Preview
Unable to display preview. Download preview PDF.
Bibliography
D. A. Bayer, The Division Algorithm and the Hilbert Scheme, Ph. D. Thesis, Harvard Univ., Cambridge, Mass., 1982.
B. Buchberger, Ein Algorithmus zum Auffiden des Restklassenringes nach einem nulldimensionalen Polynomideale, Ph.D. Thesis, Univ. Innsbrück, Austria, 1965.
B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math. 4 (1970), 364–383.
B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Gröbner bases, in “Proc. EUROSAM '79”, 3–21, Lect. Notes in Comp. Sci., vol. 72, 1979.
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in “Recent Trends in Multidimensional System Theory” (N. K. Bose, Ed.), Reidel, Dordrecht, 1985.
G. Carra' Ferro, Some upper bounds for multiplicity of an autoreduced subset of INm and their applications, in “Proc. AAECC-3”, 306–315, Lect. Notes in Comp. Sci., vol. 229, 1986.
J. H. Davenport, Y. Siret, E. Tournier, “Computer Algebra”, Academic Press, London, 1988.
R. Gebauer — M. Möller, On an Installation of Buchberger's Algorithm, J. of Symb. Comp. 6 (1988), 275–286.
A. Giovini — G. Niesi, CoCoA User's Manual (v.0.99b–May 1989), University of Genova
P. Gianni — B. Trager — G. Zacharias, Gröbner and Primary Decomposition of Polynomial Ideals, J. of Symb. Comp. 6 (1988), 149–167.
H. Kredel — V. Weispfenning, computing Dimension and Independent Set for Polynomial Ideals, J. of Symb. Comp. 6 (1988), 231–247.
D. Lazard, Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations, in “Proc. EUROCAL '83”, 146–156, Lect. Notes in Comp. Sci., vol. 162, 1983.
D. Lazard, Ideal bases and primary decomposition: case of two variables, J. of Symb. Comp. 1 (1985), 261–270.
H.M. Möller — F. Mora, Upper and lower bounds for the degree of Gröbner bases, in “Proc. EUROSAM '84”, 172–183, Lect. Notes in Comp. Sci., vol.162, 1983.
H.M. Möller — F. Mora, The computation of the Hilbert function, in “Proc. EUROCAL '83”, 157–167, Lect. Notes in Comp. Sci., vol.174, 1984.
H.M. Möller — F. Mora, New Constructive Methods in Classical Ideal Theory, J. Alg. 100 (1986), 138–178.
F. Mora, An algorithm to compute the equations of tangent cones, in “Proc. EUROCAM '82”, 158–165, Lect. Notes in Comp. Sci., vol.144, 1982.
L. Robbiano, Term Orderings on the Polynomial Ring, in “Proc. EUROCAL '85”, 513–517, Lect. Notes in Comp. Sci., vol.204, 1985.
L. Robbiano, On the theory of graded structures, J.of Symb. Comp. 2 (1986), 139–170.
L. Robbiano, Introduction to the theory of Gröbner Bases, in “Queen's Papers in Pure and Applied Mathematics”, n. 80 (1988).
L. Robbiano, Computer and Commutative Algebra, in “Proc. AAECC 6”, 157–167, Lect. Notes in Comp. Sci., vol.357, 1988.
L. Robbiano, Gröbner Bases: a Foundation for Commutative Algebra, notes of a tutorial given at MIT in June 1989.
L. Robbiano — G. Valla, On set theoretic complete intersections in the projective space, Rend. Sem. Mat. Fis. Milano 53 (1983), 333–346.
M. Stillman — M. Stillman — D. Bayer, Macaulay User Manual, May 25, 1989
C. Traverso, Experimenting the Gröbner basis algorithm with the AIPI system, in “Proc. of ISSAC '89”, ACM Press, 192–198
W. Trinks, Über B. Buchberger's Verfahren, Systeme algebraischerm Gleichungen zu Losen, J. of Number Theory 10 (1978), 475–488.
S. Wolfram, “Mathematica, A System for Doing Mathematics by Computer”, Addison Wesley, Reading, Mass, 1988
G. Zacharias, Generalized Gröbner basis in commutative polynomial Rings, Bachelor Thesis, MIT, 1978.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giovini, A., Niesi, G. (1990). CoCoA: A user-friendly system for commutative algebra. In: Miola, A. (eds) Design and Implementation of Symbolic Computation Systems. DISCO 1990. Lecture Notes in Computer Science, vol 429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52531-9_120
Download citation
DOI: https://doi.org/10.1007/3-540-52531-9_120
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52531-8
Online ISBN: 978-3-540-47014-4
eBook Packages: Springer Book Archive