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Point and Spatial Access Methods * 

Hans-Peter Kriegel, Michael Schiwietz 
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Praktische Informatik, University of Bremen, D-2800 Bremen 33, West Germany 

Abstract 

In the past few years a large number of multidimensional point access methods, also called 

multiattribute index structures, has been suggested, all of them claiming good performance. Since no 

performance comparison of these structures under arbitrary (strongly correlated nonuniform, short 

"ugly") data distributions and under various types of queries has been performed, database 

researchers and designers were hesitant to use any of these new point access methods. As shown in 

a recent paper, such point access methods are not only important in traditional database applications. 

In new applications such as CAD/CIM and geographic or environmental information systems, access 

methods for spatial objects are needed. As recently shown such access methods are based on point 

access methods in terms of functionality and performance. Our performance comparison naturally 

consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in 

part I I spatial access methods for rectangles w i l l be compared. In part I we present a survey and 

classification of existing point access methods. Then we carefully select the following four methods 

for implementation and performance comparison under seven different data files (distributions) and 

various types of queries: the 2-level grid file, the B A N G file, the hB-tree and a new scheme, called 

the B U D D Y hash tree. We were surprised to see one method to be the clear winner which was the 

B U D D Y hash tree. It exhibits an at least 20 % better average performance than its competitors and is 

robust under ugly data and queries. In part I I we compare spatial access methods for rectangles. 

After presenting a survey and classification of existing spatial access methods we carefully selected 

the following four methods for implementation and performance comparison under six different data 

files (distributions) and various types of queries: the R-tree, the B A N G file, PLOP hashing and the 

B U D D Y hash tree. The result presented two winners: the B A N G file and the B U D D Y hash tree. 

This comparison is a first step towards a standardized testbed or benchmark. We offer our data and 

query files to each designer of a new point or spatial access method such that he can run his 

implementation in our testbed. 

Keywords : access methods, performance comparison, spatial database systems 

* This work was supported by grant no. Kr 670/4-2 from the Deutsche Forschungsgemeinschaft 

(German Research Society) and by the Ministry of Environmental an Urban Planning of Bremen 
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1. Introduction 

Access methods for secondary storage which allow efficient manipulation of large amounts of 

records are an essential part of a data base management system (DBMS). In traditional applications, 

objects are represented by records, which are d-dimensional points, d > 1, and thus point access 

methods (PAMs) are required. We distinguish access methods for primary keys (one-dimensional 

points) and access methods for secondary keys (multidimensional points). A large number of 

multidimensional PAMs, also called multiattribute index structures, has been suggested in the past 

few years. Many of these PAMs claim to be "very efficient for arbitrary queries", to be "robust, 

coping well wi th arbitrary distributions", to "exhibit almost the same retrieval performance for 

independent nonuniform data distributions as for uniform distributions", or to "gracefully adapt to 

the actual data". However, no performance comparison of these structures under strongly correlated 

nonuniform data distributions and under various types of queries has been performed, simply 

because for many of these PAMs no implementations are available. In 1984 we have reported on a 

performance comparison of four PAMs, the grid file, two variants of multidimensional B-trees and 

the traditional inverted file, see [Kr i 84]. However, all of these PAMs are outdated. 

In this paper, we w i l l present a performance comparison of the most promising PAMs under 

skewed data and under various types of queries. Our goal w i l l eventually be to develop a 

standardized testbed or benchmark such that each designer of a new P A M may implement her or his 

method and run i t against this benchmark. Such a performance comparison of PAMs wi l l be the 

fundamentals of automatic physical database design tools that would choose a physical schema and 

then monitor the performance of the schema making changes as necessary. 

Now, considering new applications such as Computer Aided Design/Computer Integrated 

Manufacturing ( C A D / C I M ) , image processing and geographic or environmental information 

systems, PAMs are not sufficient. In particular, new access methods are necessary for the 

organization of multidimensional spatial objects, like rectangles, polygons etc. We call these 

methods spatial access methods (SAMs). Additionally, queries asking for spatial objects seem to be 

more complex than queries asking for points. For instance a typical spatial query is the point query: 

Given a point, find all spatial objects that contain the point. 

The significance of efficient PAMs is underligned by the following facts. In [SK 88] we have 

shown that known SAMs for simple spatial objects (rectangles, intervals, etc.) are based on an 

underlying P A M using one o f the following three techniques: clipping, overlapping regions and 

transformation. The better the underlying P A M , the better w i l l be the performance of the resulting 

S A M . The distribution of objects which the underlying P A M handles is in almost all spatial 

applications nonuniform and strongly correlated; extremely correlated i f the technique of 

transformation is used. As an underlying P A M we used in [SK 88] the most efficient 

multidimensional dynamic hashing scheme (MDH) without directory which is PLOP-Hashing [KS 

88], mainly because it supports a nice adaption of the three different techniques. In this paper, we 
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w i l l compare in part I I the R-Tree, PLOP-Hashing, the B A N G file and the B U D D Y hash tree, all 

storing rectangles. 

This paper is organized as follows. Part I deals with PAMs and consists of sections 2-5. In section 

2 we w i l l give a survey and classification of existing PAMs and we w i l l justify our selection of 

PAMs for the performance comparison. In the third section we describe how we implemented the 

selected PAMs and we specify the general experimental setup for our comparisons. The result of the 

experiments are reported in section 4. In the following section 5 those results are interpreted. 

Furthermore, from the attempt to explain bad performance of the different PAMs, suggestions for 

improvements for most PAMs are made. Part I I compares SAMs for rectangles and covers sections 

6-8. In section 6 a brief survey and classification of existing SAMs for rectangles is presented. In 

the fol lowing section 7, we describe our general experimental setup and the selected SAMs. The 

results of the experiments are then reported in section 8. Section 9 concludes the paper. 

Part I: Performance comparison of multidimensional point access 
methods (PAMs) 

2. Classification and selection of PAMs 

Even for someone working in this area, it is difficult to keep track of all multidimensional PAMs 

suggested until today. Most important for the performance of a multidimensional P A M under 

arbitrary (nonuniform correlated) data is the partitioning process, how the P A M adapts to the 

particular data distribution. Therefore, we w i l l present a classification of existing multidimensional 

PAMs according to the way they partition the d-dimensional data space D . In the following 

classification we w i l l not consider PAMs based on binary trees, such as kd-trees, since they are not 

suitable for the organization of data in secondary storage. Furthermore, we w i l l omit variants of 

multidimensional Β-trees [ K r i 84] from our classification, because they cluster data according to a 

lexicographical ordering, instead of according to proximity in data space. 

The basic principle of all multidimensional PAMs is to partition the data space into page regions, 

shortly regions, such that all records in one region are stored in one and the same data page. We wi l l 

classify according to the following three properties of regions: the regions are pairwise disjoint or 

not, the regions are rectangular or not and the partition into regions is complete or not, i.e. the union 

of all regions spans the complete data space or not. Obviously, this classification yields six classes, 

four of which are filled with known PAMs. 
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class 
property 

P A M class 
rectangular complete disjoint 

P A M 

(CI) X X X 

interpolation hashing [Bur 83], MOLHPE [KS 86], 
quantile hashing [KS 87], PLOP-hashing [KS 88], 
k-d-B tree [Rob 81], multidimensional extendible 
hashing [Tarn 82,Oto 84], balanced multidimensional 
extendible hash tree [Oto 86], grid file [NHS 84], 
2-level grid file [Hin 85], interpolation-based 
grid file [Ouk 85] 

(C2) X X twin grid tile [HSW 88] 

(C3) X X buddy hash tree [SFK 89], multilevel grid file [WK 85] 

(C4) X X 
B+-tree with z-order [OM 84], BANG file [Fre 87], 
hB-tree [LS 89] 

Table 1 : Classification of multidimensional PAMs. 

As mentioned before our goal is to find PAMs with a good overall performance under nonuniform 

correlated data. Since it was not feasible to implement and compare all of the structures in the above 

classification, we selected the following 4 PAMs for implementation and comparison: the 2-level 

grid file, the B A N G file, the hB-tree and the buddy hash tree. Before describing the selected PAMs 

in more detail, we w i l l justify why we restricted our comparison to these four structures. 

Considering class C 1, the most promising structures definitely are the interpolation-based grid file 

and the balanced multidimensional extendible hash tree. However, both structures can be obtained as 

a special case of the buddy hash tree by restricting the properties of the regions. Therefore these two 

PAMs need not to be implemented. We do not include the best multidimensional dynamic hashing 

scheme without directory, PLOP hashing, since it is efficient only for weakly correlated data, but not 

for strongly correlated data. From class C 1 we selected the 2-level grid file because it is generally 

accepted to be "the measuring stick" and because its efficient Modula-2 implementation by Klaus 

Hinrichs [Hin 85] was available to us which we thankfully acknowledge. 

From class C 4 we omitted the B +-tree storing z-values from our comparison, because both 

implemented PAMs, the B A N G file and the hB-tree are improvements of the basic B +-tree storing 

z-values. We decided to implement the buddy hash tree (class C 3) due to its non-complete partition 

of the data space thus avoiding to partition empty data space. Since the concept of the twin grid file 

(class C 2) of organizing two dependent grid files at the same time is generally applicable to any 

P A M , we did not include it in our comparison. It might be worth investigating the application of this 

principle to the winners of our comparison. 

In the following, we w i l l present a short description of the selected PAMs. This description is 
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slightly longer in case of the latest P A M , the buddy hash tree, since its paper might not be readily 

available. 

The 2-level grid file was first suggested in the original grid file publication [NHS 84] and then 

described in detail and implemented in [Hin 85]. The basic idea is to manage the grid directory with 

another grid file. This 1 st level grid directory is a scaled-down version of the original grid directory 

in which the limit of resolution is significantly coarser. Since the 2nd level grid files are independent 

from each other, this 2-level approach supports a better adaption to nonuniform distributions than the 

original 1-level grid file. However, the 1st level grid directory still grows superlinearly, just starting 

its superlinear growth later. Let us emphasize that the regions in the 2-level grid file are rectangular. 

In order to adapt to the clustering of points in the data space, Freeston has suggested the BANG 

file (Balanced and Nested Grid file) [Fre 87] using the concept of nested regions. As in the 2-level 

grid file the data space is partitioned by rectangular shaped basic regions. However, contrary to the 

2-level grid file, regions may be formed from these basic regions using the difference operation. The 

difference operation is applied to nondisjoint basic regions where one of them completely contains 

the others. Thus this operation supports a process of nesting which produces non-rectangular shaped 

logical regions. This process of nesting is applied to data pages and equivalently to directory pages. 

Obviously the motivation of the BANG file was a graceful adaption to object distributions where 

almost all of the data occurs in a few relatively small cluster points. 

Conceptually similar to the B A N G file, the hB-tree (holey brick tree) [LS 89] allows 

non-rectangular shaped regions on the level of data pages and more important on the level of 

directory pages. Contrary to the B A N G file, such a region is generated by union of rectangular 

shaped basic regions. This potentially more efficient constructive method (versus the descriptive 

method in the B A N G file), however, trades in again one of the basic disadvantages o f the 2-level 

grid file: a logical region may need more than one directory entry. 

Both, the B A N G file and the hB-tree use a balanced search tree structure for the directory. The 

B A N G file directory organizes a hash-based partition of the data space, whereas the hB-tree uses a 

kd-tree-type node organization in the directory, to reflect a median-based partitioning. Thus the 

B A N G file is a hashing scheme with a tree-structured directory, hash tree for short, organizing the 

embedding data space, whereas the hB-tree is a search tree, organizing the specific set of data. To be 

precise, the hB-tree is actually a search graph due to its duplicate directory entries. 

For none of the two structures a deletion algorithm has been specified. From our experience having 

implemented both of them, we believe that an efficient deletion algorithm w i l l be especially hard to 

design for the hB-tree. 

A l l existing PAMs including the 2-level grid file, the B A N G file and the hB-tree have the following 

property in common: they partition the complete data space. More exactly, the union of all 

partitioning blocks spans the complete data space. Consequently empty data space is partitioned, 
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even i f i t is partitioned efficiently as in the case of the B A N G file. 

The goal of the buddy hash tree [SFK 89] is not to partition empty data space at all, even more, to 

partition the data space into nearly minimal bounding rectangles o f objects. As the name says, it is, 

similar to the B A N G file, a dynamic hashing scheme with a tree-structured directory where the 

leaves of the directory point to the data pages. A (page) node of the directory contains a list of entries 

(R, P) where R Q D is a d-dimensional rectangle in the data space D and Ρ is a pointer to a subtree 

containing all points (records) in R. R is the minimal bounding rectangle of the points and 

subrectangles obtained by recursive hairing of the data space. The partitioning hyperplanes are 

parallel to the axis of the data space. 

Consider an entry (R, P) in a directory node where Ρ refers to a son ((S^ Pj), (S k , P k )), 

k > 1. Then the following two conditions are fulfilled: 

(i) S i n S j = 0 V i e j € { 1, ... k } , i 9ft j 

k 
(ii) U Sj c R 

i= 1 

Condition (ii) implies the important property of the buddy hash tree that it does not have to partition 

the complete data space. Together with the concept of minimal bounding rectangles condition (ii) 

implies that empty data space is not partitioned at all. Conditions (i) and (i i) have already been 

incorporated in the multilevel grid file [ W K 85]. However, additionally to the multilevel grid file the 

buddy hashtree exhibits the following performance improving properties: 

(1) Each directory node contains at least two entries. 

(2) A n overfilled page (data page or directory page) is always split in a minimal way i.e. the 

"minimal bounding rectangle property" is not destroyed by page splitting. 

(3) Except for the root of the directory, there is exactly one pointer referring to each directory 

page. 

(4) Let (R, P) be an entry in a leaf of the directory, i.e. Ρ points to a data page. Then there may 

exist other pointers P 1 ? . . . P k , and accordingly directory entries (Rj , Pj) , ... (R k , P k ) , 

k > 1, i f f 

(a) the rectangle R contains less than b/2 records (points), where b is the capacity of a 

directory page 

(b) the entries (Rv P{)A < i < k, are accomodated in the same leaf of the directory as (R, P). 

The balanced multidimensional extendible hash tree and the multilevel grid file are artificially 

balanced by allowing one entry in a directory page. Due to property (1) the buddy hash tree shortens 

paths by omitting directory pages with one entry. Thus the buddy hash tree is not balanced, i.e. the 

leaves of the directory may be on different levels of the tree. We would like to emphasize that this is 

a performance improvement for all operations (queries and updates) compared to the balanced 
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competitors of the buddy hash tree. An important performance measure for a tree-structured 

directory is the maximum height of the directory. The maximum height h m a x of the buddy hash tree 

is: 
( η λ w — log2 b 

h m a x < l o g b / 2 {-ςγ2 ~ W J + b ' w n e r e : n is the number of records 

b is the capacity of a directory page 

I D I = 2 W 

Obviously , {-ςη-^ ~ W J <K n a n c * g < ^ * s fulfilled for most applications. 

Property (2) guarantees that for answering queries no pages are accessed and searched which do 

not contain an answer. Properties (1) and (3) imply that the directory grows linearly in the number of 

records under all circumstances. Property (4) results in a high storage utilization. However, the most 

important of these properties is property (2), the minimal bounding rectangle property which avoids 

partitioning empty data space. 

Implementation specific details as well as the general experimental setup for our comparisons are 

described in the next section. 

3. Experimental setup 

We ran the performance comparisons on SUN workstations (3/50 and 3/60) under U N I X using 

Modula-2 implementations of the selected PAMs. We w i l l first describe in more detail how we 

implemented these PAMs. 

As mentioned before, there exists an efficient fine-tuned and well-tested Modula-2 implementation 

of the 2-level grid file [Hin 85], in the following tables and figures abbreviated by GRID. We are 

thankful to Klaus Hinrichs for making this implementation available to us. Since we use GRID as a 

measiring stick for the other PAMs, we w i l l standardize the number of page accesses for range 

queries and partial match queries of GRID to 100 % for the sake of an easier comparability. 

Cortrary to the 2-level grid file, the B A N G file implementation is not publicly available from the 

ECRC, Munich, West Germany (European Computer-Indus try Research Centre). Thus we had to 

implement the B A N G file, in the following comparisons abbreviated by B A N G , on our own. In 

[Fre Ώ] the search path in an exact match query may be longer than the height of the tree. This 

resulis in a performance penalty particularly for range queries with small volume. This phenomenon 

is caised by the fact that the original B A N G file suggestion does not fulf i l l the so-called "spanning 

property" which requires each directory node and thus each region to be completely spanned by its 

entries. Our implementation is according to the original B A N G file concept [Fre 87] and does not yet 

include the spanning property. We are presently incorporating this spanning property in our 
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implementation and we w i l l investigate the potential improvement. Furthermore, we are presently 

extending our implementation from fixed-length to variable-length directory entries which is 

incorporated in B A N G * . 

When we decided in September 1988 to include the hB-tree in our comparison of PAMs, no 

implementation was available. Our implementation of the hB-tree, denoted H B in the following 

figures and tables, gracefully follows the specification in [LS 89]. Addit ionally, we have 

implemented an optimized choice of the split axis which minimizes the margins of the regions in 

order to improve range query performance. 

Obviously we had to implement the buddy hash tree [SFK 89] on our own. The implementation of 

the directory is very general, i.e. it is prepared to support a neighbor system. Since we decided for a 

special case of the neighbor system, the buddy system, there is room for improvement in the 

directory implementation which may easily result in an increase of the average branching factor of at 

least 40 %. To be fully dynamic we have incorporated a deadlock algorithm which contrary to the 

2-level grid file is not a "must" in the buddy hash tree. Underfilled regions of highly varying sizes 

may not be merged in the original buddy hash tree because only rectangular regions are permissible. 

Thus it is possible to pack (merge) data pages such that the pointers to those data pages originate 

from one and the same directory page. For the sake of avoiding an unlimited number of indirect 

splits we have restricted "packing" to data pages. We have implemented the unpacked version, 

abbreviated by B U D D Y in the comparison, and we have generated the packed version, called 

BUDDY"*", by computation and simulation from the B U D D Y implementation. 

In order to compare the performance of the PAMs, we generated seven 2-dimensional datafiles 

( F l ) - (F7) where ( F l ) - (F6) consists of 100 000 records without duplicates. (F7) consists of real 

cartography data and actually contains 81 549 records without duplicates. We consider records 

whose keys are in the unitcube [0,1) d , since some of the PAMs require this. In the following, 

N(m,v) denotes a Gaussian distribution with mean value m and variance v. Below we wi l l give a 

specification of the data files (F l ) - (F7) which are additionally depicted in figure 3.1: 

( F l ) "Diagonal" : 

The records follow a uniform distribution on the main diagonal. 

(F2) "Sinus Distribution" : 

The records follow a sinus curve, more precisely the x-values are uniformly distributed and 

the y-values follow a Gaussian distribution with mean value sin(x) and variance 0.1. 

(F3) "Bit Distribution" : 

The records follow a bit distribution bit(z) with parameter z, 0 < ζ < 1. Each key component 

Κ can be represented as a bitstring (b 1 ? b 2 , . . . ) , where 
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K = X b j - 2 -
"J 

The key component Κ follows a bit distribution bit(z) with parameter z, i f for any j , the bit 

bj satisfies Pb(bj =1) = z, where Pb(X) denotes the probability that event X is true. For our 

testfile we have chosen ζ = 0.15. 

,F4) "x-Parallel" : 

the x-values are uniformly distributed and the y-values follow an N(0.5,0.01) distribution. 

(F5) "Cluster Points" : 

The records follow a 2-dimensional independent Gaussian distribution with variance 0.05 

(in x- and y-direction) around the centers of the cluster points as mean values and the 

records are inserted finishing one cluster point before starting the next. 

(F6) "Uniform Distribution" : 

The records follow a 2-dimensional independent uniform distribution. Since there is no 

need, this distribution is not depicted in figure 3.1. 

(F7) "Real Data" : 

Consists of real cartography data representing the elevation lines in a "rolling-hill-type" area 

in the Sauerland, West Germany. The points are obtained as interpolation points of the 

elevation lines. Since the data is originally stored in a quad-tree, i t is inserted in a sorted 

sequence which is due to the partitioning sequence of the quad-tree. We thankfully 

acknowledge receiving this data from the Landesvermessungsamt NRW, Bonn, West 

Germany. 

For e;ch of the files ( F l ) - (F7) we generated the following five query files for comparing the 

selectee PAMs: 

(RQ1 20 quadratic range queries with volume 0.1 %, where the center of the square follows a 

uniform distribution. 

(RQ2 20 quadratic range queries with volume 1 %, where the center of the square follows a 

uniform distribution. 

(RQ3 20 quadratic range queries with volume 10 %, where the center of the square follows a 

uniform distribution. 

(PMG) 20 partial match queries where the specified x-value is uniformly distributed and the 

y-value is unspecified. 

(PMG) 20 partial match queries where the specified y-value is uniformly distributed and the 

x-value is unspecified. 

Here ie volume of a range query is the volume of the specified range divided by the volume of the 

data spcte. For these queries we have computed the average number of disk accesses per query 

where ie average is taken over 20 queries. 
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(Fl) Diagonal (F2) Sinus Distribution 

(F5) Cluster Points (F6) Real Data 

Fig. 3.1 : Data - Distributions 
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As mentioned before, for the BANG-f i le and the hB-tree no deletion algorithms have been 

specified. Therefore, for our comparison we only consider the case of the growing file. 

In order to keep the performance comparison manageable (we already had more than 2.7 billion 

insertions), we have chosen the page size for data pages and directory pages to be 512 bytes which 

is at the lower end of realistic page sizes. Using small page sizes, we obtain similar performance 

results as for much larger file sizes, e.g. a doubling of the page size can accomodate an eight times 

higher file size within the same directory height for tree-based directories (BANG, H B , B U D D Y ) . 

We want to emphasize that for the 2-level grid file the 1st level grid directory is always kept in main 

memory whereas for the other methods with their tree-based directories only the root page is main 

memory resident. Since the 1st level grid directory grows superlinearly, this may become infeasible 

(e.g. we had to keep up to 45 directory pages in main memory for only 100 000 records). 

Furthermore, in order to support update operations, in tree-based directories we additionally store 

the last accessed search path in a buffer and analogously for the 2-level grid file the last two accessed 

pages. Naturally this buffer for the search path is dynamically growing and shrinking according to 

the height of the tree. 

Summarizing we can state that the performance results in the next section of B A N G , HB and 

B U D D Y hold as well for much larger file sizes whereas GRID w i l l perform worse for larger file 

sizes due to its superlinear growth of the 1st level directory for nonuniform distributions. 

4. Results of the experiments 

As mentioned before, for the query types (RQ1) - (RQ3) and (PMQ1), (PMQ2) we w i l l report the 

average number o f disk accesses per query in the fol lowing tables. For the sake of an easier 

comparability, we have standardized the average number of page accesses for these queries in GRID 

to 100 %. Under the considerations of real-life applications and robustness, we have further 

visualized our results for the datafiles "Real Data", "Cluster" and "Diagonal". 

During and after building up each datafile from empty, the following parameters were measured: 

1. the storage utilization, denoted by stor. 

2. the ratio of directory pages to data pages, denoted by dir/data. 

3. the average number o f disk accesses for an insertion (read and write) averaged over all 100000 

or 81 549 insertions, denoted by insert. 

4. the height of the directory after completely building up the file, denoted by h. 

The results of the experiments are reported in the following figures and tables: 
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Real Data 

x-spec. partial query y-spec. partial query 
(100% - 45 3 disk accesses ) (100% - 67 6 disk a c c e s s e s ) 

Diagonal 
0.1 % range query 1.0 % range query 10 % range query 

HB B A N G G R I D B U D D Y B U D D Y + KB B A N G G R I D B U D D Y B U D D Y + m B A N G G R I D B U D D Y B U D D Y + 

x-spec. partial query y-spec. partial query 

HB BANG G R I D B U D D Y B U D D Y + HB BANG G R I D BUDDY BUDDY"*" 



101 

Cluster Points 
0.1 % range query 1.0 % range query 10 % range query 

(100% - 5.7 disk a c c e s s e s ) (100% - 6.7 disk a c c e s s e s ) ( 100% - 285.2 disk a c c e s s e s ) 

tmm, 

HB B A N G G R I D B U D D Y B U D D Y + HB B A N G G R I D B U D D Y B U D D Y + HB B A N G G R I D B U D D Y B U D D Y + 

x-spec. partial query 
: 24 6 disk accesses) 

y-spec. partial query 
(100% = 27 4 disk accesses) 

1 0 0 -
s t o r d i r / d a t a i n s e r t h 

HB 69.2 3.88 2.78 3 

B A N G 68.8 2.30 2.56 3 

G R I D 62.1 2.24 2.44 2 

B U D D Y 67.1 4.00 2.66 3 

BUDDY"* 71.5 4.25 3 

HB BANG G R I D BUDDY BUDDY + HB BANG G R I D BUDDY B U D D Y + 

Uniform Distribution 
range query partial query 

s t o r d i r / d a t a i n s e r t h 
0 . 1 % 1 . 0 % 1 0 % x - s p e c y - s p e c 

s t o r d i r / d a t a i n s e r t 

HB 1 1 3 . 3 1 0 4 . 3 1 0 3 . 9 1 3 7 . 3 92.7 6 9 . 9 3 . 5 3 3 . 2 9 3 

BANG 1 1 3 . 9 1 0 5 . 8 101 .9 1 10 .6 1 0 3 . 5 70 .1 2 . 3 5 3 . 0 6 3 

GRID 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 0 . 2 1 .12 2 . 9 0 2 

BUDDY 101 .7 1 0 2 . 7 1 0 1 . 2 1 0 8 . 3 1 0 0 . 0 7 0 . 2 2 . 2 8 3 . 1 9 2 

BUDDY+ 101 .2 1 0 0 . 5 96.8 1 0 7 . 4 99.6 7 4 . 5 2 . 4 2 2 



Sinus Distribution 
range query partial query 

s t o r d i r / d a t a i n s e r t h 
0 . 1 % 1 . 0 % 1 0 % x - s p e c . y - s p e c . 

s t o r d i r / d a t a i n s e r t 

HB 105.4 103.4 100.2 121.2 97.5 69.1 3.77 3.29 3 

BANG 139.2 109.5 100.1 1 11.9 107.3 69.6 2.33 2.95 3 

GRID 100.0 100.0 100.0 100.0 100.0 68.2 1 .67 2.97 2 

BUDDY 97.1 98.4 98.3 92.2 91.9 68.8 2.10 3.21 2 

B U D D Y 4 96.6 95.1 93.8 89.8 90.3 72.9 2.22 2 

Bit Distribution 
range query partial query 

s t o r d i r / d a t a i n s e r t h 
0 . 1 % 1 .0% 1 0 % x - s p e c . y - s p e c . 

s t o r d i r / d a t a i n s e r t 

HB 77.1 61.2 59.2 52.7 50.8 69.5 3.72 3.28 3 

BANG 145.0 84.3 64.0 44.8 64.5 67.3 2.42 2.96 3 

GRID 100.0 100.0 100.0 100.0 100.0 42.4 2.75 3.03 2 

BUDDY 1 15.6 105.6 99.2 48.4 69.7 43.0 5.10 3.62 3 

BUDDY"4" 105.5 89.6 67.5 46.1 66.5 71 .0 8.42 3 

x-Parallel 
range query partial query 

s t o r d i r / d a t a i n s e r t h 
0 . 1 % 1 . 0 % 1 0% x - s p e c . y - s p e c . 

s t o r d i r / d a t a i n s e r t 

HB 94.9 89.2 91.1 132.4 59.6 69.6 3.62 3.29 3 

BANG 126.5 100.1 95.8 83.6 114.7 65.4 2.19 3.03 3 

GRID 100.0 100.0 100.0 100.0 100.0 62.9 3.77 3.01 2 

BUDDY 74.5 83.1 92.3 72.8 50.4 67.2 2.45 3.21 2 

BUDDY"1" 72.4 78.5 87.3 72.6 50.0 71 .1 2.60 2 
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5. Interpretation of the results 

Obviously, a physical database designer or a user of a database system can select from the above 

distribution mix those distributions which are typical and representative in his application. He w i l l 

then choose the winner in those typical distributions. As a decision support for someone aiming for 

robustness and good average performance we present the following table 5.1. As mentioned before, 

our B A N G file implementation incorporates fixed-length directory entries. For curiosity and as 

originally intended, we have generated a variable-length version, called B A N G * , by simulation from 

the B A N G implementation. We w i l l only present the averaged results of B A N G * in the following 

two tables 5.1 and 5.2. 

In table 5.1 for the parameters stor and insert we computed the unweighted average over all seven 

distributions (datafiles). As an indicator for the average query performance we present the parameter 

query average which is averaged (unweighted) over all five query types for each distribution and 

then averaged over all seven distributions. The goal of this indicator is to help make things more 

clear, at first glance; however, we are aware that such an average implies a loss of information. The 

loss of information is considerably less in table 5.2 where the parameter query is displayed for each 

distribution as an average over all five types of queries. 

query 
averaqe s t o r i n s e r t 

H B 1 1 0 . 9 6 8 . 6 2 . 8 0 

B A N G 1 0 2 . 6 6 7 . 9 2 . 4 3 

B A N G * 9 5 . 8 6 7 . 9 2 . 4 9 

G R I D 1 0 0 . 0 5 8 . 3 2 . 5 6 

B U D D Y 8 0 . 2 6 4 . 9 2 . 7 8 

B U D D Y * 7 6 . 6 7 2 . 5 

Table 5.1: unweighted average over all 7 distributions 

uniform s inus bit x - p a r . real data diagonal c luster 

H B 1 1 0 . 3 1 0 5 . 5 60.2 93.4 1 2 7 . 4 1 0 5 . 0 1 7 4 . 2 

B A N G 1 0 7 . 1 1 1 3 . 6 80:5 1 0 4 . 1 1 3 5 . 0 78.4 99.4 

B A N G * 1 0 0 . 2 1 0 8 . 0 72.8 99.8 1 3 1 . 8 68.2 90.1 

G R I D 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 

B U D D Y 1 0 2 . 8 95.6 87.7 74.6 99.4 28.4 73.0 

B U D D Y " 1 0 1 . 1 93.1 75.0 72.2 97.6 27.8 69.2 

Table 5.2 : unweighted average over all 5 types of queries depending on the distribution 
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In the following, we w i l l discuss the performance of each P A M in the sequence in which they 

appear in the tables focussing on the average over the 5 types of queries. 

Considering the indicator query average, HB would be the looser. However, this simple approach 

is not fair. For the bit distribution HB clearly outperforms its competitors and for the x-parallel HB 

closely follows B U D D Y and BUDDY" 1". This good performance for the bit distribution is a 

consequence of the median-based partitioning, whereas the performance for the x-parallel profits 

from the additional feature of the minimized margins of the regions which was not an ingredient in 

the original specification [LS 89], but was incorporated in our implementation. For all other 

distributions (Real Data, Diagonal, Cluster, Sinus Distribution and Uniform Distribution) the 

average over all 5 types of queries is clearly worse than the 100 % value of GRID. More 

specifically, for Cluster, Diagonal and Uniform Distribution HB is the extreme looser in average 

query performance with values up to 272 %. Thus HB does not guarantee robustness. Although 

H B is the only P A M incorporating the efficient median-partitioning, it suffers from the following 

severe disadvantages: 

(i) the height of the directory is in most experiments one more than in the other PAMs. 

(ii) considering the partitions of HB for all distributions we observe that H B often partitions 

empty data space with unnecessarily fine granularity. 

(iii) the directory may contain duplicate entries in two respects: 

(a) the father of a directory node may contain subtrees of its sons 

(b) different directory entries may point to one and the same page (directory or data pages). 

From the above it follows that the hB-tree is actually a graph. We believe that the only way to 

improve H B is to incorporate the concept of not partitioning empty data space. Wi th this and the 

median partition it might become very competitive. 

As mentioned before, the GRID implementation [Hin 85] always keeps the 1st level grid directory 

in main memory whereas for the other PAMs only the root page of the directory is main memory 

resident. Since it was crucial to change the GRID implementation to allowing only one root page of 

the directory in main memory, we accepted that the relative ranking of GRID, our 100 % measuring 

stick, is too good in comparison to the other structures. To clarify this: for the Diagonal Distribution 

the 1st level grid directory needed 45 directory pages in main memory, which is sufficient for 

B A N G , B A N G * , B U D D Y and BUDDY 4 " to keep the complete directory in main memory. Thus the 

rating of GRID in a comparable environment would be considerably worse. With the available 

implementation, GRID outperforms its competitors for uniform distribution as expected. I f we 

exclude HB from our considerations it performs considerably worse than B A N G and BUDDY for 

Diagonal, Bi t Distribution and Cluster. Our comparisons show that GRID is not robust against 

arbitrary data. 

Considering B A N G and B A N G * for the indicator query average, the concept of nested regions 
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seems not to imply any improvement over GRID. However, B A N G and B A N G * turn out to be 

more robust towards ugly distributions than HB and especially GRID are. Looking more closely at 

the different queries, we realize that B A N G performs very poorly for small range queries. This is a 

direct consequence of the not incorporated "spanning property" and w i l l be improved by its 

implementation. A further disadvantage in robustness of B A N G is the fact that different sequences 

of insertions imply different partitions. In particular sorted insertions seem to result in low storage 

utilization and poor retrieval performance. 

For distributions where large portions of empty data space occur, i.e. x-Parallel, Diagonal, Sinus 

Distribution and Cluster Points, B A N G and B A N G * perform considerably worse than B U D D Y . 

Looking at the ingredients of both PAMs it follows that incorporating an adapted concept of 

minimizing regions into BANG wi l l improve the retrieval performance to some extent. 

However, a consequent minimization of regions w i l l lead to an incomplete partition of the 

dataspace, i.e. not partitioning empty data space, and thus to the most performance-important 

ingredient of BUDDY. 

Considering the indicator query average, B U D D Y and BUDDY 4 " offer themselves to be the 

winners of our comparison. It is interesting to observe that B U D D Y does not fulf i l l the often cited 

rule "best storage utilization - best query performance". Even the improvement in storage utilization 

of B U D D Y 4 " over B U D D Y is not adequately reflected in the improvement of the retrieval 

performance. As mentioned before, we have to take a closer look at the different distributions. The 

only distributions where B U D D Y and BUDDY 4 " are not the winners are the Uniform and the Bit 

Distributions, see table 5.2. According to [SFK 89], the Bit Distribution bit(z), 0 < ζ < 1, is the 

worst case distribution for B U D D Y and BUDDY 4 " when ζ approaches 0. Even for its worst case 

distribution B U D D Y 4 " is 3rd winner for the average query performance. This underlines the 

robustness of the structure. By the way, the motivation for the design of BUDDY 4 " to improve the 

storage utilization stems from exactly this pathological distribution. For Uniform Distribution 

B U D D Y and BUDDY 4 " are within a 3 % margin of GRID, the winner. This is surprising for a 

scheme designed for nonuniform data incorporating the complex structural concept of not 

partitioning empty data space. 

In all distributions, with the exeption of the Uniform and Bit Distribution, B U D D Y and BUDDY 4 " 

are the clear winners in the average query performance and BUDDY 4 " wins in the storage utilization 

with more than 71 %. B U D D Y and BUDDY 4 " clearly outperform their competitors i f at least one of 

the following two data characteristics occur: 

(CI ) densely populated and unpopulated areas vary over the data space, 

(C2) sorted data is inserted. 

Sorted insertions frequently occur in real-life applications, either sorted by some local ordering 

. such as clusters or quadrants or by lexicographical ordering. 
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Whereas other PAMs suffer from characteristics (CI ) and/or (C2), B U D D Y and BUDDY+ behave 

robust, see distributions "Diagonal" and "Cluster Points". 

Part I I : Performance comparison of spatial access methods (SAMs) 

6. Classification and selection of SAMs 

Even for someone working in this area, it is difficult to keep track of all SAMs suggested until 

today, because every multidimensional P A M can easily be extended to a S A M using the techniques 

of clipping, overlapping regions and transformation. 

In this section we w i l l provide an overview of spatial access methods which are based on the 

approximation of a complex spatial object by the minimal bounding rectangle (MBR) with the sides 

of the rectangle parallel to the axes of the data space. The most important property of this simple 

approximation is that a complex object is represented by a limited number of bytes. Although a lot 

of information is lost, MBRs of spatial objects preserve the most essential geometric properties of 

the object, i.e. the location of the object and the extension of the object in each axis. We do not 

consider more complex approximations of spatial objects such as the cell-tree [Giin 89] in this paper. 

SAMs organizing minimal bounding rectangles of objects can be classified into three groups. Each 

of these groups is characterized by a special technique that allows an extension of a multidimensional 

point access method (PAM) to a multidimensional S A M . Thus the performance o f such SAMs 

depends on the underlying P A M and depends on the applied technique. 

In the following we give a short describtion of the several techniques of extending PAMs to SAMs. 

The interest reader can find these techniques explained in more detail in [SK 88] 

Cl ipp ing 

Clipping can easily be explained by describing the insertion of a new rectangle. Assuming a 

partition of the data space into disjoint regions, an insertion of a rectangle w i l l be performed like an 

insertion of a point. Problems w i l l only occur, i f a rectangle R intersects with more than one disjoint 

region. Clipping of a rectangle means that R is partitioned into a minimal set of rectangles (R 1 , 

RQ}, where 

R = u R\ q > 1 

i=i 

Every rectangle R1, 1< i < q, intersects with exactly one disjoint region. Now we can insert 

these q rectangles R 1 , R q into the file. 
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Overlapping regions 

Such as clipping, overlapping region schemes (OR-schemes) organize d-dimensional rectangles 

using a d-dimensional P A M . For the following considerations we define the region of a bucket as 

the minimal bounding box of the rectangles belonging to the bucket. Contrary to clipping, 

OR-schemes allow data buckets where the corresponding regions have a common overlap. We w i l l 

discuss the principle of OR-schemes by a brief summmary of the concepts of the R-tree [Gut 84], 

one of the most popular SAMs. 

The R-tree is a balanced tree generalizing the B+-tree concept [Com 79] to spatial objects. Storage 

utilization is guaranteed to be above 50 %. Minimal bounding rectangles of spatial objects are stored 

in the leaves of the tree, where each of the leaves corresponds to a data bucket. In an inner node of 

the tree there are tuples (R, p), where ρ is a pointer referring to a son and R is the minimal bounding 

rectangle of all rectangles in the corresponding son. Since clipping of rectangles is avoided, a 

rectangle is stored in exactly one of the data blocks. Thus overlapping regions of different data 

blocks are allowed for the organization of spatial objects. 

The advantage of OR-schemes is that storage utilization depends only on the underlying P A M , 

since every rectangle is uniquely represented in the file. Thus the B+-tree inherits the guarantee of at 

least 50 % storage utilization to the R-tree. Another nice property is that, in analogy to clipping 

methods, d-dim. points and d-dim. rectangles can be organized together in one file. However, 

retrieval performance heavily depends on the amount of overlap, as shown in [SFR 87]. 

Transformation 

The basic idea of transformation-schemes (T-schemes) is to represent minimal bounding rectangles 

of multidimensional spatial objects by higher dimensional points. For instance, a 2-dimensional 

rectangle R wi th sides parallel to the axis is represented by a 4-dimensional point (center 

representation) 

( c 1 , c 2 , e 1 , e 2 ) 

where c = ( q , c 2 ) e [0,1) 2 is the center of the rectangle and e = ( e 1 } e 2) e [0,0.5) 2 is the distance 

o f the center to the sides of the rectangle. As proposed by Nievergelt and Hinrichs [ N H 85], these 

4-dimensional points can be organized by the grid file [NHS 84] , generally speaking by a 

multidimensional PAM. 

Another choice of parameters is the corner representation, where a 2-dim. rectangle can be 

represented by its lower left comer ( l j , 12) € [0,1) 2 and its upper right corner Uj e [ l j , l ) 2 , l j= l ,2 . 

However, the choice of the parameters can influence performance and characteristics of the SAM. 



108 

7.Experimental setup 

We ran the performance comparisons on SUN workstations (3/50 and 3/60) under U N I X using 

Modula-2 implementations of the selected SAMs. 

Not much has to be said with respect to the selection and the implementation of the SAMs. The 

measuring stick in our comparison is the R-tree. Our implementation of the R-tree gracefully follows 

the specification of the R-tree in [Gut 84]. According to Diane Greene's [Gre 89] implementation we 

chose at first a minimum storage utilaization of 50%, but our tests showed that the R-tree exhibits 

best retrieval performance for a minimum storage utilization of 30%. The "measuring stick role" of 

the R-tree is particulary justified because it basically wins the performance comparison by Diane 

Greene [Gre 89]. The obvious competitors are the two best PAMs in our comparison of PAMs, 

B U D D Y and B A N G . 

Using the technique of transformation with corner representation we extended both our B A N G 

and our B U D D Y implementation to SAMs. To be precise, we used the B A N G * implementation for 

rectangles, but for the sake of simplicity we w i l l denote it by B A N G . Which is the more efficient 

representation to use with transformation, the corner or the center representation? In order to answer 

this question Bernhard Seeger experimentally compared both representaions for B U D D Y in his PhD 

thesis [See 89] for different types of queries and different distributions of rectangles. Simply 

speaking the corner representation yields approximately half the number of page accesses of the 

center representation. The basic reason is that for the corner representation the limits of the query 

ranges (areas) are parallel to the partitioning lines of B U D D Y (and BANG) and thus the margin of 

the query range intersects fewer partitioning blocks than for the center representation. Now we have 

to make a statement with respect to the P A M versions of B U D D Y and B A N G on which we applied 

the corner representation. The B A N G version was more refined than in our P A M comparison, 

already incorporating the spanning algorithm, whereas the B U D D Y version was the first version, 

even without packing. Thus the results of B U D D Y can easily be improved by incorporating packing 

and other refinements whereas BANG leaves practically no more room for improvement. In the final 

version of the paper we w i l l have a refined version of B U D D Y ready for our experiments. 

The last S A M is based on PLOP-Hashing and uses the technique of overlapping regions as 

described in [SK 88] in detail. 

In order to compare the performance of the SAMs, we generated five 2-dimensional datafiles (F l ) -

(F5) consisting of 100 000 rectangles without duplicates. A rectangle is characterized by its center 

and its x- and y-extension from the center. We consider rectangles which are in the unitcube [0,1) 2 , 

since some of the SAMs require this. In the following, N(m,v) denotes a Gaussian distribution with 

mean value m and variance v. Below we w i l l give a specification of the data files ( F l ) - (F5). 

( F l ) "Uniformsmall-Distribution" : 

The centers of the rectangles follow a 2-dimensional independent uniform distribution within 

[0.1) 2 . The extensions in x- and y- direction follow a uniform distribution in [0,0.005]. 
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(F2) " Uniformlarge-DistributionM : 

The centers of the rectangles follow a 2-dimensional independent uniform distribution within 

[0.1) 2.The extensions in x- and y- direction follow a uniform distribution in [0,0.5]. 

(F3) "Gaussiansquare-Distribution" : 

The centers of the rectangles follow a 2-dimensional independent Gaussian distribution 

N(0.5,0.25) in x- and y- direction. The extensions in x- and y- direction follow a uniform 

distribution in [0,0.05]. 

(F4) " Gaussianslim-Distribution" : 

The centers of the rectangles follow a 2-dimensional independent Gaussian distribution 

N(0.5,0.25) in x- and y-direction. The extension in x-direction follows a uniform 

distribution in [0,0.05] and the extension in y-direction follows a uniform distribution in 

[0,0.25]. 

(F5) "Diagonal-Distribution" : 

First we generated two dimensional points which follow a uniform distribution on the main 

diagonal. Then the x- and y-coordinate of these points fol low a Gaussian distribution 

N(0,0.5) .The two dimensional points generated in this way are the centers of the 

rectangles. The extensions in x- and y- direction follow a uniform distribution in [0,0.2]. 

For each of the files (F l ) - (F5) we generated queries of the following four types: 

"rectangle containment": 

Given a d-dim. rectangle E d , find all d-dim. rectangles R in the file with R c S . 

"rectangle enclosure": 

Given a d-dim. rectangle SQ E d , find all d-dim. rectangles R in the file with R Ώ S. 

"rectangle intersection": 

Given a d-dim. rectangle E d , find all d-dim. rectangles R in the file with S n R ^ 0 . 

"point query": 

Given a d-dim. point Ρ e E d , find all d-dim. rectangles R in the file with P e R . 

For each of the files ( F l ) - (F5) we performed 500 queries for each S A M . By definition, each of 

the query types rectangle intersection, rectangle enclosure and rectangle containment uses a query 

rectangle. Therefore we generated 160 query rectangles with uniformly distributed centers for each 

of the three query types. In order to analyze the influence of the query rectangles on the 

performance, we are varying their size and shape. We generate 20 "square shaped" rectangles of 

sizes 0 .1% 0.5%, 1% and 5% where the length of the rectangles is uniformly distributed between 
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1/2 squareroot(size) and 3/2 squareroot(size). Analogously, we generate 20 "slim" rectangles of 

sizes 0 .1%, 0.5%, 1% and 5% where the length of the rectangles is uniformly distributed between 

1/10 squareroot(size) and 19/10 squareroot(size). With these 160 query rectangles we perform the 

three query types rectangle intersection, rectangle enclosure and rectangle containment, thus yielding 

480 queries. The remaining 20 queries are point queries, where the points follow a two dimensional 

independent uniform distribution. 

8. Results of the experiments 

As mentioned before, we w i l l report in the following five tables the average number of disk 

accesses per query for each of the five files ( F l ) - (F5) and the four different query types. 

Qaussian?lim-Pl?trlfrutlQn Vn|fprm3mgH-Pl?trifrutton 

point 
query intersection enclosure containment 

R-Tree 

point 
query intersection enclosure containment 

R-Tree 189.4 472.0 34.8 472.0 
R-Tree 55.9 195.8 15.0 195.8 

B A N G 167.7 401.4 41.7 37.1 
B A N G 52.5 177.1 17.4 61.1 

B U D D Y 159.8 394.9 30.4 34.5 B U D D Y 37.0 162.8 7.2 58.5 

P L O P 273.6 637.3 55.5 637.3 P L O P 41.4 172.9 6.1 172.9 273.6 637.3 55.5 637.3 

Gaus$|an?quar?-P|?tril?Mtl9n Uniformlarae-Distrlbution 

point 
query intersection enclosure containment 

point 
query intersection enclosure containment 

R-Tree 86.5 266.7 14.0 266.7 R-Tree 742.8 988.2 518.7 988.2 
B A N G 68.8 236.3 16.0 68,2 B A N G 388.6 603.8 239.4 20.2 
B U D D Y 57.6 232.6 6.4 65.7 B U D D Y 380.2 593.3 231.2 18.0 

P L O P 97.2 299.2 6.8 299.2 P L O P 783.6 965.4 613.0 965.4 

Diagonal-Distribution 

point 
query intersection enclosure containment 

R-Tree 283.4 568.2 163.7 568.2 
B A N G 187.8 413.3 97.2 25.6 

B U D D Y 187.5 421.0 92.9 22.9 

P L O P 435.2 748.1 245.5 748.1 

Similar as in our P A M comparison we computed the unweighted average over all five files and 

depict in the following table. In order to prevent overweighting of distributions with high number of 

page accesses, such as the Uniformlarge Distribution, we normalized the distributions by replacing 

the absolute values by percentage values where we use the R-tree as a 100% measuring stick. 

Additionally the average storage utilization denoted by stor and the average number of disk accesses 

for an insertion (read and write), averaged over all 100000 insertions when building up the file are 

presented in the following table. 
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point 
query intersection enclosure containment s t o r i n s e r t 

R - T r e e 100.0 100.0 100.0 100.0 67.6 110.3 
BANG 76.1 79.5 91.2 14.3 68.5 2.88 
BUDDY 66.9 77.6 56.5 13.5 65.5 2.92 
P L O P 98.1 113.0 103.4 113.0 61.0 2.74 

After running the experiments for the five files ( F l ) - (F5) and the four different query types we 

became aware that the performance comparison for rectangles is far more complex than the 

comparison for points for the following reasons: 

1. The objects, here rectangles, are more complex than points. Whereas points as zero-size 

objects are determined by their position in dataspace, rectangles are determined by the following 

parameters: position, size, shape (square or long and slim) and degree of overlap. Obviously all 

of these parameters have to be extensively varied in a comparison. 

2. The queries are more complex. One reason is that already the query object which is a rectangle 

in rectangle containment, rectangle enclosure and rectangle intersection is more complex. 

Furthermore, there are additional important operations and queries such as spatial join ("overlay 

two maps") and near neighbor-type queries. 

3. The access methods are more complex. A S A M for rectangles is based on a P A M and uses one 

of the techniques clipping, overlapping regions and transformation. As shown in [SK 88] a 

hybrid method combining two techniques and avoiding their weak points improves performance 

over just using one of the techniques. Questions arise like which technique is best for which 

query type? For example, in our experiments i t turned out that the technique of transformation 

was always best for the rectangle containment query. An additional example for the higher 

complexity of the access methods is the R-tree. Guttman's original design of the R-tree [Gut 84] 

can easily be improved by improving its split condition, e.g. by using Diane Greene's split 

condition [Gre 89]. Even this split condition can still considerably be improved as our 

implementations of Guttman's, Greene's and our own split conditions show. 

From the above reasons it is obvious, that a considerably more extensive comparison for SAMs 

storing rectangles has to be performed. The presently available results indicate that B A N G and 

particularly BUDDY are first choices. 

9. Conclusions 

In our performance comparison of point access methods, we were surprised to see one point 

method to be the clear winner. We had expected a much more complex result depending on the 

'particular data distribution and on the particular query type. Summarizing the outcome of our 

comparisons we can state that the B U D D Y hash tree exhibits an at least 20 % better average query 
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performance than its competitors and, even more important, is more robust under ugly data and 

queries. Looking at the results of the experiments and at the partitions of the data space more closely, 

it turns out that the good performance of the B U D D Y hash tree is not by chance, but is due to the 

concept of not partitioning the complete data space. Thus it might be worthwhile to incorporate this 

performance improving concept into other methods, in particular into the B A N G file. 

From our comparison of spatial access methods for rectangles i t follows that this comparison has to 

be performed with a considerably higher variation of object parameters (position, size, shape and 

degree of overlap), query parameters and techniques (clipping, overlapping regions and 

transformation). The presently available results indicate that B A N G and particularly B U D D Y both 

using transformation are first choices for spatial access methods storing rectangles. 

Further work in this area should deal with performance comparisons of access methods for more 

complex spatial objects, such as polygons, where only very few access methods are known. 

Therefore access methods for complex spatial objects have to be designed and compared with the 

most promising candidate, the cell-tree [Gün 89]. 

As mentioned before this comparison is a first step towards a standardized testbed or benchmark. 

We offer our data and query files to everybody who wants to run his implementation in our testbed. 

At the same time, we are thankful for "hard" datafiles, in particular for "hard" real data. 
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