
Techniques for Improving
Grammar Flow Analysis

(Extended Abstract)

Martin JOURDAN & Didier PARIGOT
INRIA*

Abstrac t

Grammar Flow Analysis (GFA) is a computation framework that can be ap-
plied to a large number of problems expressed on context-free grammars. In this
framework, as was done on programs with Data Flow Analysis, those problems are
split into a general resolution procedure and a set of specific propagation functions.
This paper presents a number of improvement techniques that act on the resolu-
tion procedure, and hence apply to every GFA problem: gr&rarno~r partitioning,
non-terminals static ordering, weak stability and semantic stability. Practical ex-
periments using circularity tests for attribute grammars will show the benefit of
these improvements. This paper is a shortened version of [JoP90].

1 I n t r o d u c t i o n

In optimizing compilers, we have to statically infer run-time properties of programs, so
that we can take advantage of this knowledge to generate better code. For instance, we
may want to know whether the value of a given variable in an expression is statically
predictable, so that we can use this constant value to generate better code (this is called
constant .folding). It turns out that many similar problems, when expressed formally,
all reduce to solving a set of equations on the program graph; these equations relate
pieces of information attached to immediately neighboring nodes, and edges are used to
propagate this information. The basis of Data Flow Analysis (DFA) is that the method
to solve these equations is independent from the semantics of the equations themselves,
so that it is possible to devise a generic resolution procedure [COC79]. This procedure
is parametrized by the specific equations of the problem at hand. Any improvement of
this generic resolution procedure will hence benefit to every DFA problem. The DFA
framework has been universally acknowledged, and most of the problems dealing with
static analysis of programs are expressed in terms of DFA [JoM81, ASU86].

Grammar Flow Analysis (GFA) is a technique recently introduced by Reinhard Wil-
helm and Ulrich M6ncke [M6W82, M6n87] that transports that theory to the computation

*Authors' address: INRIA, Domaine de Voluceau, Roequeneourt, BP 105, F-78153 LE CtlESNAY
Cedex, France. E-mail: {jourdan,paxigot}~minos.in:ria.~r.

241

of properties of context-free grammars. GFA is performed on the grammar graph, whose
nodes correspond either to non-terminals or productions, and whose edges are drawn ac-
cording to the productions. Propagation functions are defined on productions, and carry
some information that is attached to the non-terminals. According to the direction of
these functions, we distinguish bottom-up and top-down GFA problems. In a bottom-
up problem, the information attached to the LHS non-terminal of a production depends
on the information attached to the non-terminals in the RHS. Examples of bottom-up
problems are:

• computing the Firstk sets on a context-free grammar [ASU86, MSW82];

• computing the synthesized dependency graphs in an attribute grammar (AG) and
testing it for circularity [Knu68, LOP75, DJL84, JoP88, DJL88];

• pre-computing the sets of matching patterns in the construction of a bottom-up tree
pattern matcher [HOO82, MSn85].

In a top-down GFA problem, the information attached to a non-terminal in the RHS of
a production depends on the information attached to the LHS non-terminal, but generally
also on the previously computed results of an associated bottom-up problem, which are
attached to the non-terminals in the RHS [MSn87]. Examples of these are:

• computing the Followk sets on a context-free grammar, given the Firstk sets;

• computing the inherited dependency graphs in an AG, which depend on the syn-
thesized ones;

• finding the sets of totally-ordered partitions in the construction of an /-ordered
AG equivalent to a given non-circular AG [EnF82]; this computation also uses the
synthesized dependency graphs.

Although bottom-up and top-down GFA problems are not symmetric in the same way
as e.g. forward and backward DFA problems, they are solved by similar generic procedures.

In some cases, the complexity of a GFA problem can be reduced by computing only
approximations of the exact solution [MSn87]. This subject will not be addressed in this
abstract, but it is in the full report [JoP90].

As can be seen from the list of examples given above, GFA is a very general and useful
technique for every kind of language processors. Thus, every improvement of the general
resolution procedure will benefit to the whole broad domain of GFA. The issue of how to
efficiently implement the general GFA resolution procedure was only briefly touched in
the original papers [MSn87]. Conversely, much work has been done to efficiently solve a
particular GFA problem, namely testing an AG for non-circularity. The purpose of this
paper is to exhibit a number of more or less well-known techniques, originally devised for
that specific purpose, that actually apply to the whole domain of GFA and can improve
the resolution of every GFA problem. These techniques are:

• grammar partitioning [Che81], in which the grammar is decomposed into subgram-
mars according to the "derives from" relation, and the subgrammars are processed
in a~L order derived from the quotient relation;

242

• non-term/na/s static ordering [Par85, JoP88], in which the same "derives from"
relation is used to derive a near-optimal order for processing the non-terminals;

• ~rea~ stability [DJL84], which allows to skip the processing of non-terminals and
productions that are known to derive only terminal trees;

• semantic stabi//ty [Par85, Che85, JoP88], which takes into account the "age" of each
piece of information to avoid redundant computations.

The rest of the paper is organized as follows. Section 2 will present in an informal way
the theory of Grammar Flow Analysis; in particular, a naive resolution algorithm will be
given. Sections 3 to 6 will each be devoted to one of the four improvement techniques
listed above, and the subsequent section discusses their combination. Section 8 briefly
presents the results of a practical experiment using non-circularity tests for AGs as the
test case, together with a short discussion thereof. The paper ends with some concluding
remarks and the list of references. More details, examples and results can be found in
[JOB90].

The improvements will be described in such a way that they are readily applicable to
bottom-up GFA problems. Their transposition for top-down problems will generally not
be deta~ed, but it is an easy exercise left to the interested reader (see also [JoP90]).

2 Bases of Grammar Flow Analysis

This section presents only briefly and informally the basic notions, data structures and
algorithms involved in GFA. For a more comprehensive discussion see MSncke [MSn87].
The following formulation is borrowed and adapted from M6ncke & Wilhelm [MSW82].

2.1 T h e g r a m m a r g r a p h

Let G -- (N, T, P, Z) be a context-free grammar, with N the set of non-terminals, T the
set of terminals--which are irrelevant to GFA 1 - , P the set of productions and Z the
start symbol. Each production will be of the form p : Xo ~ X1X2. . . X,~p, where np is the
number of non-terminals in the RHS of p and the terminals are omitted. The occurrences
of non-terminals in a production are numbered from left to right, p[0] = X0 being the
LHS one, and p[i] = Xi, 0 < i _~ np, being the RHS ones.

The grammar graph is a directed graph G -- IV, E / with set of vertices V -- N U P
and set of edges E defined as follows:

V p e P , V X E N , (p , X) E E ¢==~ X=p[O]

V p e P , V X e N , (X , p) e E ¢=~ 3i, O<i<_np, X=p[i]

1They are indeed irrelevant to the GFA framework and resolution procedure, even if they are relevant
to a particular problem, e.g. for Firstk and Followk.

243

2.2 GFA problems

A GFA problem is a triple (L, ((~p)~p, (¢x)xe~l. The first component, L, is the space of
flow information; pieces of information are attached to non-terminals as Lx E L. 2

The second component, (¢p)~p, is a family of information propagation functions. For
a bottom.-up problem, and for each production p, there exists one propagation function
¢p,0 : L '~p ~-* L, which maps a tuple of elements of flow information (Lp{il)0<i__.~ p on the
non-terminals in the RHS of production p into an element of information to be at tached
to the LHS non-terminal. For a top-down problem, and for each production p, there
exists a list of propagation functions Cp,i : L ~-~ L (0 < i ~ np), which map an element
of flow information on the LHS non-terminal of p into an element of information for p[i],
0 < i < n~p. Each of the Cv,0 and Cv, i may use other information defined on the grammar,
but assuming not to depend on the problem. In addition, in a top-down problem, the Cpj
may use information on all the non-terminals of p that was previously computed for an
associated[bo t tom-up problem.

Lastly,., (¢x)xeN is a family of information combination functions, Cx : L IPxl ~ L
where

{p E P I p[0] = X} for a bo t tom-up problem
Px = {p E P] 3i,0 < i < np, p[i] = X} for a top-down problem 3

Px is thus the set of productions in which the information attached to X is to be com-
puted, according to the direction of the problem at hand; then~ Cx combines the elements
of information computed on each of these productions into a single element to be at tached
to X. Note tha t the Cx must be commutat ive for the problem to be well-defined.

2 .3 T h e s o l u t i o n o f a G F A p r o b l e m

The solution on g rammar C of the DFA problem (L, (¢p)~p, (¢x)xe2v) is a set {Lx}xeN,
where L x E L for each X in N, of elements of information attached to each non-terminal,
verifying one of the following equations: 4

• for a bo t tom-up problem:

v x c N, L x = (1)

• for a top-down problem:

VX C N, Lx = Cx[¢p,~(L~01)]~x,~,l--x (2)

These equations express tha t the solution is a combined fixed point of a set of functions,
and can thus be computed by iteration over the g rammar graph.

2For some problems there is actually one information space Lx per non-terminal X, but this does not
change muc]h the formulation.

3In that case, Px is really a multiset since a same non-terminal may appear more than once in the
RHS of some production.

4In these two equations, the notation f[xj]i~s stands for f(zj~, zj3,... , zjh) if S = (jl, j2, . . . , j~).

244

Algor i thm/ to (G: grammar):
foreach X E N do Lx ~-- 3_ endfor;
repeat convergence ~-- true;

foreach p G P do
let X = p[0];
old ~- Lx;
Lx ~- ¢~c(~0(L~q, L~21,..., L ~]) , Lx)
if Lx ~ old then

convergence ~-- false
endif

endfor
until convergence.

