Skip to main content

A theory for program and data type specification

  • Theory
  • Conference paper
  • First Online:
Design and Implementation of Symbolic Computation Systems (DISCO 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 429))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, H. and G. J. Sussman [1985] Structure and interpretation of computer programs, (The MIT Press, McGraw-Hill Book Company).

    Google Scholar 

  • Broy, M. and Wirsing, M. [1982] Partial abstract types, Act Informatica, 18, pp. 47–64.

    Google Scholar 

  • Broy, M., Wirsing, M., and Pepper, P. [1987] On the algebraic definition of programming languages, ACM TOPLAS, 9(1), pp. 54–99.

    Google Scholar 

  • Burge, W. H. [1975] Stream processing functions, IBM journal of research and development, 19, pp. 12–25.

    Google Scholar 

  • Conway, M. [1963] Design of a separable transition-diagram compiler, Comm. ACM, 6, pp. 396–408.

    Google Scholar 

  • Coppo, M. [1985] A completeness theorem for recursively defined types in: Automata, languages, and programming, 12th Colloquium, Brauer, W. (ed.), Lecture Notes in Computer Science Vol. 194, pp.120–129.

    Google Scholar 

  • Feferman, S. [1975] A language and axioms for explicit mathematics, in: Algebra and Logic, Springer Lecture Notes in Mathematics, 450, pp.87–139.

    Google Scholar 

  • Feferman, S. [1979] Constructive theories of functions and classes, in Logic Colloquium '78, (North-Holland) pp. 159–224.

    Google Scholar 

  • Feferman, S. [1982] Inductively presented systems and the formalization of metamathematics, in: Logic colloquium 80, edited by D. van Dalen, D. Lascar, and J. Smiley (North-Holland, Amsterdam) pp. 95–128.

    Google Scholar 

  • Feferman, S. [1985] A Theory of Variable Types, Revista Colombiana de Matématicas, 19 pp. 95–105.

    Google Scholar 

  • Feferman, S. [1987] Polymorphic typed lambda-calculi in a type-free axiomatic framework, Proceedings of conference on logic and computation, Carnegie Mellon University, to appear.

    Google Scholar 

  • Felleisen, M. [1987] The calcului of lambda-v-cs conversion: A syntactic theory of control and state in imperative higher-order programming languages, Ph.D. thesis, Indiana University.

    Google Scholar 

  • Felleisen, M. Friedman, D. P., Kohlbecker E., and Duba B. [1987] A syntactic theory of sequential control, Theoretical Computer Science52, pp. 205–237.

    Google Scholar 

  • Felleisen, M., Hieb, R., [1989] The revised report on the syntactic theories of sequential control and state, Rice COMP TR89-100, Rice University.

    Google Scholar 

  • Griffin, T. G. [1990] A formulae as types notion of control, Seventeenth Annual ACM Symposium on Principles of Programmings Languages pp. 47–58.

    Google Scholar 

  • Landin, P. J. [1965] A correspondence between Algol 60 and Church's lambda notation, Comm. ACM, 8, pp. 89–101, 158–165.

    Google Scholar 

  • Moggi, E. [1989] Computational lambda-calculus and monads, Fourth annual symposium on logic in computer science, (IEEE).

    Google Scholar 

  • Plotkin, G. [1975] Call-by-name, call-by-value and the lambda-v-calculus, Theoretical Computer Science, 1, pp. 125–159.

    Google Scholar 

  • Rees, J., Clinger, W. (eds) [1986] The revised3 report on the algorithmic language Scheme, Sigplan Notices, 21(12), pp. 37–79.

    Google Scholar 

  • Reynolds, J. C. [1972] Definitional interpreters for higher-order programming languages, in: Proceedings, ACM national convention, pp. 717–740.

    Google Scholar 

  • Scott, D. and C. Strachey [1971] Towards a mathematical semantics for computer languages, Oxford University Computing Laboratory, Technical Monograph PRG-6.

    Google Scholar 

  • Steele, G. L. [1984] Common Lisp: the language (Digital Press).

    Google Scholar 

  • Steele, G. L., and G. J. Sussman, [1975] Scheme, an interpreter for extended lambda calculus, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Technical Report 349.

    Google Scholar 

  • Talcott, C. L. [1985] The essence of Rum: A theory of the intensional and extensional aspects of Lisp-type computation, Ph. D. Thesis, Stanford University.

    Google Scholar 

  • Talcott, C. L. [1989] Programming and proving function and control abstractions Stanford University Computer Science Department Report No. STAN-CS-89-1288.

    Google Scholar 

  • Talcott, C. L. [1990] Computational models for theoryis of function and control abstractions (in preparation)

    Google Scholar 

  • Talcott, C. L. and Weyhrauch, R. W. [1987] Partial evaluation, higher-order abstractions, and reflection principles as system building tools, in: IFIP TC2 Working Conference on Partial and Mixed Computation, Ebberup, Denmark, 18–24 October 1987, Bjorner, D. and Erschov, A. P. (eds.), (North-Holland).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfonso Miola

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talcott, C. (1990). A theory for program and data type specification. In: Miola, A. (eds) Design and Implementation of Symbolic Computation Systems. DISCO 1990. Lecture Notes in Computer Science, vol 429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52531-9_128

Download citation

  • DOI: https://doi.org/10.1007/3-540-52531-9_128

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52531-8

  • Online ISBN: 978-3-540-47014-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics