
I m p l e m e n t a t i o n of an I n t e r p r e t e r for a Para l le l Language in C e n t a u r

Yves Bertot
INRIA, Sophia Antipolis

Route des Lucioles, 06565 Valbonne Cedex, France

Abstract

This paper presents the implementation of an interpreter for the parallel lan-
guage ESTEREL in the CENTAUR system. The dynamic semantics of the language
is described and completed with two modules providing a graphical visualization of
the execution and a graphical execution controller. The problems of implementing
a parallel language using natural semantics and of providing a visualization for a
parallel language are especially addressed.

1. The Logical K e r n e l of t h e I n t e r p r e t e r
ESTEREL [esterel] is a language involving parallelism and broadcast signal

communJication used for the description of reactive systems, i.e., systems that
react to successions of events [reactive]. The command system for an airplane or
the man-machine interface [gfxobj] for an interactive system like CENTAUR are
two examples of such reactive systems.

The interpreter described in this paper is based on a description of the dy-
namic semantics of ESTEREL written in natural semantics by the designers of the
language [design]. We focus on the implementation of this dynamic semantics
within CENTAUR [centaur], using the TYPOL formalism [typol].

We first give a short description of the language and the constructs it contains.
Then we give an overview of the semantics' organization. Finally, we concentrate
on the key points of the semantics: the use of a rewriting system to express
parallelism in the execution of an ESTEREL program.
1.1. The ESTEREL L a n g u a g e

In [design], Berry and Gonthier give a schematic presentation of reactive sys-
tems. Such systems are composed of three layers:

- An i n t e r f a c e with the environment, in charge of receiving input and producing
output.

- A r e a c t i v e k e r n e l that contains the logic of the system. It decides the compu-
tations and outputs that must be generated in answer to inputs.

- A d a t a h a n d l i n g layer that performs classical computations requested by the
logical kernel.
ESTEREL is used to program the reactive kernel. It is not a full-fledged pro-

gramming language but rather a program generator used to produce a reactive
system written in Ada, C, or Le_Lisp 1. The interface and data handling layer are
specified in the host language. The data handling is integrated using abstract data
type facilities.

1 Ada is a trademark of the U. S. DoD, Le_Lisp is a trademark of INRIA.

58

The basic data manipulated in ESTEREL axe signals, they correspond to
stimuli that can be emitted and listened in the different parallel processes. Signals
can carry additional values. Their communication is conceptually instantaneous
and broadcasted. The basic constructs are the following instructions:

- emit S or emit S(exp) : emit the signal S or emit the signal S with the value
of exp.

- p r e s e n t S then s t a t l e l s e s t a t 2 end: execute s t a r1 if S is present or
s t a r2 otherwise.

- do s t a r wa tch ing S: execute s t a r until the signal S appears.
- s t a t l ; s t a t2 : execute s t a t l and s t a r2 in sequence, i.e, execute s t a t 2 only

when s t a t l is terminated.
- s t a t l I I s t a t 2 : execute s t a r1 and s t a r2 in parallel.
- X := exp: assign the value of e x p to the variable X. variables can be used in

expressions as in any imperative language. They cannot be shared between
parallel processes.
The basic concepts of the language are the synchrony hypothesis, parallelism,

and broadcast signal communication. The synchrony hypothesis is based on the
assumption that each reaction to an input is conceptually instantaneous. The
reception of an input event and the emission of the corresponding reaction take
place at the same time and define a n E S T E R E L instant.

The parallelism permits to enhance the modulari ty of the program. It gives
an opportuni ty to design complicated reactive systems by breaking them down
into simpler ones that communicate through broadcasted signals. When one of
the processes wants to communicate a value, it only emits a signal. This signal is
simultaneously received by whichever process is currently listening this channel.

Every correct ESTEREL program describes a relation between an infinite se-
quence of input events and an infinite sequence of reactions, each event being a
collection of present signals, optionally carrying values. This relation can also be
easily represented by a deterministic finite state automaton, receiving an input
event, changing its state, and emitting the reaction. Naturally, the transition of
an automaton is instantaneous. This justifies the synchrony hypothesis.

2. N a t u r a l S e m a n t i c s
We use natural semantics to present the different aspects of a language in a

unified manner. A natural semantics definition is an unordered collection of rules.
A rule has two parts, a numerator and a denominator. Variables may occur in the
numerator and the denominator. These variables allow a rule to be instantiated.

The numerator of a rule is again an unordered collection of formulae, the
premises. The denominator is a single formula, the conclusion. Intuitively, if all
premises hold, then the denominator holds. Formally, from proof-trees yielding
the premises, we can derive a proof-tree yielding the conclusion.

The formulae may have several form depending on the meaning they are given
by the programmer. A very frequent form is the sequent form. A sequent has two
parts, and antecedent (on the left) and a consequent (on the right), and we use
the turnstile symbol F- to separate these parts. The consequent is a predicate.
Predicates come in several forms indicated by various infix symbols. These infix
symbols have no reserved meaning, they just help in memorizing what is being
defined. The antecedent usually contains information on results that are assumed,
whereas the consequent represents the information that is being described. For
example, the formula:

p l- e x p : T

expresses that in the context p (giving e.g. the types of identifiers) the expression
exp has the type T.

59

Some structure is introduced in the collection of rules. To this end, rules may
be grouped into sets, with a given name. Formulae that are provable by a specific
set of rules are usually denoted by placing the set~s name on top of the turnstile
(b-), as in the tbllowing example:

ova].
p F- exp -* value

Natural semantics define a formalism that enables us to use a computer to
reason about the semantics of a language. Typically, our unknown will be type
vMues, execution states or generated code. There are many approaches to turn
semantics definition into executable code. The one we use for this implementation
of an interpreter is to compile rules into Prolog code, taking advantage of simi-
larity of Prolog variables and variables in inference rules. Roughly speaking, the
conclusion of a rule maps to a clause head, and the premises to the body. Distinct
forms of :formulae map to distinct Prolog predicates. An equation is turned into
a Prolog goal. Given an ESTEREL program and ESTEREL's dynamic semantics,
the interpretation of the program can be obtained by executing the corresponding
Prolog goal. The compiler is provided by the CENTAUR system. The fact that we
use Prolog to execute the dynamic semantics will appear in section 3 dealing with
the control of the execution.
2.1. The Dynamic Semantics of ESTEREL

The data manipulated by the dynamic semantics are the executed program,
the memory environment, and an input/output handler. During the interpre-
tation, the program and the memory evolve to take into account the effects of
execution. Any communication with the outer world is performed through the
input/output handler. This handler permits a symbolic linking of the interpreter
with an interface.
2.1.1. The Main Loop

Due to the synchrony hypothesis, any reaction to an input event is supposed
to be instantaneous, thus defining an ESTEREL instant. The main body of the
execution is a loop where each pass corresponds to one instant. This loop consists
of four phases:

1. reception of an event.
2. computation of a reaction to the event.
3. emission of the computed reaction.
4. preparation of the program for the next instant.

In most cases, this loop is infinite since ESTEREL programs usually describe
systems that run indefinitely (they define a relation between infinite sequences of
inputs and outputs). However, some programs do not run indefinitely, they are
detected in the second phase. For such programs, the interpreter stops at the
end of the third phase, after having emitted the last reaction. A program whose
execution is finished satisfies a property called termination.

Receiving a new event only provokes a modification of the memory. For this
phase, the interpreter provides a communication with the outer world using an
interface implemented in the Lisp part of the system. This interface uses graphical
objects.

During the second phase, the dynamic semantics performs a normalization of
the executed program and the memory in a rewriting system. The modification
of the memory is the elaboration of the output reaction, while the modification of
the program is the computation of a new State. This second phase is called the
normalization or execution phase. We describe this phase more precisely in the
next section.

60

The next phase is the communication of the computed reaction to the outer
world. The meaningful data are the values of the global signals found in the
memory. The interpreter also provides an interface using graphical objects for this
phase.

The fourth phase finishes the computation of the new state. Three operations
must be done:

1. Clean the values of local signals, so that they are not yet emit ted for the
following instant.

2. Set up the different temporal guards that appear in ESTEREL constructs.
Conditionals triggered by the presence of signals in the coming instant are
introduced in the program.

3. Perform some clean-up in the rewrit ten program, for example prune the parts
where execution can no longer occur.
These operations are done by a simple tree traversal that performs yet another

rewriting. This step is called an expansion step. The resulting program is ready
for a new normalization. The computation for the next instant can proceed as
soon as a new input event arrives.
2.1.2. The N o r m a l i z a t i o n P h a s e

The normalization phase uses a rewriting system to express the evolution of
the memory and the computation performed during the execution. Each elemen-
tary rewriting corresponds to the execution of an elementary operation. After
a rewriting, the computation continues with the resulting object program, also
called the r e s u m p t i o n , until no further rewriting is possible.

Thus, the normalization function is based on two partial functions, the ex-
ecu t i on function and the t e r m i n a t i o n function. The execution function performs
the rewritings. It takes as arguments the memory and the program and returns
the memory and the program modified by one elementary rewriting, when such a
rewriting is possible. The t e r m i n a t i o n function detects programs in normal form,
it takes as argument only a program and returns a value only when no further
rewriting is possible. Thus, there exist no program for which both the execution
function and the termination function have a value. However, there exist programs
for which neither of these functions is defined. Such programs are erroneous; the
corresponding error is called a causal loop.

Besides detecting the programs in normal form, the termination function com-
putes whether the object program satisfies the t e r m i n a t i o n property or not. As
we already explained, this property controls the termination of the main loop of
the interpreter. We also see later that the termination property helps to define
the behavior of the sequence construct. The termination function is defined in
the set terminated.

2.1.3. T h e E x e c u t i o n F u n c t i o n

The execution function is one of the two partial functions used in the nor-
malization phase. This function expresses how the memory is modified, how the
control is performed, and how the executed instruction is removed when an ele-
mentary operation is performed. This function is defined in the TYPOL set exec
and is represented by judgements of the following form:

exec

r n e m ~- s tar =~ s tar ~, rnern l

The terms s tar and m e r e are given as arguments, s tar is an ESTEREL program
to execute and m e r a is the memory describing the values of the free variables
appearing in star. The terms s tar ~ and m e r e ~ are returned by the function, they
are the rewrit ten program and the modified memory.

61

We take a closer look at some rules from this set.
- Execution of an ass ignment statement. Let us consider the rule for the

as sis,v_ment statement:

eval

exp update(p, x, p')
exec

:= nothing, me (p',

The memory is divided in two parts for the variable memory and the signal
memory. The execution of an ass ignment s tatement provokes a modification
of the variable memory p into p'. The resumption is the blank statement
no th ing .

- Execution of the p r e s e n t statement. Here, we give one of the rules for the
p r e s e n t statement:

s ig_presence(a , S, +,)
exec

mere(p, (7) I- i f exp t hen s%atl e l s e star2 =~ sta$1~ mere(p, •)

If the signal S is present (denoted by +) , then the execution of this conditional
corresponds to the execution of the first branch, with the same memory. This
rule (:in fact, not only this one) shows how a p r e s e n t s tatement alters the
control flow of the execution.
Execution of the wa tch ing statement. The watching statement is one of the
ESTEREL constructs that implement temporal guards, i.e., constructs that
allow the apparition of a signal to limit the time taken by operations. Let us
consider the rule that defines its behavior:

exe¢

m e r e ~- s tar =~ s tar ' , m e r e '
exec

rnem ~- do star watching S ~ do star' watching S, mem'

This rule shows that the "one step" execution of some ESTEREL constructs
can be expressed directly from the execution of a subpart . It appears that
the wa tch ing construct has no effect on the execution within an instant. In
fact, the real behavior of this s tatement is described in the expansion phase
(phase 4 of the main loop), by the rule:

expanse
~- s tar --* s tar '

expanse
do star watching S -~ present S else do star' watching S

This means that in the coming instant~ the expansion of the instruction s tar
will be executed only if S is not present.

- Execution of the s e q u e n c e . T h e s e q u e n c e construct has a behavior that
ensures that the tail of a sequence is always executed after the beginning

62

is finished. One first expresses that executing a sequence is executing its
beginning with the following rule:

exec

mere I- s ta t l =~ stat~l, mere '
exec

m e m t- s tat l ; star2 =~ stat~ ; stat2, mere '

Then one expresses that the tail can be executed if the head verifies the
termination property:

terminated
F- s ta t l -* true, Otraps

exec

m e m t- stat2 =~ stat~2,mem '
exec

m e m F s ta t l ; stat2 ~ stat~2, mere '

- Execution of the p a r a l l e l . In a way the execution of the p a r a l l e l construct
is very similar to the execution of the s e q u e n c e . However, it is not necessary
to wait until the head has been completely executed to execute the tail. No
preference is given to either way and the two rules for the head and the tail
are symmetric, and similar to the first rule of the s e q u e n c e .

exec

mere I- s ta t l =~ stat~, mere '
exec

mere F s ta t l Ilstat2 ~ stat~l I lstat2, mere'

e x e c

mere ~- stat2 ~ stat~2, mere '
exec

mere F- s ta t l Ilstat2 ~ star1 Ilstat~, m e m '

These two rules do not exclude each other. Each time a p a r a l l e l construct
is executed both rules can apply. Thus, the execution is not determinis-
tic. The parallelism in the ESTEREL language comes directly from this non-
determinism in the interleaving of the elementary steps. The parallelism found
in ESTEREL has the same properties as the parallelism that one can find in
~-reduction for the A-calculus.
Note that the execution of statements like no th ing or h a l t is not defined. On

the contrary, the termination function is defined for such statements. Rewriting a
s tatement in n o t h i n g is virtually removing this s tatement from the program.

3. T o o l s for V i s u a l i z i n g E x e c u t i o n

The purpose o f an execution visualization tool is to animate the program
during the interpretation, using different colors or typefaces to express the cur-
rent state of execution as in figure 1. Visualizing enhances debugging by helping
the programmer to detect places where the execution behaves differently from
expected.

Visualizing contains three problems. The first problem is to track correspon-
dences between the resumptions of the rewritings and the original program, which
is actually displayed on the screen. To solve this problem we use mult i -occurrences
as described in the next section. The second problem is to detect in the resumption
the expression that axe worth emphasizing in the program for the current s tate of
execution. This problem can be solved systematically from the dynamic semantics.
The third problem is to transform the computed data in an actual display of the

63

rOgram. This problem is easily solved using the selection machinery of CENTAUR
aths] and will not be described in this paper.

o..',H, s..ll.°t l
I [] ~ i l e Di&p/ay e d i t " ' I
iilnal S in [~.l

loop i ~
i ~ i t S: [~)J
e . i t ol 111111

end It!i!il
I I k~iil
every INPUT do i

emit S"
pr iseni [] i~-~,..:ili
ind l~iIen

encl l+l

Figure 1 Examples o f execution points (in bold face and of a signal
blocked in read access (in reverse video

3.1. Subject Tracking
We use occurrences and multi-occurrences to designate sub-expressions of a

tree. Occurrences are strings of navigation commands that enable us to express
the position of an expression in the tree. Multi-occurrences are used when one
want to express that an expression is not a sub-expression of the tree, but that
it shares sub-expressions with this tree. The expressions that are emphasized
in figure i are designated with multi-occurrences. During the rewritings in the
dynamic semantics the expressions are given multi-occurrences. When a term tl
with the multi-occurrence mx is rewritten in a term t~, one computes a multi-
occurrence m2 to go with t2 that expresses what sub-expressions of t2 come from
tl .
e x a m p l e : if t l is rewritten in t2 where these terms have the following values:

tl = present S then emit 0 end; emit P
t2 = emit O; emit P

then the multi-occurrence m2 associated with t2 will have the following value:

ms = u[s(s(mi , 1), 2), s (ml , 2)]

where ml is the multi-occurrence associated with t t , to express that the first son
of t2 is a sub-expression of ml and give its place in ml and do the same for its
second son.

In a rule, the variable subject gives the multi-occurrence associated to the
expression that appears to the right of the turnstile ([-) in the conclusion of the
rule. Using this feature we can define a sub j e c t function that returns the multi-
occurrence associated to any expression. This rule is defined using the following
axiom:

subjec t
F- exp --* subject

3.2. Execution Observation
Now, we describe how we detect the interesting expressions (and the corre-

sponding multi-occurrences~ in the resumption of the rewritings. This work is per-
formed at two moments. Tne first one is between each call to the execution func-
tion, in the normalization phase. The second one is during the expansion phase.
The observation is performed by two functions that return multi-occurrences. We

64

show that the description of these functions can be systematically derived from
the dynamic semantics.
3.2.1. Generalized Axioms

In TYPOL, every set of rules defines a function or a property. A generalized
axiom is a rule which expresses this function or property on a construct without any
recursive call for the same property on subterms of this construct. The following
rule is a generalized axiom:

eval
p, a F- exp --* val update(p, x, val, p')

exec

Although it has premises, none of these premises state that the execution function
is recursively called on a subterm.

The following rule is not a generalized axiom. The premise states that one has
to execute an elementary rewriting in the body of the loop construct to execute
an elementary rewriting in the entire construct:

exe¢

mere ~- star =~ star', mere'
eXeC

mem ~ loop stat end ~ star'; loop star end, mere'

The generalized axioms are the rules that express a property on the constructs
that are elementary relative to this property. We shall say tha t the rules that are
not generalized axioms are recursive rules.
3.2.2. Observation of the Normalization Phase

We have explained above that every rewriting that appears in the normal-
ization phase corresponds to an elementary execution step. When stepping the
execution we want to show the exact situation of the instructions that will be
reduced in all the possible elementary steps. These points correspond to the ex-
pressions where a generalized axiom cou ldbe applied in any possible application
of the execution function.

We also want to show the exact situation of all the points where no rewriting is
possible, this gives a symmetric notion of elementary execution suspensions. These
points correspond to the expression where a generalized axiom of the termination
function expresses that the execution is suspended. At last, we want to express
the temporary blocking of execution that come from a synchronization discipline
on the access to signals.

With these three notions, we have a criterion to apply on the dynamic seman-
tics that enables us to derive a TYPOL function tha t computes the corresponding
sets of multi-occurrences. This resulting function is named the front function, it
is described by judgements of the following type:

front

sigs b stat --* triple(seh , set2, set3)

The first parameter, sigs, is the set of all the signals which can still be emitted
in the same instant - - this set is used to detect the temporary blockings coming
from the synchronization. The expression star is the s tatement that describes the
state of execution. The returned triple contains three sets of multi-occurrences
designating sub-expressions of the program. The first component set1 designates

65

the instructions where an elementary step of execution can occur next, set2 des-
ignates the expressions where the execution is blocked on synchronization, set3
designates the points where the execution is suspended.

If we find a place where a generalized axiom from the set exec can be applied,
the corresponding expression should be designated as an elementary execution
step. The following rules are two generalized axioms from this set:

eva1
p, a H exp --~ val update(p, x, val, p')

exe¢

:= nothing,

eval
p~ ~ F- exp -+ t r u e

exec

m e m (p , a) F- if exp then s t a t l else star2 end ~ s ta t l , m e m (p , a)

To these: two rules correspond two axioms in the set f r o n t :

front
si gs F- x := exp -~ tr iple({ subj ect } , O, O)

f r o n t
s igs F- i f exp t hen s ta t l e l s e star2 end --* tr iple({ sub jec t } , O, O)

These rules state that the expressions affected by the elementary executions are
designated by multi-occurrences appearing in the triple's first set.

If we find a place where a generalized axiom from the set defining the termi-
nation function can be applied and expresses that the execution is suspended, we
must express this in the front function. The following rule from the set t e r m i n a t e d
is an example of this case:

t e r m i n a t e d
halt -~ false, Otraps

The con:esponding f r o n t axiom is as follows:

f ron t
si gs F- h a l t --+ triple(O, O, { sub jec t })

Here the; corresponding multi-occurrence is kept in the triple's third set.
Execution and termination are symmetric; recursive rules of the set exec

correspond to recursive rules of the set t e r m i n a t e d . We provide corresponding
recursive rules for the set f r o n t too. These rules express that all the interesting
expression found in a construct where a recursive of the execution function applies
are the execution points that can be found in the subparts where a recursive call
is possible. For example, we have two rules for the p a r a l l e l construct in the set
exec, they express that the execution can proceed in either branch:

O X O ¢

mere F- s ta t i ~ stat~, m e m '
exec

8tail llsta stat llstat , me '

66

exec

mem t- stat2 ::~ statl2, mem'
exec

raem F star1 lister2 ~ star1 Hstat'2, mere'

The front function replaces the non-determinism of the execution function by an
actual representation of the parallelism, by showing all the instructions that could
be executed:

front

sigs P statl -- , triple(setl ,set] ,setf)
front

sigs F stat2 -* triple(set2, set~, set~')
front

sigs ~- stahllstat2 ~ triple(set1 u set2, set] u set~, set i' u set~)

The synchronization discipline in ESTEREL expresses that all reading access to a
signal (corresponding, e.g.~ to the instruction p r e s e n t) must be performed after
all writing access (corresponding to the instruction emit) . To see why a program
fails to execute, we need to see when this discipline alters the execution. There
exists a function, the potential function that approximates the signals that can still
possibly be emitted from the current execution state in the current transition. The
signal memory cells are marked using this information, thus permitting to forbid
any reading access when necessary. The function that enforces this discipline is the
function that permits to read in the signal memory: s ig_presence . A systematic
way to detect the places where the access discipline alters the execution is to detect
the execution rules that perform a call to this function:

s i g_p re sence (a , s, +, Value)
exec

mem(p~ ~) ~ p r e s e n t s t hen statl e l s e star2 end =~ statl, mere(p, a)

s ig_presence(a ,s , - ,Value)
exec

me're(p, a) ~- p r e s e n t s t hen statl e l s e star2 end ~ stat2, mere(p, a)

In the front function, we use directly the result of the potential function to
know whether the s i g_p re sence function will block the execution or not.

subj ec t
s E sigs F- s --* s_subject

f ront
sigs F p r e s e n t s t hen statl e l s e stat2 end -~ triple({subject}, {s_subject}, ¢)

s ~ sigs
f ron t

sigs F- p r e s e n t s t hen statl e l s e stat2 end --* triple({subject}, O, ~)
The call to s i g _ p r e s e n c e are always part of an generalized axiom for the

execution. Thus, the expression that are detected as blocking the execution are
always subparts of an expression detected as a possible elementary execution step.
3.2.3. Observation of the Expansion Step

The expansion step is not a normalization and we are not interested in the
same phenomena. Here the rules of interest are not generalized axioms. The

67

interesti[ng rules are the rules where a p r e s e n t construct has been introduced for
a temporal guard. The rule for the wa tch ing construct is one such rule:

expanse
star --+ stat '

expanse
do star watching S -+ present S else do stat' watching S

The tool for the observation of the expansion step is defined in the set
show_xpans. This set contains the following rule for the wa tch ing construct:

show_xpans subject
~- s tat -+ set ~ S -+ posi t ion

show_xpans
}- do stat watch ing S -* set U {posit ion}

The introduction of a p r e s e n t construct corresponds to the raising of a tem-
poral guard. We designate the signal on which the guard is raised.

The set show_xpans is designed to traverse exactly the part of the tree which
is traversed by the set expanse. Thus, any rule from the set expanse contain-
ing a recursive call to the expansion function has a corresponding one in the set
show_xpans that contains a recursive call to the expansion observation. This can
also be done systematically.

4. Tools for E x e c u t i o n C o n t r o l
A good debugger must also provide a way to execute slowly a program so

that the programmer can observe precisely the key pa r t s of his program. Ideally
the programmer must be able to command the speed of execution at any time. A
generic control is already given for the execution of TYPOL itself. It is possible to
customize this generic control tool to give a control bet ter suited to the ESTEREL
execution model.

The controller is actually a finite state automaton, writ ten in the ESTEREL
language itself. It receives messages from all parts of the system, such as this rule
has been applied, or this button has been depressed. The generic tool provides
facilities to design a specific automaton for a language.

The basic events at tached to the application of rules are of four kinds:
1. Try. A rule is tried in the computation.
2. Prove. The application of a rule has been proved.
3. Back. A new t ry is done for a rule.
4. Fa//. The application of a rule has failed, i.e., this rule does not apply.

These events describe the computation as it is done in the Prolog interpreter.
When a rule is applied it is possible to know the applied rule and the multi-
occurrence designating the data it is applied on. This information helps to control
the execution. For example, the multi-occurrence designating the subject data
can be used to detect break-points in the program, although it is not done in this
version of the interpreter. The output of this generic debugger is a collection of
messages, such as make this button appear sent to the interface part of the system,
or continue the execution sent to the logical kernel, i.e., the Prolog interpreter.

With this controller, we a t tach operations to certain points of the execution.
For example, one says W~hen this rule is applied, flush the input event (the external
part of the input /ou tput communication is performed this way); one can even have
conditional operations, like at this point, i f there is a breakpoint on the subject o f
the rule, prompt the user for a command. The control of the execution is designed

6 8

on top of the dynamic semantics, whose design is completely independent. One
only needs to choose in the dynamic semantics the points where a control has to
be added and to design the operations at tached to this control, using all the data
available in the computation.

For the ESTEREL interpreter we selected two points in the execution:
- The end of an instant.
- The execution of one rewriting in the normalization phase, i.e., the execution

of an elementary instruction.
The first point is at tached to the event Prove for the rule of the set normal

that expresses the end of the normalization phase. The second point is a t tached
to the event Try for the rule of the same set that expresses that a rewriting will
be performed. The execution can then be broken down into steps, going from one
of these points to another one. The interpreter provides a tool to express different
commands such as:

- Execute the next elementary instruction and stop (command I n s t r u c t i o n) .
- Execute the next instant and stop (command I n s t a n t) .

The generic controller provides other commands, that we keep in our con-
troller:

- Abort as soon as possible (command Abort).
- Stop as. soon as .p°ssible (.command Break).

Go wlthout carmg about mstants or elementary executions or any similar
event (command Go).

All these commands are grouped in a command box where some options appear
only when the controller prompts the user for an order. The options Break and
Abort are always available.

Oebug-box

Rbort
Break
Go

I Esterel

Instruct£on
Instant

Figure 2 The controlIer's command box

5. F u r t h e r D e v e l o p m e n t s

This interpreter is a first step toward a complete debugger for the paral-
lel language ESTEREL. Earlier experiments like [ml] only dealt with sequential
languages. The t rea tment of parallelism introduces a new style of specification~
making extensive use of rewriting to describe dynamic semantics. We have shown
tha t this new style of specification iss still within the scope of natural semantics.

We have also shown tha t visualizing the execution state requires non-trivial
computations. We have sketched a methodology to extract from the dynamic
semantics a tool that helps visualizing execution. However, this methodology was
a first a t tempt at solving this kind of problem and we have only provided an ad
hoc t rea tment for this particular language. Regardless, the existence of a stated
and well understood criterion of observation entitles us to claim that the shown
information is relevant.

Visualizing is one of many debugging tools that track a correspondence be-
tween the executed program and the term that represents the execution state.
Other such tools would, for example~ allow to set breakpoints in the program so

69

that the execution stops when reaching such points, or to access the value of local
variables during the execution. In these examples, one must find the expressions
that inherit the breakpoints in the current execution state or the expressions that
represent the local variables.

The CENTAUR system proves to be a good choice of a tool box for the de-
velopment of an application like this interpreter. The semantics definition is kept
in a pure form, free of implementation details. It is therefore easy to maintain
and to check for correctness. The design of the man-machine interface is eased
by the graphical tools which are already provided by the system. The result is an
application which is easy to integrate in a more complete environment, including a
type-checker and a compiler, since such tools can also be developed in the system.

B ib l iog raphy

[centaur] P. BORRAS ET AL., "CENTAUR: the system", Proceedings of the A C M
SIGSOFT'88: Third Symposium on Software Development Environments,
November 1988, Boston, USA. (Also appears as INRIA Research Report no.
777.)

[design] G. BERRY, G. GONTHIER, "The ESTEREL Synchronous Programming
Language: Design, Semantics, Implementation", INRIA Research Report no.
842 (1988). To appear in Science o f Computer Programming.

1] " C O O S [esterel l G. BERRY, L. COSSERAT, The syn hr n u Programming Language ES-
TI~,REL and its Mathematical Semantics", Seminar on Concurrency, Springer
Ve:rlag LNCS 197, (1984).

[gfxobj] D. CLI~,MENT, J. INCERPI, "Specifying the Behavior of Graphical Objects
Using ESTEREL", Proceedings of TAPSOFT'89 Colloquium on Current Is-
sues in Programming Languages, March 1989, Barcelona. (Also appears as
INRIA Research Report no. 836.)

[ml] D. CLEMENT, J. DESPEYROUX, T. DESPEYROUX, G. KAHN, "A Simple Ap-
plicative Language: Mini-ML", Proceedings of the 1986 A C M Conference on
Lisp and Functional Programming, August 1986, Cambridge Massachusetts.

[natural semantics] G. KAHN, "Natural Semantics", Programming of Future Gen-
eration Computers, K. Fuchi, M. Nivat (Editors), Elsevier Science Publishers
B.V. (North-Holland), 1988. (Also appears as INRIA Research Report no.

(19sz).)
[paths] D. C L E M E N T , L. HAscoi~T, "Centaur Paths: a structure to designate

subtrees" in Centaur 0.9 Documentation, Vol II, June 1989.
[reactive] D. HAREL, A PNUELI, "On the development of Reactive Systems: Logic

and Models of Concurrent Systems", Proceedings of NATO Advanced Study
Institute on Logics and Models for Verification and Specification of Concur-
rent Systems, NATO ASI Series F, vol. 13, Springer Verlag, (1985)

[typol] T. DESPEYROUX, "Typol, a formalism to implement Natural Semantics",
INRIA 'Technical Report no. 94, (1988).