Figure 1: Naive GFA resolution algorithm

2 . 4 A n a i v e r e s o l u t i o n a l g o r i t h m

In this section we present an algorithm to solve bot tom-up DFA problems (the adaptation
to top-down ones is obvious; it can be found in [JoPg0]). We assume that the information
space L is partially ordered with a bot tom element 3_ and that a least fixed point is
sought. We also assume that the combination functions ~ x are incremental, i.e.,

~x(~ , , ~2 , . . . , ~l~xl) = ~ (~ 1 , ~ (~ 2 , . . . ~ (~ l p x l , ±) ' " "))

for some function @~¢. This condition is not absolutely necessary but we assume it holds
to make the algorithm simpler. Also, all of these assumptions are verified by each of the
GFA problems listed in section 1, because in those cases the information space is a set
and the combination functions are the union function, which is incremental. The naive
resolution algorithm is presented in Fig. 1. 5 It is naive in the sense that it is a simple
derivation of the fixed point equation (1) and there exists no special order to process
the non-terminals and the productions, i.e., the grammar graph is visited in a totally
random order. The purpose of the improvements to be presented in the following sections
is to determine a near-optimal order and to eliminate redundant computations, such that
information is propagated faster along the graph and convergence is reached faster.

As a special but quite common case e we derive a version of this algorithm for problems
in which the information space is structured as a set of sets, i.e., each Lx is itself a set,
and in which the combination functions are the set-theoretic union. In this case, the
propagation functions are more easily expressed in terms of individual elements of these
sets. We hence assume that , for each production p, there exists an auxiliary function
~;,o : Lp[ll x Lp{2l x . . . x L~,pl ~-~ L~0l, which maps a tuple of information elements
on the RHS non-terminals into an element of information for the LHS one. The whole
propagation function is then defined as the set-theoretic genera~at ion of ¢ko, that is:

~,0(L~ll, L~t, ... ,L~-,I) = {~ ,0(~ , ,~ , . . . , %) l ~ ~ L~,1, 0 < i < ,~}

SThe names of the algorithms are chosen to recall those of the practical experiment of section 8, which
are themselves a subset of those used in the full report [JoPg0].

SAs an evidence, MSncke considers only this case in his reference paper on GFA [MSn87]. This is the
case for instance of the First~ and synthesized dependency graphs problems.

245

init:
iterate:

select-nt:
select-prod:

combine:
compute:

test:
increase:

Algori thm A3 (G: grammar):
foreach X G N do L x ~-- 0 endfor;
repeat convergence *-- true;

foreach X E N do
foreach p G P x do

foreach 71 G Lp[1],..., 7np G Lp[,~p] do

if 70 ~ Lx then
L x ~- L x u {7o};
convergence ~ false

endif
endfor

endfor
endfor

until convergence.

Figure 2: Naive algorithm for set-based problems

The resulting algorithm is presented in Fig. 2. 7 Our improvements will be expressed on
this latter algorithm, with the help of the labels attached to some of the statements.
The transposition to the more general algorithm will not be given. The purpose of the
improvements will be to reduce as much as possible the number of "compute" and "test"
steps, which are assumed to be expensive s and hence dominate the running time.

3 Grammar Partitioning

As can be seen from the definition in section 2.2, the information flows exclusively along
the edges of the grammar graph. It is thus natural, in order to have this information
propagate faster, to take into account the structure of this graph, rather than picking
non-terminals and productions at random. The first idea that comes to the mind is hence
to parti t ion the grammar graph into strongly connected components and process those
components in the order defined by the quotient relation. Note that this technique was
used right from the beginning in DFA, where the program is decomposed into a control
flow graph of basic blocks, and blocks are processed from inner to outer [COC79, JoM81].

The order in which productions are processed depends on the order in which non-
terminals are processed; more precisely, each time a non-terminal is processed, all the
productions of which it is the LHS symbol are processed (line labeled "select-prod" in
Algorithm A3). This must be so in order to ensure that when a non-terminal is referenced
in the RHS of a production, the information attached to it is as complete as possible. We
hence require, when computing the strongiy connected components of the grammar graph,
that every production vertex be in the same component as the vertex corresponding to

~Note that we already have decreased the random factor by subordinating the choice of the production
to process to the choice of its LHS non-terminal.

Sin non-circularity tests for AGs for instance, these steps involve the computation of a transitive
closure and testing the membership of a (sometimes big) graph in a set of graphs.

246

Algorithm .44 (G: grammar):
build the graphs r and I'0 from G;
apply algorithms for Sorting, Entry Points Priority, Other Symbols Priority; a
f o r i ~ 1 t o K d o

apply Algorithm A0 or .43 to subgrwnmar Bi;
discard or store away the information attached to non-terminals of priority i

e n d f o r .

aIf necessary, more details on these algorithms can be found in the original works [Che81,
DJL84] and in [JoP90].

Figure 3: GFA resolution algorithm using partitioning

i t s LHS non-terminal. We thus define the following auxiliary relation:

VX, Y E N, X F Y ¢=~ 3p E P, 3i, 0 < i <_ np, X = p[i] A Y = p[O]

r is the "derives from" relation on non-terminals, and its graph is the same as the grammar
graph in which the production vertices are merged with their LHS non-terminal vertices.

The strongly connected components of F define the subgrammars of G we are interested
in. Moreover, if F0 is the quotient relation associated with F, F0 defines a partial order to
be used for processing these subgrammars. Since by construction P0 is acyclic, a simple
topological sort will derive from i t s total order. We hence denote the subgrammars as
Bt, B2, . . . , BK, where K is the total number of strongly connected components of G, so
that Bi will be processed before Bi+l (note: Z E BK).

For reasons to be explained later, it is interesting to distinguish entry points and output
points 9 of these subgrammars B:

VX e B, X e EP(B) ¢::::v 3Y ~ B, X F Y
V X e B , X e O P (B) ~ 3 Y ~ B , Y F X v ~ Y e N , Y r X

Entry points of a subgrammar are thus those non-terminals that derive from non-terminals
in subgrammars to be processed later, and output points are those non-terminals that
derive into non-terminals of subgrammars that have already been processed or derive
only terminal productions. Output points will not be used before next section.

The order for processing subgrammars is used to assign a priority to each non-terminal,
that is the rank of the stage after which that non-terminal will no longer be referenced. An
entry point of a subgrammar will be assigned the priority (rank) of the last subgrammar
that references it; other non-terminals will be assigned the priority of their own subgram-
mar. This notion of priority is useful to reduce the space consumption of the algorithm,
because after stage i we can either store in secondary memory or discard c0mpletely--if
the problem at hand allows it--the information attached to non-terminals of priority i.
As will be shown in section 8, this technique is very effective. The resulting algorithm is
presented in Fig. 3.

SAs can be seen from the definitions, the names of "entry" and "output" points are hence rather
misleading, because they are inconsistent with the direction of the edges in the grammar graph. We
however keep them for the sake of compatibility with previous works [DJL84, JoP88].

247

For the top-down case, we must use the inverse of relation I ~ and swap the roles of
entry and output points. The strongly connected components will then be the same, but
the processing order will be different; in that case, Z belongs to B1.

4 Non-Terminals Static Ordering

Grammar partitioning uses the "derives from" relation to exhibit subgrammars and derive
an optimal order for their processing; it however leaves unspecified the order for processing
non-termimMs and productions inside each subgra~'nmar. The purpose of this section is
to establish a near-optimal order for processing non-terminals. Since by definition each
subgrammar is a strongly connected component for the "derives from" relation, the latter
is not sufficient to define the processing order, i.e., it is impossible to find a total order
compatible with F. Heuristics wilt help make the choice.

The first heuristic will be to order the non-terminals of a given subgrammar from
output points to entry points; this order is indeed the "closest" to relation F. The core
of the ordering algorithm is thus a topological sort based on relation F and starting with
output points. The sort is however modified to solve three difficulties:

1. Since we want output points to be the starting point of the topological sort, we must
first delete from FIB every edge whose tail (sink) is an output point, except those
whose head (source) is also an output point. Note that each output point is the tail
of at least one such "back edge", otherwise it would not belong to the subgrammax.

2. We then consider only output points and edges connecting two output points, and
topologically order this subgraph. If this is not possible because of a cycle, we make
an arbitrary choice in the cycle.

3. We then proceed to topologically sort the rest of the subgrammar. If a yet unbroken
cycle shows up, we make an arbitrary choice in the cycle.

The resulting algorithm is completely detailed in Jourdan & Parigot [JoP88]. To
integrate iit in the complete GFA algorithm, we need to modify A3 as follows:

• add a call to the non-terminals static ordering algorithm in line "init";

• use this order in line "select-nt'.

As for the order in which to process productions in each Px (line "select-prod"), none
is better than any other because all the non-terminals in the RHS have been processed
earlier in the current iteration (apart from back edges, but this is taken into account by
the global convergence flag). We can only note that directly recursive productions should
be processed after the others. The modified algorithm is not shown and left to the reader.

For top-down GFA, the basic idea is the same except that we use the inverse of r and
that the roles of entry and output points are reversed. In this case the resulting order is
not necessarily the inverse of the bottom-up order.

The advantages of this ordering is that, as expected, information propagates faster, as
shown by the important reduction of the number of iterations (line '~terate") needed to
reach convergence (see section 8).

Note tllat this technique is similar to an improvement of DFA called "reasonable node
listing", however its efficiency is particularly important for GFA.

248

5 Weak Stability

Weak stability allows to skip recomputations of relations for non-terminals and/or pro-
ductions that are known to generate only finite trees of height _< i and hence become
"stable" after iteration i (line "iterate" in A3). This is done as follows:

1. at the beginning of the algorithm (line "init"), no non-terminal or production is
weakly stable;

2. after each iteration (end of loop "iterate"):

(a) mark as weakly stable those productions that have only weakly stable non-
terminals in their RHS; 1°

(b) mark as weakly stable those non-terminals that derive only weakly stable pro-
ductions;

3. in the course of an iteration, skip weakly stable non-terminals (line "select-nt") and
productions (line "select-prod").

When used alone, this technique is not very efficient because it falls on every recur-
sire non-terminal. However it is not totally useless, as shown in sections 7 and 8. An
incremental variant of this technique is described in the full report [JoPg0].

6 Semantic Stability

This improvement, called semantic stability, 11 aims at saving execution time by drastically
reducing the number of redundant computations. It is based on the observation that, if
the information used in the basic step of the algorithm (inner loop of A0 or line labeled
"compute" in As) is "old" enough to have been processed during an earlier iteration, then
it is useless to process it again in the current iteration, which means that we may skip the
basic step. Of course, doing so is correct only if the information space is partially ordered
and if the propagation and combination functions are monotonic, i.e., if skipping a basic
step with "old" parameters does not lose any information because that information is
already present in the "old" value of Lx, where X is the non-terminal at hand. Note
that the formulation of algorithm A0 should be slightly modified to make this apparent.
Note also that these conditions are not very constraining; in particular they are verified
in every set-based GFA problem (see section 2.4).

Thus the basic idea of this improvement is to associate a "time-stamp' with each
piece of information and run the basic step only if at least one such piece of information
appearing in the RHS of the computation step is not "old" enough to have already been
processed. In the special case of set-based GFA problems, this time-stamp can even be
associated with each element of the sets attached to non-terminals, and tested in the
combinations in which this element appears (line labeled "combine" in A3). In that case,
the new algorithm is as presented in Fig. 4.

1°If partitioning is also used, non-terminals in already processed subgrammars are considered as weakly
stable.

llbecause, as opposed to the previous ones, it does not take into account the syntactic information
represented by the grammar graph.

249

init:

iterate:

select-nt:
select-prod:

combine:

check-time:
compute:

test:
increase:

A l g o r i t h m A9 (G: grammar):
foreach X E N do L x *- 0 endfor;
it ~- 0;
repeat convergence *-- true;

it *- it + i;
foreach X E N do

foreach p E Px do
foreach 71 G Lp{1],..., 7~ E Lp[npl do

i f Bi,O < i ~ nv, time(Ti) ~ max-time(it, p) t h e n
70
i f 70 ~ Lx t h e n

time(70) ~-- (it,p};
L x ~ L x u {~o};
convergence ~-- false

endi f
end l f

end for
endfor

endfor
unti l convergence.

Figure 4: GFA resolution algorithm using semantic stability

The correctness of this algorithm strongly depends on the choice of the function "max-
time". Assuming that the productions are numbered, we define the time-stamp of an
element of information as the time when it was created, that is the ordered pair (it, p}
where it is the number of the iteration and p the number of the production being processed.
These pairs are lexicographically ordered.

A weak version of "max-time" is

max-time(it, p) = <it - 2, O}

in which we forget about the production. Indeed, any element of information created
during iteration it - 2 has been processed at latest during iteration it - 1 and processing
it aga~ during iteration it or later is redundant.

To achieve a finer condition, we must require that non-terminals and productions are
always processed in the same order during each iteration (lines "select-nt" and "select-
prod"). In this case, we can assume that the number of a production is the rank at which
it is processed during an iteration, and the definition-of "max-time" can be refined as:

(i t - l , p - 1) i f p ¢ l
max-t ime(i t , p) = <it 2, IPI) i f p = 1

because any element of information created at (it, p) can be used immediately during the
rest of the iteration (i.e., at (it,p' / with p' > p) or during the first part of the next one
(i.e., at lit + 1,p' / with ld < p) a n d thus becomes redundant a f t e r / i t -4- 1,p/.

The figures of section 8 will show that this simple idea is very effective.

250

7 C o m b i n a t i o n

All of the four previously presented improvements can be used alone or in combination.
The most effective technique is grammar partitioning. This is because it allows to

tailor the number of iterations in each subgrammar to the "semantic complexity" of the
GFA problem for this subgrammar, rather than having to process the whole grammar
during a number of iterations that is in any case at least equal to the maximum number
of iterations in each subgrammar. Furthermore it is the only improvement that reduces
space consumption, because the results are produced and can be disposed of incrementally
rather than in a single burst at the end.

Non-terminals static ordering reduces the number of iterations by ensuring as much
as possible that all uses of some information occur after the time when it is computed.
It can be used independently from partitioning by applying it to the whole grammar,
the only entry point being the start symbol and the output points being the non-terminal
deriving only terminal productions (if the grammar is assumed to be reduced). However its
combination with partitioning is more effective since the advantages of the latter are fully
retained: time is reduced because partitioning ensures that information on a subgrammar
is completely computed before being used in other subgrammars, and space is reduced
because we can forget about information attached to non-terminals that will no longer be
referenced.

When used alone, weak stability is not very effective because it cannot act on re-
cursive non-terminals. However, grammar partitioning offers more opportunities for weak
stability, because non-terminals outside the subgrammar at hand are considered as weakly
stable, even if they are recursive in their own subgrammar.

Syntax-based techniques reduce the number of basic computation steps by using static
information (the shape of the grammar graph), whereas semantic stability aims at the
same goal by using dynamic time-stamping techniques. One could thus think that the
latter is subsumed by the former because, since information propagates faster, most of
the basic steps are actually useful and cannot be eliminated by semantic stability. As the
figures of section 8 will show, this is partly true, but it appears that the combination of
both techniques is more effective than each of them taken separately; this is especiafly
true when the semantic complexity of some (sub-) grammar is high, i.e., when the sets
Lx contain many different elements.

8 P r a c t i c a l R e s u l t s

To illustrate in practice the effects of our GFA improvement techniques, we have cho-
sen the non-circularity test for AGs, because they fully illustrate the power of the GFA
improvements.

8.1 Rough r e s u l t s

We have implemented several versions of the non-circularity test as part of the FNC-
2 AG processing system [JoP89]. The various algorithms differ in which improvement
technique(s) they use; they are detailed in Table 1. All of them use covering [LOP75,

251

A 3

A4
A5
A~
A~
As

i A9
AlO

partitionin 9

0

• •

orderin9 weak stability

O

• •

Table 1: Features of the various algorithms

sere. stabilitp

simproc asm pll_c pascal simula
nt 10 58 139' 115 126
pr 21 216 376 216 244
rhsm~x 4 2 4 6 6
rhs=ve 1.14 0.46 1.07 1.18 1.13
attmex 8 10 16 15 17
atta~ 4.60 3.62 8.90 7.39 7.28
K 5 57 92 58 58
d~= 1 2 3 4 4
dave 1 1.07 1.04 1.20 1.10
tclcire 21 267 389 457 268

Table 2: Characteristics of the example AGs

DJL84], an, approximation that strongly reduces the practical complexity of the non-
circularity test.

These algorithms were tried on five practical AGs of increasing complexity. All of
these AGs are non-circular. We will use the following notations:

• For e~:h AG:

nt number of non-terminals

pr number of productions

rhsm~, rhsave maximum and average number of non-terminals in the RHS of any
production

at tm~, art=re maximum and average number of attributes per non-terminal

K number of syntactic equivalence classes (subgrammars)

The characteristics of our five AGs are presented in Table 2.

• For each algorithm:

dm~, dive maximum and average number of graphs in any L x at the end of the
computation 12

12Because of covering, some Lx's might be temporarily larger than that in the course of the computa-
tion, if one newly created graph happens to cover two or more old graphs.

252

P ~ maximum number of co-resident graphs at any time, i.e., maxti=,(~x¢lv]Lxl)
tcl number of transitive closures (basic steps) computed

tcl=,c number of transitive closures computed for actually testing the non-circularity
(see below)
Since the three figures dm~, d ~ and tc/ci~c characterize the results of the
problem at hand, they have been "factored out" and also appear in Table 2.

• For algorithms not using partitioning:

it number of iterations over the whole grammar

• For algorithms using partitioning:

it== maximum number of iterations over any subgrammar

it~v¢ same in weighted average, i.e., with obvious notations, (~ = l itj x prj)/pr

Statistics gathered from the execution of the various algorithms are presented in Ta-
ble 3.

The tcl~,c figure is related to the way we actually test the non-circularity. Briefly
said, we do it globally in a final pass--over either the whole grammar, when partitioning
is not used, or each subgrammar--after all the synthesized dependency graphs have been
computed, rather than incrementally on every graph. More details can be found in the
full report [3oP90]. Let us only note that tcl~,c is interesting on its own since, being
the number of final graph combinations, it is a very good measure of the "semantic
complexity" of the non-circularity problem for a given AG.

In the naive versions of the algorithm in which no special order is computed, the
processing order (lines "select-nt" and "select-prod") is determined by the textual ap-
pearance in the grammar source file. Since practical grammars are generally presented
in a top-down manner, using textual order is close to the worst case for bottom-up GFA
problems!

When partitioning is used, the "useless" graphs (see section 3) are actually discarded
rather than stored in secondary memory, and their space is reclaimed by a specialized
garbage collector. The Rmax figure is computed by this garbage collector.

8.2 D i s c u s s i o n

Algorithm A4 uses only partitioning. The gains in time (i.e., in the number of basic steps
executed) are already quite good, especially on AGs with simple syntactic structure (asm,
pll_c). This is because information propagates faster, as shown by the decrease of the
number of iterations (itm~x(A4) < it(As) and it~v,(A4) << it(A3)). The most important
advantage of grammar partitioning is however the gains in space it allows to achieve:
compare the R== figures for A4 w.r.t. A3.

When non-terminals static ordering is used alone (As), it also makes information
propagate faster; this is proved by the strong decrease of the number of iterations w.r.t.
As. However it has no influence on space consumption. Comparing the results for A4
and As gives interesting insights on the way grammar partitioning and non-terminals
static ordering act when used separately. Grammar partitioning is more effective on

253

simproc asm pl1_c pascal sirnula
A3 Rm.x 11 67 147 149 154

it 7 8 15 21 19
tcl 145 2,260 5,125 9,768 5,099

,44 Rmax 5 21 30 57 80
itmax 4 3 13 21 14
it~ve 3.10 1.12 4.31 7.16 8.29
tcl 78 561 1,924 6,031 2,632

As Rm~x 11 64 146 147 182
it 4 3 9 9 7
tcl 101 1,064 3,645 4,288 2,376

A6 Rmax 5 21 30 58 99
itraax 4 3 6 8 7
itave 2.76 1.08 2.37 3.41 4.30
tcl 73 556 1,304 2,746 1,756

A7 Rmax 11 67 147 149 154
it 7 8 15 21 19
tcl 109 900 3,555 8,446 3,865

AS Rm~ 5 21 30 58 99
irma x 4 3 6 8 7
itave 2.76 1.08 2.37 3.41 4.30
tcl 56 545 1,160 2,679 1,655

A9 Rmax 11 67 147 149 154
it 7 8 15 21 19
tcl 57 588 1,165 1,942 1,628

A10 Rmax 5 21 30 58 99
itmax 4 3 6 8 7
it~ve 2.76 1.08 2.37 3.41 4.30
tcl 49 540 915 1,661 1,246

Table 3: Execution statistics

grammars with simple syntactic structure because it allows not to process again at each
iteration a large share of simple subgrammars. However, for more complicated examples
with "big" subgrammars (pascal, simuIa), the bact influence of randomly processing the
non-terminals inside each subgrammar shows up again, which explains that non-terminals
static ordering is more effective in these cases. Anyway, the real winner is the combination
of both techniques (As), which gives better (and generally much better) results thaa each
of them taken separately: there is a real synergy between these two improvements. The
gains in space achieved by grammar partitioning alone are retained in its combination
with non-terminals static ordering.

Weak stability used alone (AT) has a perceptible influence only because the bare algo-
rithm (A3) is really bad and needs a lot of iterations to reach convergence; this is especially
true when the grammar has many terminal productions (asm). When weak stability is
used in combination with grammar partitioning and non-terminals static ordering (As),
this influence is however less important, but nevertheless not negligible.

When comparing As with A3, we can see that the combination of all syntax-based
improvements reaches its goal, which is to make information propagate faster, in a quite

254

effective way. Furthermore space consumption is reduced by virtue of grammar partition-
ing.

Semantic stability used alone (Ag) is also a real winner: it performs roughly as well
as the combination of syntax-based improvements (a little better for ACTs with a high
semantic complexity such as pascal, a little worse for AGs with a low syntactic complexity
such as asm). However we must note that this is achieved at higher bookkeeping costs,
and that semantic stability has no influence on space consumption (the Rm~ figures are
the same for .49 as for A3).

Combining semantic stability with the syntax-based techniques is always profitable
(compare A10 with As on one hand and A9 on the other hand). This means that neither
the dynamic approach (semantic stability) nor the static one (syntax-based techniques)
subsumes the other and, rather, that they complement each other.

All in all, the four techniques we have presented are quite effective in reducing the
practical complexity of GFA problems. Comparing the results for A10 w.r.t..43 suffices to
be convinced of that. To conclude the discussion on the benefits of our improvements, let
us examine the processing of a "simple" subgrammar: we need at least one iteration to
construct the graphs, another one to check that convergence is reached (this one may be
suppressed by weak stability) and, in our scheme, a final one for actually testing the non-
circularity. Thus, for a "simple" grammar, the total number of transitive closures should
be of the order of three times the tclc~c figure, With all our improvements we reach this
behavior for our three simplest AGs, and we reach close to it for the two other ones. This
is, in our opinion, an indication (but not a formal proof) that our improvements reach
close to optimality.

9 C o n c l u s i o n

This paper showed that Grammar Flow Analysis is an interesting computation framework
for many classical problems dealing with grammars. It also showed that simple techniques
could drastically improve the resolution of those problems and were able to reach close
to optimality, while being easy to implement. Practical experiments show that problems
that were believed to be intractable because of their computational cost---e.g, circularity
tests for AGs--now become quite feasible in practice by using the improvement techniques
we described. Furthermore, these techniques are so effective that we have used them in
many stages in the FNC-2 system (SNC test, DNC test, OAG test, . . .), which allows to
cascade these stages while keeping a reasonable execution time (less than 80 seconds to
build a complete optimized evaluator for our pascal AG).

While the basic techniques for implementing GFA are now well understood, there stays
to discover new application fields. We believe that GFA and its efficient implementation
will give a new boost to the use of grammars as a basic tool of computer science.

255

R e f e r e n c e s

[ASUS6]

[CheSl]

[ChnSS]
[coc79]

[DJL84]

[DJL88]

[EnF82]

[HoOS2]

[JoM81]

[3oP88]

[oPsg]

[JoPgO]

[Knu68]

[Lop 5]

[MS.SS]

[M WS2]

[P SS]

A. V. Aho, R. Sethi & J. D. Ullman, Compilers: Princip]es, Techniques and Tools,
Addison Wesley, Reading, MA, 1986.

K. S. Chebotar, "Some Modifications of Knuth's Algorithm for Verifying Cyclicity of
Attribute Grammars," Progr. and Computer Software 7, 1 (Jan. 1981), 58-61.

. , private communication, 1985.

P. Cousot & R. Cousot, "Systematic Design of Program Analysis Frameworks," in
6th ACM Syrup. on Principles of Progr. Languages, San Antonio, TX, 269-282, Jan.
1979.

P. Deransart, M. Jourdan & B. Lorho, "Speeding up Circularity Tests for Attribute
Grammars," Acta/n/orm. 21 (Dec. 1984), 375-391.

. , Attribute Grammars: De~nitions, Systems and Bibliography, Lect. Notes in
Comp. Sci. ~323, Springer-Verlag, New York-Heidelberg-Berlin, Aug. 1988.

J. Engelfriet & G. Fil~, "Simple Multi-Visit Attribute Grammars," J. Comput. System
Sci. 24, 3 (June 1982), 283-314.

(3. M. Hoifmann & M. J. O'DonneU, "Pattern Matching in Trees," J. ACM 29, 1 (Jan.
1982), 68-95.

N. D. Jones & S. S. Muchnick, eds, Program FJow Analysis: Theory and App]Jcations,
Prentice-Hall, Englewood Cliffs, N J, 1981.

M. Jourdan & D. Paxigot, "More on Speeding up Ciro~arity Tests for Attribute
GrRmm~rs," rapport RR-828, INRIA, Rocquencourt, Apr. 1988.

. , The FNC-2 System User's Guide and Reference Manual release 0.4, INRLA,
Rocquencourt, Feb. 1989. This manual is periodically updated.

. , "Techniques for Improving Grammar Flow AnMysis," report to appewr, IN-
RIA, Rocquencourt, 1990.

D. E. Knuth, "Semantics of Context-free Languages," Math. Systems Theory 2, 2
(June 1968), 127-145. Correction: Math. Systems Theory 5, 1 (Mar. 1971), 95-96.

B. Lorho & C. Pair, "Algorithms for Checking Consistency of Attribute Grammars,"
in Proving and Improving Programs, Arc et Senans, G. Huet & G. Kalm, eds., 29-54,
INRIA, Rocquencourt, JuRy !975.

U. MSncke, "Generierung yon Systemen zur Transformation attributierter Operator-
b£ume: Komponenten des Systems und Mechanismen der Generierung," Diplomarbeit,
Univ. des Saarlandes, Saarbriicken, 1985.

. , "Grammar Flow Analysis," ESPRIT PROSPECTRA Project report S.1.3.-
R-2.2, Univ. des Saaxlandes, Saarbriicken, Max. 1986, revised Jan. 1987. To appear in
ACM ~ans. Progr. Lansuages and Systems.

U. M6ncke & R. WilheIm, "Iterative Algorithms on Grammar Graphs," in Con[. on
Graphtheore~ic Concepts in Computer Science (WG'82), Neunkirchen a.Br., H. J.
Schneider & H. G6ttler, eds., 177-194, Hanser Verlag, Miinchen, June 1982.

D. Parigot, "Un syst~me interactif de trace des circuRaritds dans une grammaire at-
tJribude et optimisation du test de circuRaritd," rapport de DEA, Univ. de Paris-Sud,
Orsay, Sept. 1985.

