Skip to main content

Output-sensitive generation of the perspective view of isothetic parallelepipeds

  • Conference paper
  • First Online:
Book cover SWAT 90 (SWAT 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 447))

Included in the following conference series:

Abstract

We present a practical and new hidden-line elimination technique for displaying the perspective view of a scene of three-dimensional isothetic parallelepipeds (3D-rectangles). We assume that the 3D-rectangles are totally ordered based upon the dominance relation of occlusion. The perspective view is generated incrementally, starting with the closest 3D-rectangle and proceeding away from the viewpoint. Our algorithm is scene-sensitive and uses O((n+d) log n log log n) time, where n is the number of 3D-rectangles and d is the number of edges of the display. This improves over the heretofore best known technique. The primary data structure is an efficient alternative to dynamic fractional cascading for use with augmented segment and range trees when the universe is fixed beforehand. It supports queries in O((log n+k) log log n) time, where k is the size of the output, and insertions and deletions in O(log n log log n) time, all in the worst case.

extended abstract

Support was provided in part by NSF research grant CCR-8906419. Part of this research was done while visiting Ecole Normale Supérieure in Paris, France.

Support was provided in part by NSF Presidential Young Investigator Award CCR-8947808 with matching funds from an IBM research contract and by NSF research grant DCR-8403613. Part of this research was done while visiting Ecole Normale Supérieure in Paris, France.

Support was provided by CNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Atallah & M. T. Goodrich, “Output-sensitive Hidden Surface Elimination for Rectangles,” Johns Hopkins University, Technical Report CS-88-13, 1988.

    Google Scholar 

  2. M. J. Atallah, M. T. Goodrich & M. Overmars, “New Output-Sensitive Methods for Rectilinear Hidden-Surface Removal,” Department of Computer Science, The Johns Hopkins University, Technical Report 89-09, 1989.

    Google Scholar 

  3. M. Bern, “Hidden Surface Removal for Rectangles,” Journal of Comp. Sys. Sci. (to appear 1990).

    Google Scholar 

  4. P. van Emde Boas, R. Kaas & E. Zijlstra, “Design and Implementation of an Efficient Priority Queue,” Mathematical Systems Theory 10 (1977), 1977.

    Google Scholar 

  5. B. Chazelle, “Filtering Search: A New Approach to Query-Answering,” 24th IEEE Symposium on Foundations of Computer Science, Tucson, Arizona (November 1983).

    Google Scholar 

  6. B. M. Chazelle & L. J. Guibas, “Fractional Cascading I: A Data Structuring Technique,” Algorithmica 1 (1986), 133–162.

    MathSciNet  Google Scholar 

  7. R. Cole, “Searching and Storing Similar Lists,” Journal of Algorithms 7 (1986), 202–220.

    Article  Google Scholar 

  8. H. Edelsbrunner, L.J. Guibas & J. Stolfi, “Optimal Point Location in a Monotone Subdivision,” SIAM Journal on Computing 15 (1986), 317–340.

    Article  Google Scholar 

  9. J. D. Foley, A. van Dam, S. K. Feiner & J. F. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  10. L. J. Guibas & F. F. Yao, “Translating a Set of Rectangles,” in Advances in Computing Research, Volume 1: Computational Geometry, F. P. Preparata, ed., JAI Press Inc., 1983, 61–78.

    Google Scholar 

  11. R. H. Güting & T. H. Ottmann, “New Algorithms for Special Cases of the Hidden Line Elimination Problem,” Computer Vision, Graphics, and Image Processing 40 (1987).

    Google Scholar 

  12. H. Imai & T. Asano, “Dynamic Orthogonal Segment Intersection Search,” Journal of Algorithms 8 (1987), 1–18.

    Article  Google Scholar 

  13. D. B. Johnson, “A Priority Queue in Which Initialization and Queue Operations Take O(log log D) Time,” Mathematical Systems Theory 15 (1982), 295–309.

    Google Scholar 

  14. K. Mehlhorn & S. Näher, “Dynamic Fractional Cascading,” preprint 1987.

    Google Scholar 

  15. S. Näher, K. Mehlhorn & C. Uhrig, Universität des Saarlandes, Technical Report A 02/90, 1990.

    Google Scholar 

  16. W. M. Newman & R. E. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill, New York, 1979.

    Google Scholar 

  17. F. P. Preparata & D. T. Lee, “Parallel Batch Planar Point Location on the CCC,” Information Processing Letters (to appear).

    Google Scholar 

  18. F. P. Preparata & M. I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.

    Google Scholar 

  19. F. P. Preparata, J. S. Vitter & M. Yvinec, “Computation of the Axial View of a Set of Isothetic Parallelepipeds,” ACM Transactions on Graphics (to appear 1990).

    Google Scholar 

  20. J. H. Reif & S. Sen, “An Efficient Output-Sensitive Hidden-Surface Removal Algorithm and its Parallelization,” Proceedings of the Fourth Annual ACM Symposium on Computational Geometry (June 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John R. Gilbert Rolf Karlsson

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Preparata, F.P., Vitter, J.S., Yvinec, M. (1990). Output-sensitive generation of the perspective view of isothetic parallelepipeds. In: Gilbert, J.R., Karlsson, R. (eds) SWAT 90. SWAT 1990. Lecture Notes in Computer Science, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52846-6_79

Download citation

  • DOI: https://doi.org/10.1007/3-540-52846-6_79

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52846-3

  • Online ISBN: 978-3-540-47164-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics