Skip to main content

Hierarchical spatial data structures

  • Quadtrees
  • Conference paper
  • First Online:
Design and Implementation of Large Spatial Databases (SSD 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 409))

Included in the following conference series:

Abstract

An overview is presented of the use of hierarchical spatial data structures such as the quadtree. They are based on the principle of recursive decomposition. The focus is on the representation of data used in image databases. The emphasis is on two-dimensional regions, points, rectangles, and lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. -D.J. Abel and J.L. Smith, A data structure and algorithm based on a linear key for a rectangle retrieval problem, Computer Vision, Graphics, and Image Processing 24, 1(October 1983), 1–13.

    Google Scholar 

  2. -D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by means of nonminimal division quadtrees and octrees, ACM Transactions on Graphics 4, 1(January 1985), 41–59.

    Article  Google Scholar 

  3. -D.H. Ballard, Strip trees: A hierarchical representation for curves, Communications of the ACM 24, 5(May 1981), 310–321 (see also corrigendum, Communications of the ACM 25, 3(March 1982), 213).

    Article  Google Scholar 

  4. -I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data structure for representing the spatial decomposition of 3-D objects, IEEE Computer Graphics and Applications 5, 4(April 1985), 24–31.

    Google Scholar 

  5. -D. Comer, The Ubiquitous B-tree, ACM Computing Surveys 11, 2(June 1979), 121–137.

    Article  Google Scholar 

  6. -H. Edelsbrunner, Dynamic rectangle intersection searching, Institute for Information Processing Report 47, Technical University of Graz, Graz, Austria, February 1980.

    Google Scholar 

  7. -C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented spatial access methods, Proceedings of the SIGMOD Conference, San Francisco, May 1987, 426–439.

    Google Scholar 

  8. -R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on composite keys, Acta Informatica 4, 1(1974), 1–9.

    Article  Google Scholar 

  9. -H. Freeman, Computer processing of line-drawing images, ACM Computing Surveys 6, 1(March 1974), 57–97.

    Article  Google Scholar 

  10. -K. Fujimura and T.L. Kunii, A hierarchical space indexing method, Proceedings of Computer Graphics'85, Tokyo, 1985, T1–4, 1–14.

    Google Scholar 

  11. -I. Gargantini, An effective way to represent quadtrees, Communications of the ACM 25, 12(December 1982), 905–910.

    Article  Google Scholar 

  12. -O. Günther, Efficient structures for geometric data management, Ph.D. dissertation, UCB/ERL M87/77, Electronics Research Laboratory, College of Engineering, University of California at Berkeley, Berkeley, CA, 1987 (Lecture Notes in Computer Science 337, Springer-Verlag, Berlin, 1988).

    Google Scholar 

  13. -A. Guttman, R-trees: a dynamic index structure for spatial searching, Proceedings of the SIGMOD Conference, Boston, June 1984, 47–57.

    Google Scholar 

  14. -K. Hinrichs, The grid file system: implementation and case studies of applications, Ph.D. dissertation, Institut fur Informatik, ETH, Zurich, Switzerland, 1985.

    Google Scholar 

  15. -K. Hinrichs and J. Nievergelt, The grid file: a data structure designed to support proximity queries on spatial objects, Proceedings of the WG'83 (International Workshop on Graphtheoretic Concepts in Computer Science), M. Nagl and J. Perl, Eds., Trauner Verlag, Linz, Austria, 1983, 100–113.

    Google Scholar 

  16. -S.L. Horowitz and T. Pavlidis, Picture segmentation by a tree traversal algorithm, Journal of the ACM 23, 2(April 1976), 368–388.

    Article  Google Scholar 

  17. -G.M. Hunter, Efficient computation and data structures for graphics, Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Princeton University, Princeton, NJ, 1978.

    Google Scholar 

  18. -G.M. Hunter, Geometrees for interactive visualization of geology: an evaluation, System Science Department, Schlumberger-Doll Research, Ridgefield, CT, 1981.

    Google Scholar 

  19. -G.M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145–153.

    Google Scholar 

  20. -C.L. Jackins and S.L. Tanimoto, Oct-trees and their use in representing three-dimensional objects, Computer Graphics and Image Processing 14, 3(November 1980), 249–270.

    Google Scholar 

  21. -E. Kawaguchi and T. Endo, On a method of binary picture representation and its application to data compression, IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 1(January 1980), 27–35.

    Google Scholar 

  22. -G. Kedem, The Quad-CIF tree: a data structure for hierarchical on-line algorithms, Proceedings of the Nineteenth Design Automation Conference, Las Vegas, June 1982, 352–357.

    Google Scholar 

  23. -A. Klinger, Patterns and Search Statistics, in Optimizing Methods in Statistics, J.S. Rustagi, Ed., Academic Press, New York, 1971, 303–337.

    Google Scholar 

  24. -A. Klinger and C.R. Dyer, Experiments in picture representation using regular decomposition, Computer Graphics and Image Processing 5, 1(March 1976), 68–105.

    Google Scholar 

  25. -A. Klinger and M.L. Rhodes, Organization and access of image data by areas, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 1(January 1979), 50–60.

    Google Scholar 

  26. -M. Li, W.I. Grosky, and R. Jain, Normalized quadtrees with respect to translations, Computer Graphics and Image Processing 20, 1(September 1982), 72–81.

    Article  Google Scholar 

  27. -T. Matsuyama, L.V. Hao, and M. Nagao, A file organization for geographic information systems based on spatial proximity, Computer Vision, Graphics, and Image Processing 26, 3(June 1984), 303–318.

