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Abstrac t  

Grammar Flow Analysis (GFA) is a computation framework that can be ap- 
plied to a large number of problems expressed on context-free grammars. In this 
framework, as was done on programs with Data Flow Analysis, those problems are 
split into a general resolution procedure and a set of specific propagation functions. 
This paper presents a number of improvement techniques that act on the resolu- 
tion procedure, and hence apply to every GFA problem: gr&rarno~r partitioning, 
non-terminals static ordering, weak stability and semantic stability. Practical ex- 
periments using circularity tests for attribute grammars will show the benefit of 
these improvements. This paper is a shortened version of [JoP90]. 

1 I n t r o d u c t i o n  

In optimizing compilers, we have to statically infer run-time properties of programs, so 
that  we can take advantage of this knowledge to generate better code. For instance, we 
may want to know whether the value of a given variable in an expression is statically 
predictable, so that  we can use this constant value to generate better code (this is called 
constant .folding). It turns out that many similar problems, when expressed formally, 
all reduce to solving a set of equations on the program graph; these equations relate 
pieces of information attached to immediately neighboring nodes, and edges are used to 
propagate this information. The basis of Data Flow Analysis (DFA) is that  the method 
to solve these equations is independent from the semantics of the equations themselves, 
so that  it is possible to devise a generic resolution procedure [COC79]. This procedure 
is parametrized by the specific equations of the problem at hand. Any improvement of 
this generic resolution procedure will hence benefit to every DFA problem. The DFA 
framework has been universally acknowledged, and most of the problems dealing with 
static analysis of programs are expressed in terms of DFA [JoM81, ASU86]. 

Grammar Flow Analysis (GFA) is a technique recently introduced by Reinhard Wil- 
helm and Ulrich M6ncke [M6W82, M6n87] that  transports that  theory to the computation 
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of properties of context-free grammars. GFA is performed on the grammar graph, whose 
nodes correspond either to non-terminals or productions, and whose edges are drawn ac- 
cording to the productions. Propagation functions are defined on productions, and carry 
some information that is attached to the non-terminals. According to the direction of 
these functions, we distinguish bottom-up and top-down GFA problems. In a bottom- 
up problem, the information attached to the LHS non-terminal of a production depends 
on the information attached to the non-terminals in the RHS. Examples of bottom-up 
problems are: 

• computing the Firstk sets on a context-free grammar [ASU86, MSW82]; 

• computing the synthesized dependency graphs in an attribute grammar (AG) and 
testing it for circularity [Knu68, LOP75, DJL84, JoP88, DJL88]; 

• pre-computing the sets of matching patterns in the construction of a bottom-up tree 
pattern matcher [HOO82, MSn85]. 

In a top-down GFA problem, the information attached to a non-terminal in the RHS of 
a production depends on the information attached to the LHS non-terminal, but generally 
also on the previously computed results of an associated bottom-up problem, which are 
attached to the non-terminals in the RHS [MSn87]. Examples of these are: 

• computing the Followk sets on a context-free grammar, given the Firstk sets; 

• computing the inherited dependency graphs in an AG, which depend on the syn- 
thesized ones; 

• finding the sets of totally-ordered partitions in the construction of an /-ordered 
AG equivalent to a given non-circular AG [EnF82]; this computation also uses the 
synthesized dependency graphs. 

Although bottom-up and top-down GFA problems are not symmetric in the same way 
as e.g. forward and backward DFA problems, they are solved by similar generic procedures. 

In some cases, the complexity of a GFA problem can be reduced by computing only 
approximations of the exact solution [MSn87]. This subject will not be addressed in this 
abstract, but it is in the full report [JoP90]. 

As can be seen from the list of examples given above, GFA is a very general and useful 
technique for every kind of language processors. Thus, every improvement of the general 
resolution procedure will benefit to the whole broad domain of GFA. The issue of how to 
efficiently implement the general GFA resolution procedure was only briefly touched in 
the original papers [MSn87]. Conversely, much work has been done to efficiently solve a 
particular GFA problem, namely testing an AG for non-circularity. The purpose of this 
paper is to exhibit a number of more or less well-known techniques, originally devised for 
that specific purpose, that actually apply to the whole domain of GFA and can improve 
the resolution of every GFA problem. These techniques are: 

• grammar partitioning [Che81], in which the grammar is decomposed into subgram- 
mars according to the "derives from" relation, and the subgrammars are processed 
in a~L order derived from the quotient relation; 
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• non-term/na/s static ordering [Par85, JoP88], in which the same "derives from" 
relation is used to derive a near-optimal order for processing the non-terminals; 

• ~rea~ stability [DJL84], which allows to skip the processing of non-terminals and 
productions that are known to derive only terminal trees; 

• semantic stabi//ty [Par85, Che85, JoP88], which takes into account the "age" of each 
piece of information to avoid redundant computations. 

The rest of the paper is organized as follows. Section 2 will present in an informal way 
the theory of Grammar Flow Analysis; in particular, a naive resolution algorithm will be 
given. Sections 3 to 6 will each be devoted to one of the four improvement techniques 
listed above, and the subsequent section discusses their combination. Section 8 briefly 
presents the results of a practical experiment using non-circularity tests for AGs as the 
test case, together with a short discussion thereof. The paper ends with some concluding 
remarks and the list of references. More details, examples and results can be found in 
[JOB90]. 

The improvements will be described in such a way that they are readily applicable to 
bottom-up GFA problems. Their transposition for top-down problems will generally not 
be deta~ed, but it is an easy exercise left to the interested reader (see also [JoP90]). 

2 Bases  of  Grammar  Flow Analysis  

This section presents only briefly and informally the basic notions, data structures and 
algorithms involved in GFA. For a more comprehensive discussion see MSncke [MSn87]. 
The following formulation is borrowed and adapted from M6ncke & Wilhelm [MSW82]. 

2.1  T h e  g r a m m a r  g r a p h  

Let G -- (N, T, P, Z) be a context-free grammar, with N the set of non-terminals, T the 
set of terminals--which are irrelevant to GFA 1 - ,  P the set of productions and Z the 
start symbol. Each production will be of the form p : Xo ~ X1X2. . .  X,~p, where np is the 
number of non-terminals in the RHS of p and the terminals are omitted. The occurrences 
of non-terminals in a production are numbered from left to right, p[0] = X0 being the 
LHS one, and p[i] = Xi, 0 < i _~ np, being the RHS ones. 

The grammar graph is a directed graph G -- IV, E / with set of vertices V -- N U P 
and set of edges E defined as follows: 

V p e P ,  V X E N , ( p , X )  E E  ¢==~ X=p[O] 

V p e P ,  V X e N , ( X , p )  e E  ¢=~ 3i, O<i<_np, X=p[i]  

1They are indeed irrelevant to the GFA framework and resolution procedure, even if they are relevant 
to a particular problem, e.g. for Firstk and Followk. 
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2.2 GFA problems 

A GFA problem is a triple (L, ((~p)~p, (¢x)xe~l. The first component,  L, is the space of 
flow information; pieces of information are attached to non-terminals as Lx E L. 2 

The second component,  (¢p)~p,  is a family of information propagation functions. For 
a bottom.-up problem, and for each production p, there exists one propagation function 
¢p,0 : L '~p ~-* L, which maps  a tuple of elements of flow information (Lp{il)0<i__.~ p on the 
non-terminals in the RHS of production p into an element of information to be at tached 
to the LHS non-terminal.  For a top-down problem, and for each production p, there 
exists a list of propagation functions Cp,i : L ~-~ L (0 < i ~ np), which map  an element 
of flow information on the LHS non-terminal of p into an element of information for p[i], 
0 < i < n~p. Each of the Cv,0 and Cv, i may use other information defined on the grammar,  
but assuming not to depend on the problem. In addition, in a top-down problem, the Cpj 
may  use information on all the non-terminals of p that  was previously computed for an 
associated[ bo t tom-up  problem. 

Lastly,., (¢x)xeN is a family of information combination functions, Cx : L IPxl ~ L 
where 

{p E P I p[0] = X} for a bo t tom-up problem 
Px = {p E P ] 3i,0 < i < np, p[i] = X} for a top-down problem 3 

Px is thus the set of productions in which the information attached to X is to be com- 
puted, according to the direction of the problem at hand; then~ Cx combines the elements 
of information computed on each of these productions into a single element to be at tached 
to X.  Note tha t  the Cx must  be commutat ive for the problem to be well-defined. 

2 .3  T h e  s o l u t i o n  o f  a G F A  p r o b l e m  

The solution on g rammar  C of the DFA problem (L, (¢p)~p,  (¢x)xe2v) is a set {Lx}xeN, 
where L x  E L for each X in N,  of elements of information attached to each non-terminal, 
verifying one of the following equations: 4 

• for a bo t tom-up problem: 

v x  c N, L x  = (1) 

• for a top-down problem: 

VX C N, Lx = Cx[¢p,~(L~01)]~x,~,l--x (2) 

These equations express tha t  the solution is a combined fixed point of a set of functions, 
and can thus be computed by iteration over the g rammar  graph. 

2For some problems there is actually one information space Lx per non-terminal X, but this does not 
change muc]h the formulation. 

3In that case, Px is really a multiset since a same non-terminal may appear more than once in the 
RHS of some production. 

4In these two equations, the notation f[xj]i~s stands for f(zj~, zj3,... , zjh ) if S = (jl, j2, . . . ,  j~). 
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Algor i thm/ to  (G: grammar): 
foreach X E N do Lx ~-- 3_ endfor; 
repeat convergence ~-- true; 

foreach p G P do 
let X = p[0]; 
old ~- Lx; 
Lx ~- ¢~c(~0(L~q, L~21,..., L ~ ] ) ,  Lx) 
if  Lx ~ old then 

convergence ~-- false 
endif  

endfor 
until convergence. 

Figure 1: Naive GFA resolution algorithm 

2 . 4  A n a i v e  r e s o l u t i o n  a l g o r i t h m  

In this section we present an  algorithm to solve bot tom-up DFA problems (the adaptation 
to top-down ones is obvious; it can be found in [JoPg0]). We assume that  the information 
space L is partially ordered with a bot tom element 3_ and that  a least fixed point is 
sought. We also assume that  the combination functions ~ x  are incremental, i.e., 

~x(~ , ,  ~2 , . . . ,  ~l~xl) = ~ ( ~ 1 ,  ~ ( ~ 2 , . . .  ~ ( ~ l p x l ,  ±) ' "  ")) 

for some function @~¢. This condition is not absolutely necessary but we assume it holds 
to make the algorithm simpler. Also, all of these assumptions are verified by each of the 
GFA problems listed in section 1, because in those cases the information space is a set 
and the combination functions are the union function, which is incremental. The  naive 
resolution algorithm is presented in Fig. 1. 5 It is naive in the sense that  it is a simple 
derivation of the fixed point equation (1) and there exists no special order to process 
the non-terminals and the productions, i.e., the grammar graph is visited in a totally 
random order. The purpose of the improvements to be presented in the following sections 
is to determine a near-optimal order and to eliminate redundant computations, such that  
information is propagated faster along the graph and convergence is reached faster. 

As a special but quite common case e we derive a version of this algorithm for problems 
in which the information space is structured as a set of sets, i.e., each Lx is itself a set, 
and in which the combination functions are the set-theoretic union. In this case, the 
propagation functions are more easily expressed in terms of individual elements of these 
sets. We hence assume that ,  for each production p, there exists an auxiliary function 
~;,o : Lp[ll x Lp{2l x . . .  x L~,pl ~-~ L~0l, which maps a tuple of information elements 
on the RHS non-terminals into an element of information for the LHS one. The whole 
propagation function is then defined as the set-theoretic genera~at ion  of ¢ko, that  is: 

~,0(L~ll, L~t,  ... ,L~-,I) = {~ ,0(~ , ,~ , . . .  , % )  l ~ ~ L~,1, 0 < i < ,~} 

SThe names of the algorithms are chosen to recall those of the practical experiment of section 8, which 
are themselves a subset of those used in the full report [JoPg0]. 

SAs an evidence, MSncke considers only this case in his reference paper on GFA [MSn87]. This is the 
case for instance of the First~ and synthesized dependency graphs problems. 
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init: 
iterate: 

select-nt: 
select-prod: 

combine: 
compute: 

test: 
increase: 

Algori thm A3 (G: grammar): 
foreach X G N do L x  ~-- 0 endfor; 
repeat convergence *-- true; 

foreach X E N do 
foreach p G P x  do 

foreach 71 G Lp[1],..., 7np G Lp[,~p] do 

if  70 ~ Lx then 
L x  ~- L x  u {7o}; 
convergence ~ false 

endif  
endfor 

endfor 
endfor 

until convergence. 

Figure 2: Naive algorithm for set-based problems 

The resulting algorithm is presented in Fig. 2. 7 Our improvements will be expressed on 
this latter algorithm, with the help of the labels attached to some of the statements. 
The transposition to the more general algorithm will not be given. The purpose of the 
improvements will be to reduce as much as possible the number of "compute" and "test" 
steps, which are assumed to be expensive s and hence dominate the running time. 

3 Grammar Partitioning 

As can be seen from the definition in section 2.2, the information flows exclusively along 
the edges of the grammar graph. It is thus natural, in order to have this information 
propagate faster, to take into account the structure of this graph, rather than picking 
non-terminals and productions at random. The first idea that  comes to the mind is hence 
to parti t ion the grammar graph into strongly connected components and process those 
components in the order defined by the quotient relation. Note that  this technique was 
used right from the beginning in DFA, where the program is decomposed into a control 
flow graph of basic blocks, and blocks are processed from inner to outer [COC79, JoM81]. 

The order in which productions are processed depends on the order in which non- 
terminals are processed; more precisely, each time a non-terminal is processed, all the 
productions of which it is the LHS symbol are processed (line labeled "select-prod" in 
Algorithm A3). This must be so in order to ensure that  when a non-terminal is referenced 
in the RHS of a production, the information attached to it is as complete as possible. We 
hence require, when computing the strongiy connected components of the grammar graph, 
that  every production vertex be in the same component as the vertex corresponding to 

~Note that we already have decreased the random factor by subordinating the choice of the production 
to process to the choice of its LHS non-terminal. 

Sin non-circularity tests for AGs for instance, these steps involve the computation of a transitive 
closure and testing the membership of a (sometimes big) graph in a set of graphs. 
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Algorithm .44 (G: grammar): 
build the graphs r and I'0 from G; 
apply algorithms for Sorting, Entry Points Priority, Other Symbols Priority; a 
f o r  i ~ 1 t o  K d o  

apply Algorithm A0 or .43 to subgrwnmar Bi; 
discard or store away the information attached to non-terminals of priority i 

e n d f o r .  

aIf necessary, more details on these algorithms can be found in the original works [Che81, 
DJL84] and in [JoP90]. 

Figure 3: GFA resolution algorithm using partitioning 

i t s  LHS non-terminal. We thus define the following auxiliary relation: 

VX, Y E N, X F Y ¢=~ 3p E P, 3i, 0 < i <_ np, X = p[i] A Y = p[O] 

r is the "derives from" relation on non-terminals, and its graph is the same as the grammar 
graph in which the production vertices are merged with their LHS non-terminal vertices. 

The strongly connected components of F define the subgrammars of G we are interested 
in. Moreover, if F0 is the quotient relation associated with F, F0 defines a partial order to 
be used for processing these subgrammars. Since by construction P0 is acyclic, a simple 
topological sort will derive from i t s  total order. We hence denote the subgrammars as 
Bt, B2, . . . ,  BK, where K is the total number of strongly connected components of G, so 
that Bi will be processed before Bi+l (note: Z E BK). 

For reasons to be explained later, it is interesting to distinguish entry points and output 
points 9 of these subgrammars B: 

VX e B, X e EP(B)  ¢::::v 3Y ~ B, X F Y 
V X e B ,  X e O P ( B )  ~ 3 Y ~ B ,  Y F X v ~ Y e N ,  Y r X  

Entry points of a subgrammar are thus those non-terminals that derive from non-terminals 
in subgrammars to be processed later, and output points are those non-terminals that 
derive into non-terminals of subgrammars that have already been processed or derive 
only terminal productions. Output points will not be used before next section. 

The order for processing subgrammars is used to assign a priority to each non-terminal, 
that is the rank of the stage after which that non-terminal will no longer be referenced. An 
entry point of a subgrammar will be assigned the priority (rank) of the last subgrammar 
that references it; other non-terminals will be assigned the priority of their own subgram- 
mar. This notion of priority is useful to reduce the space consumption of the algorithm, 
because after stage i we can either store in secondary memory or discard c0mpletely--if 
the problem at hand allows it--the information attached to non-terminals of priority i. 
As will be shown in section 8, this technique is very effective. The resulting algorithm is 
presented in Fig. 3. 

SAs can be seen from the definitions, the names of "entry" and "output" points are hence rather 
misleading, because they are inconsistent with the direction of the edges in the grammar graph. We 
however keep them for the sake of compatibility with previous works [DJL84, JoP88]. 
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For the top-down case, we must use the inverse of relation I ~ and swap the roles of 
entry and output points. The strongly connected components will then be the same, but 
the processing order will be different; in that case, Z belongs to B1. 

4 Non-Terminals  Static Ordering 

Grammar partitioning uses the "derives from" relation to exhibit subgrammars and derive 
an optimal order for their processing; it however leaves unspecified the order for processing 
non-termimMs and productions inside each subgra~'nmar. The purpose of this section is 
to establish a near-optimal order for processing non-terminals. Since by definition each 
subgrammar is a strongly connected component for the "derives from" relation, the latter 
is not sufficient to define the processing order, i.e., it is impossible to find a total order 
compatible with F. Heuristics wilt help make the choice. 

The first heuristic will be to order the non-terminals of a given subgrammar from 
output points to entry points; this order is indeed the "closest" to relation F. The core 
of the ordering algorithm is thus a topological sort based on relation F and starting with 
output points. The sort is however modified to solve three difficulties: 

1. Since we want output points to be the starting point of the topological sort, we must 
first delete from FIB every edge whose tail (sink) is an output point, except those 
whose head (source) is also an output point. Note that each output point is the tail 
of at least one such "back edge", otherwise it would not belong to the subgrammax. 

2. We then consider only output points and edges connecting two output points, and 
topologically order this subgraph. If this is not possible because of a cycle, we make 
an arbitrary choice in the cycle. 

3. We then proceed to topologically sort the rest of the subgrammar. If a yet unbroken 
cycle shows up, we make an arbitrary choice in the cycle. 

The resulting algorithm is completely detailed in Jourdan & Parigot [JoP88]. To 
integrate iit in the complete GFA algorithm, we need to modify A3 as follows: 

• add a call to the non-terminals static ordering algorithm in line "init"; 

• use this order in line "select-nt'. 

As for the order in which to process productions in each Px (line "select-prod"), none 
is better than any other because all the non-terminals in the RHS have been processed 
earlier in the current iteration (apart from back edges, but this is taken into account by 
the global convergence flag). We can only note that directly recursive productions should 
be processed after the others. The modified algorithm is not shown and left to the reader. 

For top-down GFA, the basic idea is the same except that we use the inverse of r and 
that the roles of entry and output points are reversed. In this case the resulting order is 
not necessarily the inverse of the bottom-up order. 

The advantages of this ordering is that, as expected, information propagates faster, as 
shown by the important reduction of the number of iterations (line '~terate") needed to 
reach convergence (see section 8). 

Note tllat this technique is similar to an improvement of DFA called "reasonable node 
listing", however its efficiency is particularly important for GFA. 
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5 Weak Stability 

Weak stability allows to skip recomputations of relations for non-terminals and/or pro- 
ductions that are known to generate only finite trees of height _< i and hence become 
"stable" after iteration i (line "iterate" in A3). This is done as follows: 

1. at the beginning of the algorithm (line "init"), no non-terminal or production is 
weakly stable; 

2. after each iteration (end of loop "iterate"): 

(a) mark as weakly stable those productions that have only weakly stable non- 
terminals in their RHS; 1° 

(b) mark as weakly stable those non-terminals that derive only weakly stable pro- 
ductions; 

3. in the course of an iteration, skip weakly stable non-terminals (line "select-nt") and 
productions (line "select-prod"). 

When used alone, this technique is not very efficient because it falls on every recur- 
sire non-terminal. However it is not totally useless, as shown in sections 7 and 8. An 
incremental variant of this technique is described in the full report [JoPg0]. 

6 Semantic Stability 

This improvement, called semantic stability, 11 aims at saving execution time by drastically 
reducing the number of redundant computations. It is based on the observation that, if 
the information used in the basic step of the algorithm (inner loop of A0 or line labeled 
"compute" in As) is "old" enough to have been processed during an earlier iteration, then 
it is useless to process it again in the current iteration, which means that we may skip the 
basic step. Of course, doing so is correct only if the information space is partially ordered 
and if the propagation and combination functions are monotonic, i.e., if skipping a basic 
step with "old" parameters does not lose any information because that information is 
already present in the "old" value of Lx, where X is the non-terminal at hand. Note 
that the formulation of algorithm A0 should be slightly modified to make this apparent. 
Note also that these conditions are not very constraining; in particular they are verified 
in every set-based GFA problem (see section 2.4). 

Thus the basic idea of this improvement is to associate a "time-stamp' with each 
piece of information and run the basic step only if at least one such piece of information 
appearing in the RHS of the computation step is not "old" enough to have already been 
processed. In the special case of set-based GFA problems, this time-stamp can even be 
associated with each element of the sets attached to non-terminals, and tested in the 
combinations in which this element appears (line labeled "combine" in A3). In that case, 
the new algorithm is as presented in Fig. 4. 

1°If partitioning is also used, non-terminals in already processed subgrammars are considered as weakly 
stable. 

llbecause, as opposed to the previous ones, it does not take into account the syntactic information 
represented by the grammar graph. 
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init: 

iterate: 

select-nt: 
select-prod: 

combine: 

check-time: 
compute: 

test: 
increase: 

A l g o r i t h m  A9 (G: grammar): 
foreach X E N do L x  *- 0 endfor; 
it ~- 0; 
repeat  convergence *-- true; 

it *- it + i; 
foreach X E N do 

foreach p E Px do 
foreach 71 G Lp{1],..., 7~  E Lp[npl do 

i f  Bi,O < i ~ nv, time(Ti ) ~ max-time(it, p) t h e n  
70 
i f  70 ~ Lx t h e n  

time(70) ~-- (it,p}; 
L x  ~ L x  u {~o}; 
convergence ~-- false 

endi f  
end l f  

end  for 
endfor  

endfor  
unti l  convergence. 

Figure 4: GFA resolution algorithm using semantic stability 

The correctness of this algorithm strongly depends on the choice of the function "max- 
time". Assuming that  the productions are numbered, we define the time-stamp of an 
element of information as the time when it was created, that  is the ordered pair (it, p} 
where it is the number of the iteration and p the number of the production being processed. 
These pairs are lexicographically ordered. 

A weak version of "max-time" is 

max-time(it, p) = <it - 2, O} 

in which we forget about the production. Indeed, any element of information created 
during iteration it - 2 has been processed at latest during iteration it - 1 and processing 
it aga~  during iteration it or later is redundant. 

To achieve a finer condition, we must require that  non-terminals and productions are 
always processed in the same order during each iteration (lines "select-nt" and "select- 
prod"). In this case, we can assume that  the number of a production is the rank at which 
it is processed during an iteration, and the definition-of "max-time" can be refined as: 

( i t - l , p - 1 )  i f p ¢ l  
max-t ime(i t ,  p) = <it 2, IPI) i f p  = 1 

because any element of information created at (it, p) can be used immediately during the 
rest of the iteration (i.e., at (it,p' / with p' > p) or during the first part of the next one 
(i.e., at lit + 1,p' / with ld < p ) a n d  thus becomes redundant a f t e r / i t  -4- 1,p/. 

The figures of section 8 will show that  this simple idea is very effective. 
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7 C o m b i n a t i o n  

All of the four previously presented improvements can be used alone or in combination. 
The most effective technique is grammar partitioning. This is because it allows to 

tailor the number of iterations in each subgrammar to the "semantic complexity" of the 
GFA problem for this subgrammar, rather than having to process the whole grammar 
during a number of iterations that is in any case at least equal to the maximum number 
of iterations in each subgrammar. Furthermore it is the only improvement that reduces 
space consumption, because the results are produced and can be disposed of incrementally 
rather than in a single burst at the end. 

Non-terminals static ordering reduces the number of iterations by ensuring as much 
as possible that all uses of some information occur after the time when it is computed. 
It can be used independently from partitioning by applying it to the whole grammar, 
the only entry point being the start symbol and the output points being the non-terminal 
deriving only terminal productions (if the grammar is assumed to be reduced). However its 
combination with partitioning is more effective since the advantages of the latter are fully 
retained: time is reduced because partitioning ensures that information on a subgrammar 
is completely computed before being used in other subgrammars, and space is reduced 
because we can forget about information attached to non-terminals that will no longer be 
referenced. 

When used alone, weak stability is not very effective because it cannot act on re- 
cursive non-terminals. However, grammar partitioning offers more opportunities for weak 
stability, because non-terminals outside the subgrammar at hand are considered as weakly 
stable, even if they are recursive in their own subgrammar. 

Syntax-based techniques reduce the number of basic computation steps by using static 
information (the shape of the grammar graph), whereas semantic stability aims at the 
same goal by using dynamic time-stamping techniques. One could thus think that the 
latter is subsumed by the former because, since information propagates faster, most of 
the basic steps are actually useful and cannot be eliminated by semantic stability. As the 
figures of section 8 will show, this is partly true, but it appears that the combination of 
both techniques is more effective than each of them taken separately; this is especiafly 
true when the semantic complexity of some (sub-) grammar is high, i.e., when the sets 
Lx contain many different elements. 

8 P r a c t i c a l  R e s u l t s  

To illustrate in practice the effects of our GFA improvement techniques, we have cho- 
sen the non-circularity test for AGs, because they fully illustrate the power of the GFA 
improvements. 

8.1 Rough r e s u l t s  

We have implemented several versions of the non-circularity test as part of the FNC- 
2 AG processing system [JoP89]. The various algorithms differ in which improvement 
technique(s) they use; they are detailed in Table 1. All of them use covering [LOP75, 
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Table 1: Features of the various algorithms 

sere. stabilitp 

simproc asm pll_c pascal simula 
nt 10 58 139' 115 126 
pr 21 216 376 216 244 
rhsm~x 4 2 4 6 6 
rhs=ve 1.14 0.46 1.07 1.18 1.13 
attmex 8 10 16 15 17 
atta~ 4.60 3.62 8.90 7.39 7.28 
K 5 57 92 58 58 
d~= 1 2 3 4 4 
dave 1 1.07 1.04 1.20 1.10 
tclcire 21 267 389 457 268 

Table 2: Characteristics of the example AGs 

DJL84], an, approximation that  strongly reduces the practical complexity of the non- 
circularity test. 

These algorithms were tried on five practical AGs of increasing complexity. All of 
these AGs are non-circular. We will use the following notations: 

• For e~:h AG: 

nt  number of non-terminals 

pr  number of productions 

rhsm~, rhsave maximum and average number of non-terminals in the RHS of any 
production 

at tm~, art=re maximum and average number of attributes per non-terminal 

K number of syntactic equivalence classes (subgrammars) 

The characteristics of our five AGs are presented in Table 2. 

• For each algorithm: 

dm~, dive maximum and average number of graphs in any L x  at the end of the 
computation 12 

12Because of covering, some Lx's might be temporarily larger than that in the course of the computa- 
tion, if one newly created graph happens to cover two or more old graphs. 
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P ~  maximum number of co-resident graphs at any time, i.e., maxti=,(~x¢lv ]Lxl) 
tcl number of transitive closures (basic steps) computed 

tcl=,c number of transitive closures computed for actually testing the non-circularity 
(see below) 
Since the three figures dm~, d ~  and tc/ci~c characterize the results of the 
problem at hand, they have been "factored out" and also appear in Table 2. 

• For algorithms not using partitioning: 

it number of iterations over the whole grammar 

• For algorithms using partitioning: 

it== maximum number of iterations over any subgrammar 

it~v¢ same in weighted average, i.e., with obvious notations, ( ~ = l  itj x prj)/pr 

Statistics gathered from the execution of the various algorithms are presented in Ta- 
ble 3. 

The tcl~,c figure is related to the way we actually test the non-circularity. Briefly 
said, we do it globally in a final pass--over either the whole grammar, when partitioning 
is not used, or each subgrammar--after all the synthesized dependency graphs have been 
computed, rather than incrementally on every graph. More details can be found in the 
full report [3oP90]. Let us only note that tcl~,c is interesting on its own since, being 
the number of final graph combinations, it is a very good measure of the "semantic 
complexity" of the non-circularity problem for a given AG. 

In the naive versions of the algorithm in which no special order is computed, the 
processing order (lines "select-nt" and "select-prod") is determined by the textual ap- 
pearance in the grammar source file. Since practical grammars are generally presented 
in a top-down manner, using textual order is close to the worst case for bottom-up GFA 
problems! 

When partitioning is used, the "useless" graphs (see section 3) are actually discarded 
rather than stored in secondary memory, and their space is reclaimed by a specialized 
garbage collector. The Rmax figure is computed by this garbage collector. 

8.2 D i s c u s s i o n  

Algorithm A4 uses only partitioning. The gains in time (i.e., in the number of basic steps 
executed) are already quite good, especially on AGs with simple syntactic structure (asm, 
pll_c). This is because information propagates faster, as shown by the decrease of the 
number of iterations (itm~x(A4) < it(As) and it~v,(A4) << it(A3)). The most important 
advantage of grammar partitioning is however the gains in space it allows to achieve: 
compare the R== figures for A4 w.r.t. A3. 

When non-terminals static ordering is used alone (As), it also makes information 
propagate faster; this is proved by the strong decrease of the number of iterations w.r.t. 
As. However it has no influence on space consumption. Comparing the results for A4 
and As gives interesting insights on the way grammar partitioning and non-terminals 
static ordering act when used separately. Grammar partitioning is more effective on 
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simproc asm pl1_c pascal sirnula 
A3 Rm.x 11 67 147 149 154 .... 

it 7 8 15 21 19 
tcl 145 2,260 5,125 9,768 5,099 

,44 Rmax 5 21 30 57 80 
itmax 4 3 13 21 14 
it~ve 3.10 1.12 4.31 7.16 8.29 
tcl 78 561 1,924 6,031 2,632 

As Rm~x 11 64 146 147 182 
it 4 3 9 9 7 
tcl 101 1,064 3,645 4,288 2,376 

A6 Rmax 5 21 30 58 99 .... 
itraax 4 3 6 8 7 
itave 2.76 1.08 2.37 3.41 4.30 
tcl 73 556 1,304 2,746 1,756 

A7 Rmax 11 67 147 149 154 
it  7 8 15 21 19 
tcl 109 900 3,555 8,446 3,865 

AS Rm~ 5 21 30 58 99 
irma x 4 3 6 8 7 
itave 2.76 1.08 2.37 3.41 4.30 
tcl 56 545 1,160 2,679 1,655 

A9 Rmax 11 67 147 149 154 
it 7 8 15 21 19 
tcl 57 588 1,165 1,942 1,628 

A10 Rmax 5 21 30 58 99 
itmax 4 3 6 8 7 
it~ve 2.76 1.08 2.37 3.41 4.30 
tcl 49 540 915 1,661 1,246 

Table 3: Execution statistics 

grammars with simple syntactic structure because it allows not to process again at each 
iteration a large share of simple subgrammars. However, for more complicated examples 
with "big" subgrammars (pascal, simuIa), the bact influence of randomly processing the 
non-terminals inside each subgrammar shows up again, which explains that non-terminals 
static ordering is more effective in these cases. Anyway, the real winner is the combination 
of both techniques (As), which gives better (and generally much better) results thaa each 
of them taken separately: there is a real synergy between these two improvements. The 
gains in space achieved by grammar partitioning alone are retained in its combination 
with non-terminals static ordering. 

Weak stability used alone (AT) has a perceptible influence only because the bare algo- 
rithm (A3) is really bad and needs a lot of iterations to reach convergence; this is especially 
true when the grammar has many terminal productions (asm). When weak stability is 
used in combination with grammar partitioning and non-terminals static ordering (As), 
this influence is however less important, but nevertheless not negligible. 

When comparing As with A3, we can see that the combination of all syntax-based 
improvements reaches its goal, which is to make information propagate faster, in a quite 
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effective way. Furthermore space consumption is reduced by virtue of grammar partition- 
ing. 

Semantic stability used alone (Ag) is also a real winner: it performs roughly as well 
as the combination of syntax-based improvements (a little better for ACTs with a high 
semantic complexity such as pascal, a little worse for AGs with a low syntactic complexity 
such as asm). However we must note that this is achieved at higher bookkeeping costs, 
and that semantic stability has no influence on space consumption (the Rm~ figures are 
the same for .49 as for A3). 

Combining semantic stability with the syntax-based techniques is always profitable 
(compare A10 with As on one hand and A9 on the other hand). This means that neither 
the dynamic approach (semantic stability) nor the static one (syntax-based techniques) 
subsumes the other and, rather, that they complement each other. 

All in all, the four techniques we have presented are quite effective in reducing the 
practical complexity of GFA problems. Comparing the results for A10 w.r.t..43 suffices to 
be convinced of that. To conclude the discussion on the benefits of our improvements, let 
us examine the processing of a "simple" subgrammar: we need at least one iteration to 
construct the graphs, another one to check that convergence is reached (this one may be 
suppressed by weak stability) and, in our scheme, a final one for actually testing the non- 
circularity. Thus, for a "simple" grammar, the total number of transitive closures should 
be of the order of three times the tclc~c figure, With all our improvements we reach this 
behavior for our three simplest AGs, and we reach close to it for the two other ones. This 
is, in our opinion, an indication (but not a formal proof) that our improvements reach 
close to optimality. 

9 C o n c l u s i o n  

This paper showed that Grammar Flow Analysis is an interesting computation framework 
for many classical problems dealing with grammars. It also showed that simple techniques 
could drastically improve the resolution of those problems and were able to reach close 
to optimality, while being easy to implement. Practical experiments show that problems 
that were believed to be intractable because of their computational cost---e.g, circularity 
tests for AGs--now become quite feasible in practice by using the improvement techniques 
we described. Furthermore, these techniques are so effective that we have used them in 
many stages in the FNC-2 system (SNC test, DNC test, OAG test, . . .  ), which allows to 
cascade these stages while keeping a reasonable execution time (less than 80 seconds to 
build a complete optimized evaluator for our pascal AG). 

While the basic techniques for implementing GFA are now well understood, there stays 
to discover new application fields. We believe that GFA and its efficient implementation 
will give a new boost to the use of grammars as a basic tool of computer science. 
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