with the

most promising candidate, the cell-tree [Gün 89].

As mentioned before this comparison is a first step towards a standardized testbed or benchmark.

We offer our data and query files to everybody who wants to run his implementation in our testbed.

At the same time, we are thankful for "hard" datafiles, in particular for "hard" real data.

Acknowledgement:

First of all, we would like to thank our colleagues Peter Heep and Stephan Heep for their valuable

advice and support. Bernhard Seeger implemented the buddy hash tree, the implementation of the

hB-tree is due to Michael Schiwietz and the B A N G file was partially implemented by a group of

computer science students and partially by Michael Schiwietz. Furthermore we are thankful to the

Landesvermessungsamt NRW, Bonn West Germany, for making real cartography data available to

us. Last, not least, we thank Ursula Behrend for professionally writing this manuscript.

References:

[Com 79] D . Comer: 'The Ubiquitous B-tree", Computing Surveys, Vo l .11 , No.2, 121-137,
1979

[Bur 83] W.A. Burkhard: 'Interpolation-based index maintenance', BIT 23, 274-294, 1983

[Fre 87] M . Freeston: The B A N G file: a new kind of grid file', Proc. A C M SIGMOD Int.
Conf. on Management of Data, 260-269, 1987

[Gre 89] D . Greene: 'An Implementation and Performance Analysis of Spatial Data Access
Methods', Proc. 5th Int. Conf. on Data Engineering, 606-615, 1989

113

[Gün 89] Ο. Günther: The design of the cell tree: An object-oriented index structure for
geometric databases, in Proc. Fifth Intl . Conf. on Data Engineering, Feb. 6-10, 1989,
Los Angeles

[Gut 84] A . Guttman: 'R-trees: a dynamic index structure for spatial searching', Proc. A C M
SIGMOD Int. Conf. on Management of Data, 47-57, 1984

[Hin 85] Κ. Hinrichs: The grid file system: implementation and case studies for applications',
Dissertation No. 7734, Eidgenössische Technische Hochschule (ΕΤΗ), Zuerich,
1985

[HSW 88] A . Hutflesz, H.-W. Six, P. Widmayer: T w i n grid files : space optimizing access
schemes', Proc. A C M SIGMOD Int. Conf. on Management of Data, 183-190, 1988

[Kr i 84] H.P. Kriegel: 'Performance comparison of index structures for multikey retrieval',
Proc. A C M SIGMOD Int. Conf. on Management of Data, 186-196, 1984

[KS 86] H.P. Kriegel, B. Seeger: 'Multidimensional order preserving linear hashing with
partial expansions', Proc. Int. Conf. on Database Theory, Lecture Notes in
Computer Science 243, 203-220, 1986

[KS 87] H.P. Kriegel, B. Seeger: 'Multidimensional quantile hashing is very efficient for
non-uniform distributions', Proc. 3rd Int. Conf. on Data Engineering, 10-17, 1987,
extended version w i l l appear in Information Science

[KS 88] H.P. Kriegel, B. Seeger: 'PLOP-Hashing: a grid file without directory', Proc. 4th Int.
Conf. on Data Engineering, 369-376, 1988

[LS 89] D.B. Lomet, Β. Salzberg: The hB-tree: A robust multiattribute search structure, in
Proc. of the Fifth Int. Conf. on Data Engineering, Feb. 6-10, 1989, Los Angeles,
also available as Technical Report TR-87-05, School of Information Technology,
Wang Institute of Graduate Studies.

[NHS 84] J. Nievergelt, H . Hinterberger, K.C. Sevcik: The grid file: an adaptable, symmetric
multikey file structure', A C M Trans, on Database Systems, Vol . 9, 1, 38-71, 1984

[N H 85] J. Nievergelt, K. Hinrichs: 'Storage and access structures for geometric data bases',
Proc. Int. Conf. on Foundsations of Data Organization, 335-345, 1985

[O M 84] J.A. Orenstein, T .H. Merrett: Ά class of data structures for associative searching',
Proc 3rd A C M SIGACT-SIGMOD Symposium on Principles of Database Systems,
181-190, 1984

[Oto 84] E. J. Otoo: Ά mapping function for the directory of a multidimensional extendible
hashing', Proc. 10th Int. Conf. on Very Large Databases, 491-506, 1984

[Oto 86] E. J. Otoo, : 'Balanced multidimensional extendible hash tree', Proc. 5th A C M
SIGACT-SIGMOD Symposium on Principles of Database Systems, 110-113,1986

[Ouk 85] M . Ouksel: The interpolation based grid file', Proc. 4th A C M SIGACT-SIGMOD
Symposium on Principles of Database Systems, 1985

[Rob 81] J. T. Robinson: 'The K-D-B-tree: a search structure for large multidimensional
dynamic indexes', Proc. A C M SIGMOD Int. Conf. on Management of Data, 10-18,
1981

[See 89] Seeger, Β.: 'Design and implementation of multidimensional access methods' in
German), PhD thesis, Department of Computer Science, University of Bremen.

' [SFK 89] B. Seeger, S. Frank, H.P. Kriegel: The buddy hash tree, English version in
preparation, German version available as a Technical Report

114

[SFR 87] Sellis, Τ., Roussopoulos, Ν. , Faloutsos, C : The R+ -tree: a dynamic index for
multi-dimensional objects', Proc. 13th Int. Conf. on Engeneering, 1988.

[SK 88] B. Seeger, Η. P. Kriegel: 'Design and implementation o f spatial access methods',
Proc. 14th Int. Conf. on Very Large Databases, 360-371, 1988

[Tarn 82] M . Tamminen: 'The extendible cell method for closest point problems', B I T 22,
27-41, 1982

[W K 85] K . - Y . Whang, R. Krishnamurthy: 'Multi level grid files', Technical Report, I B M
Research Lab., Yorktown Heights, 1985