    Google Scholar 

  28. -E.M. McCreight, Efficient algorithms for enumerating intersecting intervals and rectangles, Xerox Palo Alto Research Center Report CSL-80-09, Palo Alto, California, June 1980.

    Google Scholar 

  29. -D. Meagher, Octree encoding: a new technique for the representation, The manipulation, and display of arbitrary 3-d objects by computer, Technical Report IPL-TR-80-111, Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy, New York, October 1980.

    Google Scholar 

  30. -D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Processing 19, 2(June 1982), 129–147.

    Article  Google Scholar 

  31. -G.M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, IBM Ltd., Ottawa, Canada, 1966.

    Google Scholar 

  32. -I. Navazo, Contribució a les tecniques de modelat geometric d'objectes polièdrics usant la codificació amb arbres octals, Ph.D. dissertation, Escola Tecnica Superior d'Enginyers Industrials, Department de Methodes Informatics, Universitat Politechnica de Barcelona, Barcelona, Spain, January 1986.

    Google Scholar 

  33. -R.C. Nelson and H. Samet, A consistent hierarchical representation for vector data, Computer Graphics 20, 4(August 1986), pp. 197–206 (also Proceedings of the SIGGRAPH'86 Conference, Dallas, August 1986).

    Google Scholar 

  34. -J. Nievergelt, H. Hinterberger, and K.C. Sevcik, The grid file: an adaptable, symmetric multikey file structure, ACM Transactions on Database Systems 9, 1(March 1984), 38–71.

    Article  Google Scholar 

  35. -J.A. Orenstein, Multidimensional tries used for associative searching, Information Processing Letters 14, 4(June 1982), 150–157.

    Article  Google Scholar 

  36. -F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  37. -K.M. Quinlan and J.R. Woodwark, A spatially-segmented solids database — justification and design, Proceedings of CAD 82 Conference, Butterworth, Guildford, United Kingdom, 1982, 126–132.

    Google Scholar 

  38. -D.R. Reddy and S. Rubin, Representation of three-dimensional objects, CMU-CS-78-113, Computer Science Department, Carnegie-Mellon University, Pittsburgh, April 1978.

    Google Scholar 

  39. -H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys 16, 2(June 1984), 187–260.

    Article  Google Scholar 

  40. -H. Samet, Hierarchical representations of collections of small rectangles, ACM Computing Surveys 20, 4(December 1988), 271–309.

    Article  Google Scholar 

  41. -H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  42. -H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  43. -H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geographic information system using quadtrees, Pattern Recognition 17, 6 (November/December 1984), 647–656.

    Article  Google Scholar 

  44. -H. Samet, C.A. Shaffer, and R.E. Webber, Digitizing the plane with cells of non-uniform size, Information Processing Letters 24, 6(April 1987), 369–375.

    Article  MathSciNet  Google Scholar 

  45. -H. Samet and R.E. Webber, Storing a collection of polygons using quadtrees, ACM Transactions on Graphics 4, 3(July 1985), 182–222 (also Proceedings of Computer Vision and Pattern Recognition 83, Washington, DC, June 1983, 127–132).

    Article  Google Scholar 

  46. -H. Samet and R.E. Webber, A comparison of the space requirements of multi-dimensional quadtree-based file structures, to appear in The Visual Computer (also University of Maryland Computer Science TR-1711).

    Google Scholar 

  47. -H. Samet and R.E. Webber, Hierarchical data structures and algorithms for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and Applications 8, 3(May 1988), 48–68.

    Article  Google Scholar 

  48. -H. Samet and R.E. Webber, Hierarchical data structures and algorithms for computer graphics. Part II. Applications, IEEE Computer Graphics and Applications 8, 4(July 1988), 59–75.

    Article  Google Scholar 

  49. -T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-tree: a dynamic index for multi-dimensional objects, Computer Science TR-1795, University of Maryland, College Park, MD, February 1987.

    Google Scholar 

  50. -C.A. Shaffer and H. Samet, Optimal quadtree construction algorithms, Computer Vision, Graphics, and Image Processing 37, 3(March 1987), 402–419.

    Google Scholar 

  51. -M. Shneier, Calculations of geometric properties using quadtrees, Computer Graphics and Image Processing 16, 3(July 1981), 296–302.

    Article  Google Scholar 

  52. -M. Shneier, Two hierarchical linear feature representations: edge pyramids and edge quadtrees, Computer Graphics and Image Processing 17, 3(November 1981), 211–224.

    Google Scholar 

  53. -M. Tamminen, The EXCELL method for efficient geometric access to data, Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34, Helsinki, 1981.

    Google Scholar 

  54. — S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture processing, Computer Graphics and Image Processing 4, 2(June 1975), 104–119.

    Google Scholar 

  55. — D.J. Vanderschel, Divided leaf octal trees, Research Note, Schlumberger-Doll Research, Ridgefield, CT, March 1984.

    Google Scholar 

  56. — J.L. Warnock, A hidden surface algorithm for computer generated half tone pictures, Computer Science Department TR 4–15, University of Utah, Salt Lake City, June 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alejandro P. Buchmann Oliver Günther Terence R. Smith Yuan-Fang Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samet, H. (1990). Hierarchical spatial data structures. In: Buchmann, A.P., Günther, O., Smith, T.R., Wang, YF. (eds) Design and Implementation of Large Spatial Databases. SSD 1989. Lecture Notes in Computer Science, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52208-5_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-52208-5_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52208-9

  • Online ISBN: 978-3-540-46924-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics