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Abstract  

This paper presents the implementation of an interpreter for the parallel lan- 
guage ESTEREL in the CENTAUR system. The dynamic semantics of the language 
is described and completed with two modules providing a graphical visualization of 
the execution and a graphical execution controller. The problems of implementing 
a parallel language using natural semantics and of providing a visualization for a 
parallel language are especially addressed. 

1. The  Logical K e r n e l  of  t h e  I n t e r p r e t e r  
ESTEREL [esterel] is a language involving parallelism and broadcast signal 

communJication used for the description of reactive systems, i.e., systems that 
react to successions of events [reactive]. The command system for an airplane or 
the man-machine interface [gfxobj] for an interactive system like CENTAUR are 
two examples of such reactive systems. 

The interpreter described in this paper is based on a description of the dy- 
namic semantics of ESTEREL written in natural semantics by the designers of the 
language [design]. We focus on the implementation of this dynamic semantics 
within CENTAUR [centaur], using the TYPOL formalism [typol]. 

We first give a short description of the language and the constructs it contains. 
Then we give an overview of the semantics' organization. Finally, we concentrate 
on the key points of the semantics: the use of a rewriting system to express 
parallelism in the execution of an ESTEREL program. 
1.1. The  ESTEREL L a n g u a g e  

In [design], Berry and Gonthier give a schematic presentation of reactive sys- 
tems. Such systems are composed of three layers: 

- An i n t e r f a c e  with the environment, in charge of receiving input and producing 
output. 

- A r e a c t i v e  k e r n e l  that contains the logic of the system. It decides the compu- 
tations and outputs that must be generated in answer to inputs. 

- A d a t a  h a n d l i n g  layer that performs classical computations requested by the 
logical kernel. 
ESTEREL is used to program the reactive kernel. It is not a full-fledged pro- 

gramming language but rather a program generator used to produce a reactive 
system written in Ada, C, or Le_Lisp 1. The interface and data handling layer are 
specified in the host language. The data handling is integrated using abstract data 
type facilities. 

1 Ada is a trademark of the U. S. DoD, Le_Lisp is a trademark of INRIA. 
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The basic data  manipulated in ESTEREL axe signals, they correspond to 
stimuli that  can be emitted and listened in the different parallel processes. Signals 
can carry additional values. Their communication is conceptually instantaneous 
and broadcasted. The basic constructs are the following instructions: 

- emit  S or emit  S(exp) :  emit the signal S or emit the signal S with the value 
of exp. 

- p r e s e n t  S then  s t a t l  e l s e  s t a t 2  end: execute s t a r1  if S is present or 
s t a r2  otherwise. 

- do s t a r  wa tch ing  S: execute s t a r  until the signal S appears. 
- s t a t l ;  s t a t2 :  execute s t a t l  and s t a r2  in sequence, i.e, execute s t a t 2  only 

when s t a t l  is terminated. 
- s t a t l  I I s t a t 2 :  execute s t a r1  and s t a r2  in parallel. 
- X := exp: assign the value of e x p  to the variable X. variables can be used in 

expressions as in any imperative language. They cannot be shared between 
parallel processes. 
The basic concepts of the language are the synchrony hypothesis, parallelism, 

and broadcast signal communication. The synchrony hypothesis is based on the 
assumption that  each reaction to an input is conceptually instantaneous. The 
reception of an input event and the emission of the corresponding reaction take 
place at the same time and define a n  E S T E R E L  instant. 

The parallelism permits to enhance the modulari ty of the program. It gives 
an opportuni ty to design complicated reactive systems by breaking them down 
into simpler ones that  communicate through broadcasted signals. When one of 
the processes wants to communicate a value, it only emits a signal. This signal is 
simultaneously received by whichever process is currently listening this channel. 

Every correct ESTEREL program describes a relation between an infinite se- 
quence of input events and an infinite sequence of reactions, each event being a 
collection of present signals, optionally carrying values. This relation can also be 
easily represented by a deterministic finite state automaton,  receiving an input 
event, changing its state, and emitting the reaction. Naturally, the transition of 
an automaton is instantaneous. This justifies the synchrony hypothesis. 

2. N a t u r a l  S e m a n t i c s  
We use natural semantics to present the different aspects of a language in a 

unified manner. A natural semantics definition is an unordered collection of rules. 
A rule has two parts, a numerator and a denominator. Variables may occur in the 
numerator  and the denominator. These variables allow a rule to be instantiated. 

The numerator of a rule is again an unordered collection of formulae, the 
premises. The denominator is a single formula, the conclusion. Intuitively, if all 
premises hold, then the denominator holds. Formally, from proof-trees yielding 
the premises, we can derive a proof-tree yielding the conclusion. 

The formulae may have several form depending on the meaning they are given 
by the programmer. A very frequent form is the sequent form. A sequent has two 
parts, and antecedent (on the left) and a consequent (on the right), and we use 
the turnstile symbol F- to separate these parts. The consequent is a predicate. 
Predicates come in several forms indicated by various infix symbols. These infix 
symbols have no reserved meaning, they just  help in memorizing what is being 
defined. The antecedent usually contains information on results that  are assumed, 
whereas the consequent represents the information that  is being described. For 
example, the formula: 

p l- e x p  : T 

expresses that  in the context p (giving e.g. the types of identifiers) the expression 
exp has the type T. 
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Some structure is introduced in the collection of rules. To this end, rules may 
be grouped into sets, with a given name. Formulae that are provable by a specific 
set of rules are usually denoted by placing the set~s name on top of the turnstile 
(b-), as in the tbllowing example: 

ova]. 
p F- exp -* value 

Natural semantics define a formalism that enables us to use a computer to 
reason about the semantics of a language. Typically, our unknown will be type 
vMues, execution states or generated code. There are many approaches to turn 
semantics definition into executable code. The one we use for this implementation 
of an interpreter is to compile rules into Prolog code, taking advantage of simi- 
larity of Prolog variables and variables in inference rules. Roughly speaking, the 
conclusion of a rule maps to a clause head, and the premises to the body. Distinct 
forms of :formulae map to distinct Prolog predicates. An equation is turned into 
a Prolog goal. Given an ESTEREL program and ESTEREL's dynamic semantics, 
the interpretation of the program can be obtained by executing the corresponding 
Prolog goal. The compiler is provided by the CENTAUR system. The fact that we 
use Prolog to execute the dynamic semantics will appear in section 3 dealing with 
the control of the execution. 
2.1. The Dynamic Semantics of ESTEREL 

The data manipulated by the dynamic semantics are the executed program, 
the memory environment, and an input/output handler. During the interpre- 
tation, the program and the memory evolve to take into account the effects of 
execution. Any communication with the outer world is performed through the 
input/output handler. This handler permits a symbolic linking of the interpreter 
with an interface. 
2.1.1. The Main Loop 

Due to the synchrony hypothesis, any reaction to an input event is supposed 
to be instantaneous, thus defining an ESTEREL instant. The main body of the 
execution is a loop where each pass corresponds to one instant. This loop consists 
of four phases: 

1. reception of an event. 
2. computation of a reaction to the event. 
3. emission of the computed reaction. 
4. preparation of the program for the next instant. 

In most cases, this loop is infinite since ESTEREL programs usually describe 
systems that run indefinitely (they define a relation between infinite sequences of 
inputs and outputs). However, some programs do not run indefinitely, they are 
detected in the second phase. For such programs, the interpreter stops at the 
end of the third phase, after having emitted the last reaction. A program whose 
execution is finished satisfies a property called termination. 

Receiving a new event only provokes a modification of the memory. For this 
phase, the interpreter provides a communication with the outer world using an 
interface implemented in the Lisp part of the system. This interface uses graphical 
objects. 

During the second phase, the dynamic semantics performs a normalization of 
the executed program and the memory in a rewriting system. The modification 
of the memory is the elaboration of the output reaction, while the modification of 
the program is the computation of a new State. This second phase is called the 
normalization or execution phase. We describe this phase more precisely in the 
next section. 
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The next phase is the communication of the computed reaction to the outer 
world. The meaningful data  are the values of the global signals found in the 
memory. The interpreter also provides an interface using graphical objects for this 
phase. 

The fourth phase finishes the computation of the new state. Three operations 
must be done: 

1. Clean the values of local signals, so that  they are not yet emit ted for the 
following instant. 

2. Set up the different temporal  guards that  appear in ESTEREL constructs. 
Conditionals triggered by the presence of signals in the coming instant are 
introduced in the program. 

3. Perform some clean-up in the rewrit ten program, for example prune the parts 
where execution can no longer occur. 
These operations are done by a simple tree traversal that  performs yet another 

rewriting. This step is called an expansion step. The resulting program is ready 
for a new normalization. The computation for the next instant can proceed as 
soon as a new input event arrives. 
2.1.2. The  N o r m a l i z a t i o n  P h a s e  

The normalization phase uses a rewriting system to express the evolution of 
the memory and the computation performed during the execution. Each elemen- 
tary rewriting corresponds to the execution of an elementary operation. After 
a rewriting, the computation continues with the resulting object program, also 
called the r e s u m p t i o n ,  until no further rewriting is possible. 

Thus, the normalization function is based on two partial functions, the ex- 
ecu t i on  function and the t e r m i n a t i o n  function. The execution function performs 
the rewritings. It takes as arguments the memory and the program and returns 
the memory and the program modified by one elementary rewriting, when such a 
rewriting is possible. The t e r m i n a t i o n  function detects programs in normal form, 
it takes as argument only a program and returns a value only when no further 
rewriting is possible. Thus, there exist no program for which both the execution 
function and the termination function have a value. However, there exist programs 
for which neither of these functions is defined. Such programs are erroneous; the 
corresponding error is called a causal  loop.  

Besides detecting the programs in normal form, the termination function com- 
putes whether the object program satisfies the t e r m i n a t i o n  property or not. As 
we already explained, this property controls the termination of the main loop of 
the interpreter. We also see later that  the termination property helps to define 
the behavior of the sequence  construct. The termination function is defined in 
the set terminated. 

2.1.3. T h e  E x e c u t i o n  F u n c t i o n  

The execution function is one of the two partial functions used in the nor- 
malization phase. This function expresses how the memory is modified, how the 
control is performed, and how the executed instruction is removed when an ele- 
mentary  operation is performed. This function is defined in the TYPOL set exec  
and is represented by judgements of the following form: 

exec 

r n e m  ~- s tar  =~ s tar  ~, rnern l 

The terms s tar  and  m e r e  are given as arguments, s tar  is an ESTEREL program 
to execute and m e r a  is the memory describing the values of the free variables 
appearing in star.  The terms s tar  ~ and m e r e  ~ are returned by the function, they 
are the rewrit ten program and the modified memory. 
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We take a closer look at some rules from this set. 
- Execution of an ass ignment  statement.  Let us consider the rule for the 

as sis,v_ment statement:  

eval 

exp update(p, x, p') 
exec 

:= nothing, me (p', 

The memory is divided in two parts for the variable memory and the signal 
memory. The execution of an ass ignment  s tatement provokes a modification 
of the variable memory p into p'. The resumption is the blank statement  
no th ing .  

- Execution of the p r e s e n t  statement.  Here, we give one of the rules for the 
p r e s e n t  statement:  

s ig_presence(a ,  S, +,) 
exec 

mere(p, (7) I- i f  exp t hen  s%atl e l s e  star2 =~ sta$1~ mere(p, •) 

If the signal S is present (denoted by +) ,  then the execution of this conditional 
corresponds to the execution of the first branch, with the same memory. This 
rule (:in fact, not only this one) shows how a p r e s e n t  s tatement  alters the 
control flow of the execution. 
Execution of the wa tch ing  statement.  The watching statement  is one of the 
ESTEREL constructs that  implement temporal  guards, i.e., constructs that  
allow the apparition of a signal to limit the time taken by operations. Let us 
consider the rule that  defines its behavior: 

exe¢ 

m e r e  ~- s tar  =~ s tar ' ,  m e r e '  
exec 

rnem ~- do star watching S ~ do star' watching S, mem' 

This rule shows that  the "one step" execution of some ESTEREL constructs 
can be expressed directly from the execution of a subpart .  It appears that  
the wa tch ing  construct has no effect on the execution within an instant. In 
fact, the real behavior of this s tatement is described in the expansion phase 
(phase 4 of the main loop), by the rule: 

expanse 
~- s tar  --* s tar '  

expanse 
do star watching S -~ present S else do star' watching S 

This means that  in the coming instant~ the expansion of the instruction s tar  
will be executed only if S is not present. 

- Execution of the s e q u e n c e .  T h e  s e q u e n c e  construct has a behavior that  
ensures that  the tail of a sequence  is always executed after the beginning 
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is finished. One first expresses that  executing a sequence is executing its 
beginning with the following rule: 

exec 

mere  I- s ta t l  =~ stat~l, mere '  
exec 

m e m  t- s tat l ;  star2 =~ stat~ ; stat2,  mere '  

Then one expresses that  the tail can be executed if the head verifies the 
termination property: 

terminated 
F- s ta t l  -* true, Otraps 

exec 

m e m  t- stat2 =~ stat~2,mem ' 
exec 

m e m  F s ta t l ;  stat2 ~ stat~2, mere '  

- Execution of the p a r a l l e l .  In a way the execution of the p a r a l l e l  construct 
is very similar to the execution of the s e q u e n c e .  However, it is not necessary 
to wait until the head has been completely executed to execute the tail. No 
preference is given to either way and the two rules for the head and the tail 
are symmetric, and similar to the first rule of the s e q u e n c e .  

exec 

mere  I- s ta t l  =~ stat~, mere '  
exec 

mere  F s ta t l  Ilstat2 ~ stat~l I lstat2, mere' 

e x e c  

mere  ~- stat2 ~ stat~2, mere '  
exec 

mere  F- s ta t l  Ilstat2 ~ star1 Ilstat~, m e m '  

These two rules do not exclude each other. Each time a p a r a l l e l  construct 
is executed both  rules can apply. Thus, the execution is not determinis- 
tic. The parallelism in the ESTEREL language comes directly from this non- 
determinism in the interleaving of the elementary steps. The parallelism found 
in ESTEREL has the same properties as the parallelism that  one can find in 
~-reduction for the A-calculus. 
Note that  the execution of statements like no th ing  or h a l t  is not defined. On 

the contrary, the termination function is defined for such statements.  Rewriting a 
s tatement in n o t h i n g  is virtually removing this s tatement from the program. 

3. T o o l s  for  V i s u a l i z i n g  E x e c u t i o n  

The purpose o f  an execution visualization tool is to animate the program 
during the interpretation, using different colors or typefaces to express the cur- 
rent state of execution as in figure 1. Visualizing enhances debugging by helping 
the programmer to detect places where the execution behaves differently from 
expected. 

Visualizing contains three problems. The first problem is to track correspon- 
dences between the resumptions of the rewritings and the original program, which 
is actually displayed on the screen. To solve this problem we use mult i -occurrences 
as described in the next section. The second problem is to detect in the resumption 
the expression that  axe worth emphasizing in the program for the current s tate of 
execution. This problem can be solved systematically from the dynamic semantics. 
The third problem is to transform the computed data  in an actual display of the 



63 

rOgram. This problem is easily solved using the selection machinery of CENTAUR 
aths] and will not be described in this paper. 

o..',H, s..ll.°t l 
I [ ]  ~ i l e  Di&p/ay e d i t "  ' I 
iilnal S in [~.l 

loop i ~  
i ~ i t  S: [~)J 
e . i t  ol 111111 

end It!i!il 
I I  k~iil 
every INPUT do i 

emit S" 
pr iseni  [ ]  i~-~,..:ili 
ind  l~iIen 

encl l+l 

Figure 1 Examples o f  execution points  (in bold face and of  a signal 
blocked in read access (in reverse video 

3.1. Subject Tracking 
We use occurrences and multi-occurrences to designate sub-expressions of a 

tree. Occurrences are strings of navigation commands that  enable us to express 
the position of an expression in the tree. Multi-occurrences are used when one 
want to express that  an expression is not a sub-expression of the tree, but  that  
it shares sub-expressions with this tree. The expressions that  are emphasized 
in figure i are designated with multi-occurrences. During the rewritings in the 
dynamic semantics the expressions are given multi-occurrences. When a term tl 
with the multi-occurrence mx is rewritten in a term t~, one computes a multi- 
occurrence m2 to go with t2 that  expresses what  sub-expressions of t2 come from 
tl .  
e x a m p l e :  if t l  is rewritten in t2 where these terms have the following values: 

tl = present S then emit 0 end; emit P 
t2 = emit O; emit P 

then the multi-occurrence m2 associated with t2 will have the following value: 

ms = u[s(s(mi ,  1), 2), s (ml ,  2)] 

where ml  is the multi-occurrence associated with t t ,  to express that  the first son 
of t2 is a sub-expression of ml  and give its place in ml  and do the same for its 
second son. 

In a rule, the variable subject gives the multi-occurrence associated to the 
expression that  appears to the right of the turnstile ([-) in the conclusion of the 
rule. Using this feature we can define a sub j  e c t  function that  returns the multi- 
occurrence associated to any expression. This rule is defined using the following 
axiom: 

subjec t  
F- exp --* subject 

3.2. Execution Observation 
Now, we describe how we detect the interesting expressions (and the corre- 

sponding multi-occurrences~ in the resumption of the rewritings. This work is per- 
formed at two moments. Tne first one is between each call to the execution func- 
tion, in the normalization phase. The second one is during the expansion phase. 
The observation is performed by two functions that  return multi-occurrences. We 
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show that  the description of these functions can be systematically derived from 
the dynamic semantics. 
3.2.1. Generalized Axioms 

In TYPOL, every set of rules defines a function or a property. A generalized 
axiom is a rule which expresses this function or property on a construct without any 
recursive call for the same property on subterms of this construct. The following 
rule is a generalized axiom: 

eval 
p, a F- exp --* val update(p,  x, val, p') 

exec 

Although it has premises, none of these premises state that  the execution function 
is recursively called on a subterm. 

The following rule is not a generalized axiom. The premise states that  one has 
to execute an elementary rewriting in the body of the loop construct to execute 
an elementary rewriting in the entire construct: 

exe¢ 

mere ~- star =~ star', mere' 
eXeC 

mem ~ loop stat end ~ star'; loop star end, mere' 

The generalized axioms are the rules that  express a property on the constructs 
that  are elementary relative to this property. We shall say tha t  the rules that  are 
not generalized axioms are recursive rules. 
3.2.2. Observation of the Normalization Phase 

We have explained above that  every rewriting that  appears in the normal- 
ization phase corresponds to an elementary execution step. When stepping the 
execution we want to show the exact situation of the instructions that  will be 
reduced in all the possible elementary steps. These points correspond to the ex- 
pressions where a generalized axiom cou ldbe  applied in any possible application 
of the execution function. 

We also want to show the exact situation of all the points where no rewriting is 
possible, this gives a symmetric notion of elementary execution suspensions. These 
points correspond to the expression where a generalized axiom of the termination 
function expresses that  the execution is suspended. At last, we want to express 
the temporary blocking of execution that  come from a synchronization discipline 
on the access to signals. 

With  these three notions, we have a criterion to apply on the dynamic seman- 
tics that  enables us to derive a TYPOL function tha t  computes the corresponding 
sets of multi-occurrences. This resulting function is named the front function, it 
is described by judgements of the following type: 

front 

sigs b stat --* triple( seh  , set2, set3) 

The first parameter,  sigs, is the set of all the signals which can still be emitted 
in the same instant - -  this set is used to detect the temporary blockings coming 
from the synchronization. The expression star is the s tatement  that  describes the 
state of execution. The returned triple contains three sets of multi-occurrences 
designating sub-expressions of the program. The first component set1 designates 
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the instructions where an elementary step of execution can occur next, set2 des- 
ignates the  expressions where the execution is blocked on synchronization, set3 
designates the points where the execution is suspended. 

If we find a place where a generalized axiom from the set exec  can be applied, 
the  corresponding expression should be designated as an elementary execution 
step. The following rules are two generalized axioms from this set: 

eva1 
p, a H exp  --~ val  update(p, x,  val,  p') 

exe¢ 

:= nothing, 

eval 
p~ ~ F- exp -+ t r u e  

exec 

m e m ( p ,  a) F- if exp then s t a t l  else star2 end ~ s ta t l ,  m e m ( p ,  a) 

To these: two rules correspond two axioms in the set f r o n t :  

front 
si gs F- x := exp -~ tr iple(  { subj  ect } , O, O) 

f r o n t  
s igs  F- i f  exp t hen  s ta t l  e l s e  star2 end --* tr iple(  { sub jec t } ,  O, O) 

These rules state that  the expressions affected by the elementary executions are 
designated by multi-occurrences appearing in the triple's first set. 

If we find a place where a generalized axiom from the set defining the termi- 
nation function can be applied and expresses that  the execution is suspended, we 
must  express this in the front function. The following rule from the set t e r m i n a t e d  
is an example of this case: 

t e r m i n a t e d  
halt -~ false, Otraps 

The con:esponding f r o n t  axiom is as follows: 

f ron t  
si gs  F- h a l t  --+ triple(O, O, { sub jec t } )  

Here the; corresponding multi-occurrence is kept in the triple's third set. 
Execution and termination are symmetric; recursive rules of the set exec  

correspond to recursive rules of the set t e r m i n a t e d .  We provide corresponding 
recursive rules for the set f r o n t  too. These rules express that  all the interesting 
expression found in a construct where a recursive of the execution function applies 
are the execution points that  can be found in the subparts  where a recursive call 
is possible. For example, we have two rules for the p a r a l l e l  construct in the set 
exec,  they express that  the execution can proceed in either branch: 

O X O ¢  

mere  F- s ta t i  ~ stat~, m e m '  
exec 

8tail llsta   stat llstat , me ' 
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exec 

mem t- stat2 ::~ statl2, mem' 
exec 

raem F star1 lister2 ~ star1 Hstat'2, mere' 

The front function replaces the non-determinism of the execution function by an 
actual representation of the parallelism, by showing all the instructions that  could 
be executed: 

front 

sigs P statl -- , triple(setl ,set] ,setf)  
front 

sigs F stat2 -* triple(set2, set~, set~') 
front 

sigs ~- stahllstat2 ~ triple(set1 u set2, set] u set~, set i' u set~) 

The synchronization discipline in ESTEREL expresses that  all reading access to a 
signal (corresponding, e.g.~ to the instruction p r e s e n t )  must be performed after 
all writing access (corresponding to the  instruction emit) .  To see why a program 
fails to execute, we need to see when this discipline alters the execution. There 
exists a function, the potential function that  approximates the signals that  can still 
possibly be emitted from the current execution state in the current transition. The 
signal memory cells are marked using this information, thus permitting to forbid 
any reading access when necessary. The function that  enforces this discipline is the 
function that  permits to read in the signal memory: s ig_presence .  A systematic 
way to detect the places where the access discipline alters the execution is to detect 
the execution rules that  perform a call to this function: 

s i g_p re sence (a ,  s, +,  Value) 
exec 

mem(p~ ~) ~ p r e s e n t  s t hen  statl e l s e  star2 end =~ statl, mere(p, a) 

s ig_presence(a ,s , - ,Value)  
exec 

me're(p, a) ~- p r e s e n t  s t hen  statl e l s e  star2 end ~ stat2, mere(p, a) 

In the front function, we use directly the result of the potential function to 
know whether the s i g_p re sence  function will block the execution or not. 

subj ec t  
s E sigs F- s --* s_subject 

f ront  
sigs F p r e s e n t  s t hen  statl e l s e  stat2 end -~ triple( {subject}, {s_subject}, ¢) 

s ~ sigs 
f ron t  

sigs F- p r e s e n t  s t hen  statl e l s e  stat2 end --* triple({subject}, O, ~) 
The call to s i g _ p r e s e n c e  are always part  of an generalized axiom for the 

execution. Thus, the expression that  are detected as blocking the execution are 
always subparts  of an expression detected as a possible elementary execution step. 
3.2.3. Observation of the Expansion Step 

The expansion step is not a normalization and we are not interested in the 
same phenomena. Here the rules of interest are not generalized axioms. The 
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interesti[ng rules are the rules where a p r e s e n t  construct has been introduced for 
a temporal  guard. The rule for the wa tch ing  construct is one such rule: 

expanse 
star --+ stat '  

expanse 
do star watching S -+ present S else do stat' watching S 

The tool for the observation of the expansion step is defined in the set 
show_xpans. This set contains the following rule for the wa tch ing  construct: 

show_xpans subject 
~- s tat  -+ set ~ S -+ posi t ion 

show_xpans 
}- do stat  watch ing  S -* set U {posit ion} 

The introduction of a p r e s e n t  construct corresponds to the raising of a tem- 
poral guard. We designate the signal on which the guard is raised. 

The set show_xpans is designed to traverse exactly the part  of the tree which 
is traversed by the set expanse.  Thus, any rule from the set expanse  contain- 
ing a recursive call to the expansion function has a corresponding one in the set 
show_xpans that  contains a recursive call to the expansion observation. This can 
also be done systematically. 

4. Tools  for  E x e c u t i o n  C o n t r o l  
A good debugger must also provide a way to execute slowly a program so 

that  the programmer can observe precisely the key pa r t s  of his program. Ideally 
the programmer must be able to command the speed  of execution at any time. A 
generic control is already given for the execution of TYPOL itself. It is possible to 
customize this generic control tool to give a control bet ter  suited to the ESTEREL 
execution model. 

The controller is actually a finite state automaton,  writ ten in the ESTEREL 
language itself. It receives messages from all parts of the system, such as this rule 
has been applied, or this button has been depressed. The generic tool provides 
facilities to design a specific automaton for a language. 

The basic events at tached to the application of rules are of four kinds: 
1. Try. A rule is tried in the computation. 
2. Prove. The application of a rule has been proved. 
3. Back. A new t ry  is done for a rule. 
4. Fa//. The application of a rule has failed, i.e., this rule does not apply. 

These events describe the computation as it is done in the Prolog interpreter.  
When a rule is applied it is possible to know the applied rule and the multi- 
occurrence designating the data  it is applied on. This information helps to control 
the execution. For example, the multi-occurrence designating the subject data  
can be used to detect break-points in the program, although it is not done in this 
version of the interpreter. The output  of this generic debugger is a collection of 
messages, such as make this button appear sent to the interface part  of the system, 
or continue the execution sent to the logical kernel, i.e., the Prolog interpreter. 

With this controller, we a t tach operations to certain points of the execution. 
For example, one says W~hen this rule is applied, flush the input  event (the external 
part  of the input /ou tput  communication is performed this way); one can even have 
conditional operations, like at this point, i f  there is a breakpoint on the subject o f  
the rule, prompt  the user for a command. The control of the execution is designed 
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on top of the dynamic semantics, whose design is completely independent.  One 
only needs to choose in the dynamic semantics the points where a control has to 
be added and to design the operations at tached to this control, using all the data  
available in the computation. 

For the ESTEREL interpreter we selected two points in the execution: 
- The end of an instant. 
- The execution of one rewriting in the normalization phase, i.e., the execution 

of an elementary instruction. 
The first point is at tached to the event Prove for the rule of the set normal  

that  expresses the end of the normalization phase. The second point is a t tached 
to the event Try for the rule of the same set that  expresses that  a rewriting will 
be performed. The execution can then be broken down into steps, going from one 
of these points to another one. The interpreter provides a tool to express different 
commands such as: 

- Execute the  next elementary instruction and stop (command I n s t r u c t i o n ) .  
- Execute the  next instant and stop (command I n s t a n t ) .  

The generic controller provides other commands, that  we keep in our con- 
troller: 

- Abort as soon as possible (command Abort).  
- Stop as. soon as .p°ssible (.command Break). 

Go wlthout carmg about mstants  or elementary executions or any similar 
event (command Go). 

All these commands are grouped in a command box where some options appear 
only when the controller prompts the user for an order. The options Break and 
Abort are always available. 

Oebug-box 

Rbort 
Break 
Go 

I Esterel 

Instruct£on 
Instant 

Figure 2 The controlIer's command box 

5. F u r t h e r  D e v e l o p m e n t s  

This interpreter is a first step toward a complete debugger for the paral- 
lel language ESTEREL. Earlier experiments like [ml] only dealt with sequential 
languages. The t rea tment  of parallelism introduces a new style of specification~ 
making extensive use of rewriting to describe dynamic semantics. We have shown 
tha t  this new style of specification iss still within the scope of natural  semantics. 

We have also shown tha t  visualizing the execution state requires non-trivial 
computations. We have sketched a methodology to extract  from the dynamic 
semantics a tool that  helps visualizing execution. However, this methodology was 
a first a t tempt  at solving this kind of problem and we have only provided an ad 
hoc t rea tment  for this particular language. Regardless, the existence of a stated 
and well understood criterion of observation entitles us to claim that  the shown 
information is relevant. 

Visualizing is one of many  debugging tools that  track a correspondence be- 
tween the executed program and the term that  represents the execution state. 
Other  such tools would, for example~ allow to set breakpoints in the program so 
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that the execution stops when reaching such points, or to access the value of local 
variables during the execution. In these examples, one must find the expressions 
that inherit the breakpoints in the current execution state or the expressions that 
represent the local variables. 

The CENTAUR system proves to be a good choice of a tool box for the de- 
velopment of an application like this interpreter. The semantics definition is kept 
in a pure form, free of implementation details. It is therefore easy to maintain 
and to check for correctness. The design of the man-machine interface is eased 
by the graphical tools which are already provided by the system. The result is an 
application which is easy to integrate in a more complete environment, including a 
type-checker and a compiler, since such tools can also be developed in the system. 
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